## Abstract

In this article, we define the notion of block incremental unknowns for anisotropic elliptic equations. Written in a block structure, they are nothing more than the classical second order incremental unknowns in one space dimension. In particular, we obtain a priori estimates and we observe a significant gain in the condition number for stiff problems when compared with the classical two-dimensional second order incremental unknowns

## Authors

**A. Miranville**

Université de Poitiers, France

**A.C. Muresan
**Romanian Academy of Sciences, “T. Popoviciu” Institute of Numerical Analysis, P.O. Box 68, 3400 Cluj-Napoca, Romania

## Keywords

### References

See the expanding block below.

## Paper coordinates

A. Miranville, A.C. Muresan, *Block incremental unknowns for anisotropic elliptic equations, *Applied Numerical Mathematics, Volume 42, Issue 4, September 2002, Pages 529-543,

doi: 10.1016/S0168-9274(01)00171-4

soon

## About this paper

##### Print ISSN

soon

##### Online ISSN

0168-9274

##### Google Scholar Profile

soon

[1] R.E. Bank, T.F. Dupont, H. Yserentant, The hierarchical basis multigrid method, Numer. Math. 52 (1988) 427–458.

[2] J.P. Chehab, A nonlinear adaptive multiresolution method in finite differences with incremental unknowns, RAIRO Modél Math. Anal. Numér. 29 (4) (1995) 451–475.

[3] J.P. Chehab, Solution of generalized Stokes problems using hierarchical methods and incremental unknowns, Appl. Numer. Math. 21 (1996) 9–42.

[4] J.P. Chehab, A. Miranville, Induced hierarchical preconditioners: the finite difference case, Publication ANO-371, Laboratoire ANO, Lille, 1997.

[5] J.P. Chehab, A. Miranville, Incremental unknowns on nonuniform meshes, RAIRO Modél Math. Anal. Numér. 32 (5) (1998) 539–577.

[6] J.P. Chehab, R. Temam, Incremental unknowns for solving nonlinear eigenvalue problems. New multiresolution methods, Numer. Methods Partial Differential Equations 11 (1995) 199–228.

[7] M. Chen, R. Temam, Incremental unknowns for solving partial differential equations, Numer. Math. 59 (1991) 255–271.

[8] M. Chen, R. Temam, Incremental unknowns in finite differences: Condition number of the matrix, SIAM J. Matrix Anal. Appl. 14 (2) (1993) 432–455.

[9] M. Chen, R. Temam, Incremental unknowns for solving convection diffusion equations, Appl. Numer. Math. 11 (1993) 365–383.

[10] M. Chen, R. Temam, Nonlinear Galerkin method in the finite difference case and wavelet-like incremental unknowns, Numer. Math. 64 (1993) 271–294.

[11] M. Chen, A. Miranville, R. Temam, Incremental unknowns in finite differences in space dimension 3, Comp. Appl. Math. 14 (3) (1995) 219–252.

[12] H.C. Elman, X. Zhang, Algebraic analysis of the hierarchical basis preconditioner, SIAM J. Matrix Anal. Appl. 16 (1) (1995) 192–206.

[13] P. Poullet, Thèse, Université Paris–XI, 1994.

[14] T. Tachim-Medjo, Thèse, Université Paris–XI, 1995.

[15] M. Marion, R. Temam, Nonlinear Galerkin methods, SIAM J. Numer. Anal. 26, 1139–1157.

[16] R. Temam, Inertial manifolds and multigrid methods, SIAM J. Math. Anal. 21 (1990) 154–178.

[17] H. Yserentant, On multilevel splitting of finite element spaces, Numer. Math. 49 (1986) 379–412.