Abstract
The existence of two positive solutions for a class of singular boundary value problems is established by means of a combination of the Leray–Schauder principle with techniques from critical point theory.
Authors
Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
Singular boundary value problem; positive solution; variational method; critical point; Leray-Schauder boundary condition; mountain pass principle.
Paper coordinates
R. Precup, Two positive solutions of some singular boundary value problems, Anal. Appl. 8 (2010), 305-314, https://doi.org/10.1142/S0219530510001618
??
About this paper
Print ISSN
Online ISSN
0219-5305
google scholar link
[1] R. P. Agarwal and D. O’Regan, Singular Differential and Integral Equations with Applications (Kluwer, Dordrecht, 2003) . Crossref, Google Scholar
[2] Nonlinear Anal. 50, 215 (2002), DOI: 10.1016/S0362-546X(01)00747-7. Crossref, ISI, Google Scholar
[3] Nonlinear Anal. 61, 1383 (2005), DOI: 10.1016/j.na.2005.02.029. Crossref, ISI, Google Scholar
[4] L. Kantorovitch and G. Akilov, Analyse Fonctionnelle (MIR, Moscow, 1981) . Google Scholar
[5] D. O’Regan, Theory of Singular Boundary Value Problems (World Scientific, Singapore, 1994) . Crossref, Google Scholar
[6] D. O’Regan and R. Precup , Theorems of Leray–Schauder Type and Applications (Gordon and Breach, Amsterdam, 2001) . Google Scholar
[7] R. Precup, Methods in Nonlinear Integral Equations (Kluwer, Dordrecht, 2002) . Crossref, Google Scholar
[8] Nonlinear Anal. 71, 3218 (2009). Crossref, ISI, Google Scholar