Abstract
Even if the successful pharmacological therapy for chronic myeloid leukemia has reached today a near normal life expectancy in a patient diagnosed with this malignancy, almost one in four patients will change the line of tyrosin-kinase inhibitors during therapy, may it be due to poor response of due to intolerance to therapy. In this paper, starting from a mathematical characterization of the chronic phase in myeloid leukemia, a theoretical investigation of optimal therapy is undertaken as base for further pharmaceutical research and personalized treatment protocols.
Authors
Lorand Gabriel Parajdia
Department of Mathematics, Babeş-Bolyai University, Cluj-Napoca,Romania
Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania
Delia Dima
Department of Hematology, Ion Chiricuţă Clinical Cancer Center, Cluj-Napoca, Romania
Vlad Moisoiu
Department of Hematology, Ion Chiricuţă Clinical Cancer Center, Cluj-Napoca, Romania
IMOGEN Research Institute, County Clinical Emergency Hospital, Cluj-Napoca, Romania
Ciprian Tomuleasa
Department of Hematology, Ion Chiricuţă Clinical Cancer Center, Cluj-Napoca, Romania
Keywords
Mathematical model; Chronic myeloid leukemia; Dynamic system; Optimization problem
Paper coordinates
L. G. Parajdi, R. Precup, D. Dima, V. Moisoiu, C. Tomuleasa, Theoretical basis of optimal therapy for individual patients in chronic myeloid leukemia: A mathematical approach, Journal of Interdisciplinary Mathematics 23:3 (2020), 669-690, https://doi.org/10.1080/09720502.2019.1681699
??
About this paper
Journal
Journal of Interdisciplinary Mathematics
Publisher Name
Taylor and Francis Ltd.
Print ISSN
Online ISSN
09720502
google scholar link
[1] Tomuleasa, C., D. Dima, I. Frinc, et al. BCR-ABL1 T315I mutation, a negative prognostic factor for the terminal phase of chronic myelogenous leukemia treated with first- and second-line tyrosine kinase inhibitors, might be an indicator of allogeneic stem cell transplant as the treatment of choice. Leuk Lymphoma, 56: 546–7 (2014). doi: 10.3109/10428194.2014.940582 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[2] Hochhaus, A., S. Saussele, G. Rosti, et al. Chronic myeloid leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology. 28(suppl 4): iv41–iv51, doi:10.1093/annonc/mdx219 (2017). [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[3] Timis, T., C. Berce, A. Duarte-Garcia, et al. Paraneoplastic syndromes with connective tissue involvement. “It’s not always lupus!”, J. BUON. 17: 417–21 (2012). [PubMed], [Web of Science ®], [Google Scholar]
[4] Frinc, I., M.S. Muresan, F. Zaharie, et al. Cancer stem-like cells: the dark knights of clinical hematology and oncology. J. BUON. 19(2): 328–35 (2014). [PubMed], [Web of Science ®], [Google Scholar]
[5] Adimy, M., F. Crauste and S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math. 65: 1328–1352 (2005). doi: 10.1137/040604698 [Crossref], [Web of Science ®], [Google Scholar]
[6] Dale, D.C. and M.C. Mackey. Understanding, treating and avoiding hematological disease: Better medicine through mathematics?. Bull. Math. Biol. 77: 739–757, doi:10.1007/s11538-014-9995-x (2015). [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[7] Foley, C. and M.C. Mackey. Dynamic hematological disease: a review. J. Math. Biol. 58: 285–322 (2009). doi: 10.1007/s00285-008-0165-3 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[8] He, Q., J. Zhu, D. Dingli, et al. Optimized treatment schedules for chronic myeloid leukemia. PLoS Comput. Biol. 12(10): e1005129, doi:10.1371/journal.pcbi.1005129 (2016). [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[9] Jayachandran, D., A.E. Rundell, R.E. Hannemann, et al. Optimal chemotherapy for leukemia: a model-based strategy for individualized treatment. PLoS ONE 9(10): e109623, doi:10.1371/journal.pone.0109623 (2014). [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[10] Kaplan, D. and L. Glass. Understanding Nonlinear Dynamics. New York: Springer (1995). [Crossref], [Google Scholar]
[11] Mac Lean, A.L., C. Lo Celso and M.P.H. Stumpf. Population dynamics of normal and leukaemia stem cells in the haematopoietic stem cell niche show distinct regimes where leukaemia will be controlled. J. R. Soc. Interface 10: 20120968, http://doi.org/10.1098/rsif.2012.0968 (2013). [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[12] Sbeity, H. and R. Younes. Review of optimization methods for cancer chemotherapy treatment planning. J. Comput. Sci. Syst. Biol. 8: 74–95, http://doi.org/10.4172/jcsb.1000173 (2015). [Crossref], [Google Scholar]
[13] Mackey, M.C. and L. Glass. Oscillation and chaos in physiological control systems. Science 197: 287–289 (1977). doi: 10.1126/science.267326 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[14] Dingli, D. and F. Michor. Successful therapy must eradicate cancer stem cells. Stem Cells 24: 2603–2610 (2006). doi: 10.1634/stemcells.2006-0136 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[15] Cucuianu, A. and R. Precup. A hypothetical-mathematical model of acute myeloid leukemia pathogenesis. Comput. Math. Methods Med. 11: 49–65 (2010). doi: 10.1080/17486700902973751 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[16] Parajdi, L. Modeling the treatment of tumor cells in a solid tumor. J. Nonlinear Sci. Appl. 7(3): 188–195 (2014). doi: 10.22436/jnsa.007.03.05 [Crossref], [Google Scholar]
[17] Michor, F., T.P. Hughes, Y. Iwasa, et al. Dynamics of chronic myeloid leukaemia. Nature 435: 1267–1270 (2005). doi: 10.1038/nature03669 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[18] Precup, R., S. Arghirescu, A. Cucuianu, et al. Mathematical modeling of cell dynamics after allogeneic bone marrow transplantation in acute myeloid leukemia. Int. J. Biomath. 5: 1250026 [18 pages] doi: 10.1142/S1793524511001684 (2012). [Crossref], [Web of Science ®], [Google Scholar]
[19] Precup, R., M.A. Serban, D. Trif, et al. A planning algorithm for correction therapies after allogeneic stem cell transplantation. J. Math. Model. Algor. 11: 309–323 (2012). doi: 10.1007/s10852-012-9187-3 [Crossref], [Google Scholar]
[20] Precup, R. Mathematical understanding of the autologous stem cell transplantation. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 10: 155–167 (2012). [Google Scholar]
[21] Parajdi, L.G., R. Precup, E.A. Bonci and C. Tomuleasa. A mathematical model of the transition from the normal hematopoiesis to the chronic and acceleration-acute stages in myeloid leukemia. [Submitted] (2017). [Google Scholar]
[22] Hideo, E., M. Yohei and S. Toshio. Heterogeneity and hierarchy of hematopoietic stem cells. Exp. Hematol.. 42(2): 74–82 (2014). doi: 10.1016/j.exphem.2013.11.004 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[23] Herzenberg, L.A., D. Parks, B. Sahaf, et al. The History and Future of the Fluorescence Activated Cell Sorter and Flow Cytometry: A View from Stanford. Clin. Chem. 48(10): 1819–1827 (2002). [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[24] Dayneka, N.L., V. Garg and W.L. Jusko. Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokinet. Pharmacodyn. 21(4): 457–478 (1993). doi: 10.1007/BF01061691 [Crossref], [Web of Science ®], [Google Scholar]
[25] Karmanov, V.G. Mathematical Programming. Moscow: Mir Publishers (1989). [Google Scholar]
[26] LuptáČik, M. Mathematical Optimization and Economic Analysis. New York: Springer (2010). [Crossref], [Google Scholar]
[27] Heck, A. Introduction to Maple, 3rd edn. New York: Springer (2003). [Crossref], [Google Scholar]
[28] Parajdi, L.G. Mathematical modeling of cell dynamics and optimization problems in chronic myeloid leukemia therapy (Abstract). 11th European Conference on Mathematical and Theoretical Biology (ECMTB 2018) – Book of Abstracts. Ed. Maira Aguiar. Lisbon: Portuguese Mathematical Society. pp. 252–253. http://www.ecmtb2018.org/files/files/BookOfAbstracts_ECMTB2018_inclusions.pdf (2018) [Google Scholar]