Vectorial approach to coupled nonlinear Schrödinger systems under nonlocal Cauchy conditions

Abstract

The paper presents a vectorial approach for coupled general nonlinear Schrödinger systems with nonlocal Cauchy conditions. Based on fixed-point principles, the use of matrices with spectral radius less than one, and on basic properties of the Schrödinger solution operator, several existence results are obtained. The essential role of the support of the nonlocal Cauchy condition is emphasized and fully exploited.

Authors

Renata Bunoiu
Department of Mathematics, Babeş-Bolyai University, Cluj, Romania.

Radu Precup
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

nonlinear Schrödinger equation; nonlocal condition; coupled system; global existence; nonlinear operator; fixed point

Paper coordinates

R. Precup, R. Bunoiu, Vectorial approach to coupled nonlinear Schrödinger systems under nonlocal Cauchy conditions, Appl. Anal. 95 (2016), 731-747, https://doi.org/10.1080/00036811.2015.1028921

PDF

??

About this paper

Journal

Applicable Analysis

Publisher Name
Print ISSN

1563-504X

Online ISSN

google scholar link

[1] Akhmediev NAnkiewicz A. Solitons, Nonlinear pulses and beams. LondonChampman & Hall1997[Google Scholar]
[2]
Hajaiej HSchrödinger systems arising in nonlinear optics and quantum mechanics: Part I. Math. Models Methods Appl. Sci. 2012;22:1250010, 127[Crossref][Web of Science ®][Google Scholar]
[3]
Ambrosetti AColorado ERuiz DMulti-bump solitons to linearly coupled systems of nonlinear Schrödinger equations. Calc. Var. Par. Differ. Equ. 2007;30:85112[Crossref][Web of Science ®][Google Scholar]
[4]
Antoine XDuboscq R. Modeling and computation of Bose–Einstein condensates: stationary states, nucleation, dynamics, stochasticity. Lectures notes in mathematics/physicsSpringerForthcoming[Google Scholar]
[5]
Antonelli PWeishäupl RMAsymptotic behavior of nonlinear Schrödinger systems with linear coupling. J. Hyper. Differ. Equ. 2014;11:159. doi:10.1142/S0219891614500040[Crossref][Web of Science ®][Google Scholar]
[6]
Bartsch TWang ZQNote on ground states of nonlinear Schrödinger systems. J. Par. Differ. Equ. 2006;19:200207[Google Scholar]
[7]
Bartsch TWang ZQWei JBound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2007;2:353367[Crossref][Web of Science ®][Google Scholar]
[8]
Carles R. Semi-classical analysis for nonlinear Schrödinger equations. SingaporeWorld Scientific2008[Crossref][Google Scholar]
[9]
Dancer ENWei JWeth TA priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire. 2010;27:953969[Crossref][Web of Science ®][Google Scholar]
[10]
Jüngel AWeishäupl RMBlow-up in two-component nonlinear Schrödinger systems with an external driven field. Math. Models Methods Appl. Sci. 2013;23:16991727[Crossref][Web of Science ®][Google Scholar]
[11]
Lin TCWei JGround state of N coupled nonlinear Schrödinger equations in Rnn ≤ 3. Commun. Math. Phys. 2005;255:629653[Crossref][Web of Science ®][Google Scholar]
[12]
Nguyen NVTian RDeconinck BSheils NGlobal existence for a coupled system of Schrödinger equations with power-type nonlinearities. J. Math. Phys. 2013;54:011503, 119[Crossref][Web of Science ®][Google Scholar]
[13]
Pomponio ACoupled nonlinear Schrödinger systems with potentials. J. Differ. Equ. 2006;227:258281[Crossref][Web of Science ®][Google Scholar]
[14]
Sirakov BLeast energy solitary waves for a system of nonlinear Schrödinger equations in Rn. Commun. Math. Phys. 2007;271:199221[Crossref][Web of Science ®][Google Scholar]
[15]
Maia LAMontefusco EPellacci BWeakly coupled nonlinear Schrödinger systems: the saturation effect. Calc. Var. Par. Differ. Equ. 2013;46:325351[Crossref][Web of Science ®][Google Scholar]
[16]
Cazenave T. Semilinear Schrödinger equations. Vol. 10, Courant lecture notes in mathematicsProvidence (RI)American Mathematical Society2003[Crossref][Google Scholar]
[17]
Bolojan-Nica OInfante GPrecup RExistence results for systems with coupled nonlocal conditions. Nonlinear Anal. 2014;94:231242[Crossref][Web of Science ®][Google Scholar]
[18]
Byszewski LTheorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 1991;162:494505[Crossref][Web of Science ®][Google Scholar]
[19]
Byszewski LLakshmikantham VTheorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 1990;40:1119[Taylor & Francis Online][Google Scholar]
[20]
Xue XExistence of solutions for semilinear nonlocal Cauchy problems in Banach spaces. Electron. J. Differ. Equ. 2005;64:17[Google Scholar]
[21]
Ashyralyev ASirma ANonlocal boundary value problems for the Schrödinger equation. Comput. Math. Appl. 2008;55:392407[Crossref][Web of Science ®][Google Scholar]
[22]
Perov AIOn the Cauchy problem for a system of ordinary differential equations. Pviblizhen. Met. Reshen. Differ. Uvavn. 1964;2:115134. Russian. [Google Scholar]
[23]
Precup RThe role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comp. Modell. 2009;49:703708[Crossref][Web of Science ®][Google Scholar]
[24]
Precup RTrif DMultiple positive solutions of non-local initial value problems for first order differential systems. Nonlinear Anal. 2012;75:59615970[Crossref][Web of Science ®][Google Scholar]
[25]
Precup R. Linear and semilinear partial differential equations. BerlinDe Gruyter2013[Google Scholar]
[26]
Lions JLMagenes E. Problèmes aux limites non homogènes et applications [Nonhomogeneous boundary value problems and applications]. ParisDunod1968[Google Scholar]
[27]
Varga RS. Matrix iterative analysis. 2nd edBerlinSpringer2000[Crossref][Google Scholar]
[28]
Bunoiu RCardone GSuslina TSpectral approach to homogenization of an elliptic operator periodic in some directions. Math. Methods Appl. Sci. 2011;34:10751096[Crossref][Web of Science ®][Google Scholar]

2016

Related Posts