[1] Akhmediev N, Ankiewicz A. Solitons, Nonlinear pulses and beams. London: Champman & Hall; 1997. [Google Scholar]
[2] Hajaiej H. Schrödinger systems arising in nonlinear optics and quantum mechanics: Part I. Math. Models Methods Appl. Sci. 2012;22:1250010, 1–27. [Crossref], [Web of Science ®], [Google Scholar]
[3] Ambrosetti A, Colorado E, Ruiz D. Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations. Calc. Var. Par. Differ. Equ. 2007;30:85–112. [Crossref], [Web of Science ®], [Google Scholar]
[4] Antoine X, Duboscq R. Modeling and computation of Bose–Einstein condensates: stationary states, nucleation, dynamics, stochasticity. Lectures notes in mathematics/physics. Springer. Forthcoming. [Google Scholar]
[5] Antonelli P, Weishäupl RM. Asymptotic behavior of nonlinear Schrödinger systems with linear coupling. J. Hyper. Differ. Equ. 2014;11:159. doi:10.1142/S0219891614500040. [Crossref], [Web of Science ®], [Google Scholar]
[6] Bartsch T, Wang ZQ. Note on ground states of nonlinear Schrödinger systems. J. Par. Differ. Equ. 2006;19:200–207. [Google Scholar]
[7] Bartsch T, Wang ZQ, Wei J. Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2007;2:353–367. [Crossref], [Web of Science ®], [Google Scholar]
[8] Carles R. Semi-classical analysis for nonlinear Schrödinger equations. Singapore: World Scientific; 2008. [Crossref], [Google Scholar]
[9] Dancer EN, Wei J, Weth T. A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire. 2010;27:953–969. [Crossref], [Web of Science ®], [Google Scholar]
[10] Jüngel A, Weishäupl RM. Blow-up in two-component nonlinear Schrödinger systems with an external driven field. Math. Models Methods Appl. Sci. 2013;23:1699–1727. [Crossref], [Web of Science ®], [Google Scholar]
[11] Lin TC, Wei J. Ground state of N coupled nonlinear Schrödinger equations in Rn, n ≤ 3. Commun. Math. Phys. 2005;255:629–653. [Crossref], [Web of Science ®], [Google Scholar]
[12] Nguyen NV, Tian R, Deconinck B, Sheils N. Global existence for a coupled system of Schrödinger equations with power-type nonlinearities. J. Math. Phys. 2013;54:011503, 1–19. [Crossref], [Web of Science ®], [Google Scholar]
[13] Pomponio A. Coupled nonlinear Schrödinger systems with potentials. J. Differ. Equ. 2006;227:258–281. [Crossref], [Web of Science ®], [Google Scholar]
[14] Sirakov B. Least energy solitary waves for a system of nonlinear Schrödinger equations in Rn. Commun. Math. Phys. 2007;271:199–221. [Crossref], [Web of Science ®], [Google Scholar]
[15] Maia LA, Montefusco E, Pellacci B. Weakly coupled nonlinear Schrödinger systems: the saturation effect. Calc. Var. Par. Differ. Equ. 2013;46:325–351. [Crossref], [Web of Science ®], [Google Scholar]
[16] Cazenave T. Semilinear Schrödinger equations. Vol. 10, Courant lecture notes in mathematics. Providence (RI): American Mathematical Society; 2003. [Crossref], [Google Scholar]
[17] Bolojan-Nica O, Infante G, Precup R. Existence results for systems with coupled nonlocal conditions. Nonlinear Anal. 2014;94:231–242. [Crossref], [Web of Science ®], [Google Scholar]
[18] Byszewski L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 1991;162:494–505. [Crossref], [Web of Science ®], [Google Scholar]
[19] Byszewski L, Lakshmikantham V. Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 1990;40:11–19. [Taylor & Francis Online], [Google Scholar]
[20] Xue X. Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces. Electron. J. Differ. Equ. 2005;64:1–7. [Google Scholar]
[21] Ashyralyev A, Sirma A. Nonlocal boundary value problems for the Schrödinger equation. Comput. Math. Appl. 2008;55:392–407. [Crossref], [Web of Science ®], [Google Scholar]
[22] Perov AI. On the Cauchy problem for a system of ordinary differential equations. Pviblizhen. Met. Reshen. Differ. Uvavn. 1964;2:115–134. Russian. [Google Scholar]
[23] Precup R. The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comp. Modell. 2009;49:703–708. [Crossref], [Web of Science ®], [Google Scholar]
[24] Precup R, Trif D. Multiple positive solutions of non-local initial value problems for first order differential systems. Nonlinear Anal. 2012;75:5961–5970. [Crossref], [Web of Science ®], [Google Scholar]
[25] Precup R. Linear and semilinear partial differential equations. Berlin: De Gruyter; 2013. [Google Scholar]
[26] Lions JL, Magenes E. Problèmes aux limites non homogènes et applications [Nonhomogeneous boundary value problems and applications]. Paris: Dunod; 1968. [Google Scholar]
[27] Varga RS. Matrix iterative analysis. 2nd ed. Berlin: Springer; 2000. [Crossref], [Google Scholar]
[28] Bunoiu R, Cardone G, Suslina T. Spectral approach to homogenization of an elliptic operator periodic in some directions. Math. Methods Appl. Sci. 2011;34:1075–1096. [Crossref], [Web of Science ®], [Google Scholar]