Multiple positive solutions of non-local initial value problems for first order differential systems

Abstract

The paper gives a new and natural method for the existence of multiple positive solutions for first order differential systems with non-local initial value conditions involving linear functionals. The case of higher order differential equations is also considered. The results are accompanied by numerical examples confirming the theory and proving for practice the importance of the bounds in solution localization.

Authors

Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania

Damian Trif
Department of Mathematics, Babeş–Bolyai University, 400084 Cluj, Romania

Keywords

Non-local condition; Positive solution; Periodic solution; Fixed point index

Paper coordinates

R. Precup, D. Trif, Multiple positive solutions of non-local initial value problems for first order differential systems, Nonlinear Anal. 75 (2012), 5961-5970, http://doi.org/10.1016/j.na.2012.06.008

PDF

??

About this paper

Journal

Nonlinear Analysis: Theory, Methods & Applications

Publisher Name

Elsevier

Print ISSN
Online ISSN

0362546X

google scholar link

[1] A. Boucherif, R. Precup, On nonlocal initial value problem for first order differential equations, Fixed Point Theory, 4 (2003), pp. 205-212, Google Scholar
[2] A.M.A. El-Sayed, E.O. Bin-Taher, Positive nondecreasing solutions for a multi-term fractional-order differential equation with integral conditions, Electron. J. Differential Equations, 2011 (166) (2011), pp. 1-8, Google Scholar
[3] O. Nica, R. Precup, On the nonlocal initial value problem for first order differential systems, Stud. Univ. Babeş-Bolyai Math., 56 (3) (2011), pp. 113-125, Google Scholar
[4] S.K. Ntouyas, Nonlocal initial and boundary value problems: a survey, Handbook of Differential Equations: Ordinary Differential Equations. Vol. II, Elsevier, Amsterdam (2005), pp. 461-557, Google Scholar
[5] R.P. Agarwal, D. O’Regan, S. Staněk, General existence principles for nonlocal boundary value problems with φ-Laplacian and their applications, Abstr. Appl. Anal., 2006 (2006), Article ID 96826, p. 30, Google Scholar
[6] C. Gupta, S.K. Ntouyas, P.Ch. Tsamatos, On an m-point boundary value problem for second order differential equations, Nonlinear Anal., 23 (1994), pp. 1427-1436, Google Scholar
[7] G. Infante, Positive solutions of nonlocal boundary value problems with singularities, Discrete Contin. Dyn. Syst. (Supplement) (2009), pp. 377-384, Google Scholar
[8] R. Ma, A survey on nonlocal boundary value problems, Appl. Math. E-Notes, 7 (2007), pp. 257-279, Google Scholar
[9] S. Staněk, Existence principles for singular vector nonlocal boundary value problems with φ-Laplacian and their applications, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 50 (2011), pp. 99-118, Google Scholar
[10] M. Eggensperger, N. Kosmatov, A higher-order nonlocal boundary value problem, Int. J. Appl. Math. Sci., 2 (2) (2005), pp. 196-206, Google Scholar
[11] J.R.L. Webb, G. Infante, D. Franco, Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), pp. 427-446, Google Scholar
[12] G.L. Karakostas, P.Ch. Tsamatos, Existence and multiple positive solutions for a nonlocal boundary value problem, Topol. Methods Nonlinear Anal., 19 (2002), pp. 109-121, Google Scholar.
[13] J.R.L. Webb, G. Infante, Non-local boundary value problems of arbitrary order, J. Lond. Math. Soc., 79 (2008), pp. 238-258, Google Scholar
[14] J.R.L. Webb, G. Infante, Semi-positone nonlocal boundary value problems of arbitrary order, Comm. Pure Appl. Anal., 9 (2010), pp. 563-581, Google Scholar
[15] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin (1985), Google Scholar
[16] D. Trif, Matrix based operatorial approach to differential and integral problems, C.M. Ionescu (Ed.), MATLAB: A Ubiquitous Tool for the Practical Engineer, InTech, Rijeka (2011), http://www.intechopen.com/articles/show/title/matrix-based-operatorial-approach-to-differential-and-integral-problems, Google Scholar
[17] D. Trif, Chebpack, 2011, http://www.mathworks.com/matlabcentral/fileexchange/32227., Google Scholar

2012

Related Posts