Block incremental unknowns for anisotropic elliptic equations

Abstract

In this article, we define the notion of block incremental unknowns for anisotropic elliptic equations. Written in a block structure, they are nothing more than the classical second order incremental unknowns in one space dimension. In particular, we obtain a priori estimates and we observe a significant gain in the condition number for stiff problems when compared with the classical two-dimensional second order incremental unknowns

Authors

A. Miranville
Université de Poitiers, France

A.C. Muresan
Romanian Academy of Sciences, “T. Popoviciu” Institute of Numerical Analysis, P.O. Box 68, 3400 Cluj-Napoca, Romania

Keywords

References

See the expanding block below.

Paper coordinates

A. Miranville, A.C. Muresan, Block incremental unknowns for anisotropic elliptic equations,  Applied Numerical Mathematics, Volume 42, Issue 4, September 2002, Pages 529-543,
doi: 10.1016/S0168-9274(01)00171-4

PDF

soon

About this paper

Journal

Applied Numerical Mathematics

Publisher Name

Elsevier

Print ISSN

soon

Online ISSN

0168-9274

Google Scholar Profile

soon

[1] R.E. Bank, T.F. Dupont, H. Yserentant, The hierarchical basis multigrid method, Numer. Math. 52 (1988) 427–458.
[2] J.P. Chehab, A nonlinear adaptive multiresolution method in finite differences with incremental unknowns, RAIRO Modél Math. Anal. Numér. 29 (4) (1995) 451–475.
[3] J.P. Chehab, Solution of generalized Stokes problems using hierarchical methods and incremental unknowns, Appl. Numer. Math. 21 (1996) 9–42.
[4] J.P. Chehab, A. Miranville, Induced hierarchical preconditioners: the finite difference case, Publication ANO-371, Laboratoire ANO, Lille, 1997.
[5] J.P. Chehab, A. Miranville, Incremental unknowns on nonuniform meshes, RAIRO Modél Math. Anal. Numér. 32 (5) (1998) 539–577.
[6] J.P. Chehab, R. Temam, Incremental unknowns for solving nonlinear eigenvalue problems. New multiresolution methods, Numer. Methods Partial Differential Equations 11 (1995) 199–228.
[7] M. Chen, R. Temam, Incremental unknowns for solving partial differential equations, Numer. Math. 59 (1991) 255–271.
[8] M. Chen, R. Temam, Incremental unknowns in finite differences: Condition number of the matrix, SIAM J. Matrix Anal. Appl. 14 (2) (1993) 432–455.
[9] M. Chen, R. Temam, Incremental unknowns for solving convection diffusion equations, Appl. Numer. Math. 11 (1993) 365–383.
[10] M. Chen, R. Temam, Nonlinear Galerkin method in the finite difference case and wavelet-like incremental unknowns, Numer. Math. 64 (1993) 271–294.
[11] M. Chen, A. Miranville, R. Temam, Incremental unknowns in finite differences in space dimension 3, Comp. Appl. Math. 14 (3) (1995) 219–252.
[12] H.C. Elman, X. Zhang, Algebraic analysis of the hierarchical basis preconditioner, SIAM J. Matrix Anal. Appl. 16 (1) (1995) 192–206.
[13] P. Poullet, Thèse, Université Paris–XI, 1994.
[14] T. Tachim-Medjo, Thèse, Université Paris–XI, 1995.
[15] M. Marion, R. Temam, Nonlinear Galerkin methods, SIAM J. Numer. Anal. 26, 1139–1157.
[16] R. Temam, Inertial manifolds and multigrid methods, SIAM J. Math. Anal. 21 (1990) 154–178.
[17] H. Yserentant, On multilevel splitting of finite element spaces, Numer. Math. 49 (1986) 379–412.

2002

Related Posts