Two positive solutions of some singular boundary value problems

Abstract

The existence of two positive solutions for a class of singular boundary value problems is established by means of a combination of the Leray–Schauder principle with techniques from critical point theory.

Authors

Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

Singular boundary value problem; positive solution; variational method; critical point; Leray-Schauder boundary condition; mountain pass principle.

Paper coordinates

R. Precup, Two positive solutions of some singular boundary value problems, Anal. Appl. 8 (2010), 305-314, https://doi.org/10.1142/S0219530510001618

PDF

??

About this paper

Journal

Analysis and Applications

Publisher Name
Print ISSN
Online ISSN

0219-5305

google scholar link

[1] R. P. Agarwal and D. O’Regan, Singular Differential and Integral Equations with Applications (Kluwer, Dordrecht, 2003) . CrossrefGoogle Scholar
[2]
R. P. Agarwalet al.Nonlinear Anal. 50, 215 (2002), DOI: 10.1016/S0362-546X(01)00747-7CrossrefISIGoogle Scholar
[3]
D. Bonheure, J.M. Gomes and L. Sanchez, Nonlinear Anal. 61, 1383 (2005), DOI: 10.1016/j.na.2005.02.029CrossrefISIGoogle Scholar
[4]
L. Kantorovitch and G. Akilov, Analyse Fonctionnelle (MIR, Moscow, 1981) . Google Scholar
[5]
D. O’Regan, Theory of Singular Boundary Value Problems (World Scientific, Singapore, 1994) . CrossrefGoogle Scholar
[6]
D. O’Regan and R. Precup , Theorems of Leray–Schauder Type and Applications (Gordon and Breach, Amsterdam, 2001) . Google Scholar
[7]
R. Precup, Methods in Nonlinear Integral Equations (Kluwer, Dordrecht, 2002) . CrossrefGoogle Scholar
[8]
R. Precup, Nonlinear Anal. 71, 3218 (2009). CrossrefISIGoogle Scholar

2010

Related Posts