Transport processes in porous media. 1. Continuous modeling

Abstract

A coarse grained space-time average of quantities assigned to the molecules of a corpuscular physical system is defined. It is shown that these averages are almost everywhere continuous space-time functions and they satisfy identities similar to the balance equations from continuum mechanics. Further, through averages aver the statistical ensemble, everywhere continuous fields, and balance equations are derived. It is shown that a Lagrangian description of the transport by an advection-diffusion equation, can be obtained. In this frame, a macroscopic continuous model of motion in porous media is proposed, the Darcy-Buckingham flux law and the  porosity dependent adevection-diffusion equation are derived.

Authors

N. Suciu
Tiberiu Popoviciu Institutue of Numerical Analysis

C. Vamos
Tiberiu Popoviciu Institutue of Numerical Analysis

A. Georgescu
University of Pitești

U. Jaeckel
Forschungszentrum Julich GmbH, Institut fur Chemie und Dynamik der Geosphare, Deutschland

H. Vereecken
Forschungszentrum Julich GmbH, Institut fur Chemie und Dynamik der Geosphare, Deutschland

Keywords

Paper coordinates

N. Suciu, C. Vamoş, A. Georgescu, U. Jaeckel, H. Vereecken (1998), Transport processes in porous media. 1. Continuous modeling, Rom J. of Hydr. & Water Resour., 5(1-2), 39-55.

References

see the expansion block below.

PDF

soon

About this paper

Journal

Rom. J. Hydr. & Water Resour.

Publisher Name
DOI

Not available yet.

Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile

soon

References

Section 2

Paper in html format

References

[1] R. M. Bowen, (1984), Porous Media Model Formulation by the Theory of Mixtures, in Fundamentals of Transport Phenomena in Porous Media,  edited by J. Bear and M. Y. Corapcioglu, NATO ASI Series E: Applied Sciences, No. 82, Martinus Nijhof Publ., Dordrecht.
[2] J. H. Cushman, (1986) On Measurement, Scale, and Scaling,  Water Resour. Res. 22,  129-134.
[3] J. H. Cushman, (1990), Dynamics of Fluids in Hierarchical Porous Media,  edited by J. H. Cushman, Academic Press, London.
[4] J. L. Doob, (1953) , Stochastic Processes,  John Wiley Sons. Inc.
[5] R. Hilfer, (1991), Geometric and Dielectric Characterization of Porous Media,  Phys. Rev. B, 44, 1, 60-75.
[6] C. W. Gardiner, (1983) Handbook of Stochastic Methods (for Physics, Chemistry and Natural Science),  Springer- Verlag.
[7] M. Iosifescu and P. Tăutu, (1973), Stochastic Processes and Applications in Biology and Medicine,  I Theory, Editura Academiei București and Springer-Verlag, București, 1973.
[8] J. G. Kirkwood, (1967), Selected Topics in Statistical Mechanics,  Gordon and Breack, New York, 1967.
[9] A. Kolmogorov et S. Fomine, (1974)  Elements de la theorie des fonctions et de l’analyse fonctionelle,  Mir. Moscou.
[10] P. Malliavin, (1995), Integration and Probability,  Springer-Verlag, New York.
[11] J. Muller, (1995)  Thermodynamics, Pitman, Boston.
[12] E. Sanchez-Palencia, (1980), Non-Homogeneous Media and Vibration Theory, L. N. M.-127,  Springer-Verlag, New York.
[13] M. Shinbrot, (1973),  Lecture Notes on Fluid Mechanics,  Gordon and Breach, New York.
[14] M. I. Shvidler, (1993), Correlation Model of Transport in Random Fields, Water Resour. Res. 29, 3189-3199.
[15] G. Sposito, (1986), The Physics of Soil Water Physics,  Water Resour. Res. 22(9),  83S-88S.
[16] G. Sposito, (1978), The Statistical Mechanical Theory of Water Transport Through Unsaturated Soil,  Water Resour. Res. 14(3), 474-484.
[17] G. Sposito, W. A. Jury and V. K. Gupta, (1986), Fundamental Problems in the Stochastic Convection-Dispersion Model of Solute Transport in Aquifers and Field Soils,  Water Resour. Res.,  22(1), 1986, 77-88.
[18] N. Suciu, H. Vereecken, C. Vamos, A. Georgescu, U. Jaekel, O. Neuendorf,  (1996), On Lagrangian Passive transport in Porous Media,  KFA/ICG-4 Internal report N0. 501196, 1996.
[19] Suciu, N. et C. Vamos, (1997),   Simulation numerique du transport dans les milieux poreus stratifiees par une methode d’automat cellulaire, J. P. Carbonnel et P. Serban,  editeurs, ARDI-INMH, București 31.01.1997, vol.1, 172-177, București, 1977.
[20] N. Suciu, C. Vamos, et H. Vereecken, 1998, L’effet d’echelle et la modelisation du transport dans les milieux poreux, 4-emes Rencontres hydrologiques franco-roumaines,  3-5 Septembre 1997, Suceava, Roumaine Iin press)
[21] A. Sveshnikov and A. Tikhonov, (1978),  The Theory of Functions of a Complex Variable,  Mir, Moscow.
[22] C. Vamoș, A. Georgescu, N. Suciu and I. Turcu, (1996a),  Balance Equations for Physical systems with Corpuscular Structure,  Physica A, 227, 81-92.
[23] C. Vamoș, A. Georgescu and N. Suciu,(1996b),   Balance Equations for a Finite Number of Particles,  Stud. Cerc. Mat. 48 (1-2),  115-127.
[24] C. Vamoș, N. Suciu and M. Peculea, (1997), I Numerical modelling of the one-dimensional diffusion by random walkers, I Rev. Anal. Numer. Theorie approximation, 26 (1-2), 237-247.

Related Posts

Menu