[1] R.E. Bank, T.F. Dupont, H. Yserentant, The hierarchical basis multigrid method, Numer. Math. 52 (1988) 427–458.
[2] J.P. Chehab, A nonlinear adaptive multiresolution method in finite differences with incremental unknowns, RAIRO Modél Math. Anal. Numér. 29 (4) (1995) 451–475.
[3] J.P. Chehab, Solution of generalized Stokes problems using hierarchical methods and incremental unknowns, Appl. Numer. Math. 21 (1996) 9–42.
[4] J.P. Chehab, A. Miranville, Induced hierarchical preconditioners: the finite difference case, Publication ANO-371, Laboratoire ANO, Lille, 1997.
[5] J.P. Chehab, A. Miranville, Incremental unknowns on nonuniform meshes, RAIRO Modél Math. Anal. Numér. 32 (5) (1998) 539–577.
[6] J.P. Chehab, R. Temam, Incremental unknowns for solving nonlinear eigenvalue problems. New multiresolution methods, Numer. Methods Partial Differential Equations 11 (1995) 199–228.
[7] M. Chen, R. Temam, Incremental unknowns for solving partial differential equations, Numer. Math. 59 (1991) 255–271.
[8] M. Chen, R. Temam, Incremental unknowns in finite differences: Condition number of the matrix, SIAM J. Matrix Anal. Appl. 14 (2) (1993) 432–455.
[9] M. Chen, R. Temam, Incremental unknowns for solving convection diffusion equations, Appl. Numer. Math. 11 (1993) 365–383.
[10] M. Chen, R. Temam, Nonlinear Galerkin method in the finite difference case and wavelet-like incremental unknowns, Numer. Math. 64 (1993) 271–294.
[11] M. Chen, A. Miranville, R. Temam, Incremental unknowns in finite differences in space dimension 3, Comp. Appl. Math. 14 (3) (1995) 219–252.
[12] H.C. Elman, X. Zhang, Algebraic analysis of the hierarchical basis preconditioner, SIAM J. Matrix Anal. Appl. 16 (1) (1995) 192–206.
[13] P. Poullet, Thèse, Université Paris–XI, 1994.
[14] T. Tachim-Medjo, Thèse, Université Paris–XI, 1995.
[15] M. Marion, R. Temam, Nonlinear Galerkin methods, SIAM J. Numer. Anal. 26, 1139–1157.
[16] R. Temam, Inertial manifolds and multigrid methods, SIAM J. Math. Anal. 21 (1990) 154–178.
[17] H. Yserentant, On multilevel splitting of finite element spaces, Numer. Math. 49 (1986) 379–412.