[1] Agarwal R. P.: Nonlinear superlinear singular and nonsingular second order boundary value problems. J. Differential Equations 143, 60–95 (1998), MathSciNet Article MATH Google Scholar
[2] Baxley J. V.: Some singular nonlinear boundary value problems. SIAM J. Math. Anal. 22, 463–479 (1991) MathSciNet Article MATH Google Scholar
[3] Bolojan O., Precup R.: Implicit first order differential systems with nonlocal conditions. Electron. J. Qual. Theory Differ. Equ. 69, 1–13 (2014) MathSciNet Article MATH Google Scholar
[4] Budescu A.: Semilinear operator equations and systems with potential-type nonlinearities. Stud. Univ. Babeş-Bolyai Math. 59, 199–212 (2014) MathSciNet MATH Google Scholar
[5] S. G. Michlin, Linear Partial Differential Equations. Vysshaya Shkola, Moscow, 1977 (in Russian).
[6] S. G. Michlin, Partielle Differentialgleichungen in der Mathematischen Physik. [Partial Differential Equations of Mathematical Physics], Akademie-Verlag, Berlin, 1978 (in German).
[7] Muzsi D., Precup R.: Non-resonance and existence for systems of non-linear operator equations. Appl. Anal. 87, 1005–1018 (2008) MathSciNet Article MATH Google Scholar
[8] D. O’Regan, Theory of Singular Boundary Value Problems. World Scientific Publishing, Singapore, 1994.
[9] D. O’Regan and R. P. Agarwal, Singular Differential and Integral Equations with Applications. Springer Science and Business Media, The Netherlands, 2003.
[10] D. O’Regan and R. Precup, Theorems of Leray-Schauder Type and Applications. Taylor and Francis, London, 2001.
[11] R. Precup, Linear and Semilinear Partial Differential Equations. De Gruyter, Berlin, 2013.
[12] Precup R.: Nash-type equilibria and periodic solutions to nonvariational systems. Adv. Nonlinear Anal. 3, 197–207 (2014) MathSciNet MATH Google Scholar
[13] Precup R.: The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comput. Modelling 49, 703–708 (2009) MathSciNet Article MATH Google Scholar
[14] Rachunkova I.: Singular mixed boundary value problem. J. Math. Anal. Appl. 320, 611–618 (2006) MathSciNet Article MATH Google Scholar
[15] I. Rachunková and J. Tomeček, Singular nonlinear problem for ordinary differential equation of the second-order on the half-line. In: Mathematical Models in Engineering, Biology, and Medicine (A. Cabada, E. Liz and J. J. Nieto, eds.), AIP Conf. Proc. 1124, Amer. Inst. Phys., Melville, NY, 2009, 294–303.
[16] Zabrejko P.: Continuity properties of the superposition operator. J. Austral. Math. Soc. 47, 186–210 (1989), MathSciNet Article MATH Google Scholar