Theoretical basis of optimal therapy for individual patients in chronic myeloid leukemia: A mathematical approach


Even if the successful pharmacological therapy for chronic myeloid leukemia has reached today a near normal life expectancy in a patient diagnosed with this malignancy, almost one in four patients will change the line of tyrosin-kinase inhibitors during therapy, may it be due to poor response of due to intolerance to therapy. In this paper, starting from a mathematical characterization of the chronic phase in myeloid leukemia, a theoretical investigation of optimal therapy is undertaken as base for further pharmaceutical research and personalized treatment protocols.


Lorand Gabriel Parajdia
Department of Mathematics, Babeş-Bolyai University, Cluj-Napoca,Romania

Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania

Delia Dima
Department of Hematology, Ion Chiricuţă Clinical Cancer Center, Cluj-Napoca, Romania

Vlad Moisoiu
Department of Hematology, Ion Chiricuţă Clinical Cancer Center, Cluj-Napoca, Romania
IMOGEN Research Institute, County Clinical Emergency Hospital, Cluj-Napoca, Romania

Ciprian Tomuleasa
Department of Hematology, Ion Chiricuţă Clinical Cancer Center, Cluj-Napoca, Romania


Mathematical model; Chronic myeloid leukemia; Dynamic system; Optimization problem

Paper coordinates

L. G. Parajdi, R. Precup, D. Dima, V. Moisoiu, C. Tomuleasa, Theoretical basis of optimal therapy for individual patients in chronic myeloid leukemia: A mathematical approach, Journal of Interdisciplinary Mathematics 23:3 (2020), 669-690,



About this paper


Journal of Interdisciplinary Mathematics

Publisher Name

Taylor and Francis Ltd.

Print ISSN
Online ISSN


google scholar link

[1] Tomuleasa, C.D. DimaI. Frincet alBCR-ABL1 T315I mutation, a negative prognostic factor for the terminal phase of chronic myelogenous leukemia treated with first- and second-line tyrosine kinase inhibitors, might be an indicator of allogeneic stem cell transplant as the treatment of choiceLeuk Lymphoma, 56: 5467 (2014). doi: 10.3109/10428194.2014.940582 [Taylor & Francis Online][Web of Science ®][Google Scholar]

[2] Hochhaus, A.S. SausseleG. Rostiet alChronic myeloid leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-upAnnals of Oncology. 28(suppl 4): iv41iv51, doi:10.1093/annonc/mdx219 (2017). [Crossref][PubMed][Web of Science ®][Google Scholar]

[3] Timis, T.C. BerceA. Duarte-Garciaet alParaneoplastic syndromes with connective tissue involvement. “It’s not always lupus!”J. BUON. 17: 41721 (2012). [PubMed][Web of Science ®][Google Scholar]

[4] Frinc, I.M.S. MuresanF. Zaharieet alCancer stem-like cells: the dark knights of clinical hematology and oncologyJ. BUON. 19(2): 32835 (2014). [PubMed][Web of Science ®][Google Scholar]

[5] Adimy, M.F. Crauste and S. RuanA mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemiaSIAM J. Appl. Math. 65: 13281352 (2005). doi: 10.1137/040604698 [Crossref][Web of Science ®][Google Scholar]

[6] Dale, D.C. and M.C. MackeyUnderstanding, treating and avoiding hematological disease: Better medicine through mathematics?Bull. Math. Biol. 77: 739757, doi:10.1007/s11538-014-9995-x (2015). [Crossref][PubMed][Web of Science ®][Google Scholar]

[7] Foley, C. and M.C. MackeyDynamic hematological disease: a reviewJ. Math. Biol. 58: 285322 (2009). doi: 10.1007/s00285-008-0165-3 [Crossref][PubMed][Web of Science ®][Google Scholar]

[8] He, Q.J. ZhuD. Dingliet alOptimized treatment schedules for chronic myeloid leukemiaPLoS Comput. Biol. 12(10): e1005129, doi:10.1371/journal.pcbi.1005129 (2016). [Crossref][PubMed][Web of Science ®][Google Scholar]

[9] Jayachandran, D.A.E. RundellR.E. Hannemannet alOptimal chemotherapy for leukemia: a model-based strategy for individualized treatmentPLoS ONE 9(10): e109623, doi:10.1371/journal.pone.0109623 (2014). [Crossref][PubMed][Web of Science ®][Google Scholar]

[10] Kaplan, D. and L. GlassUnderstanding Nonlinear DynamicsNew YorkSpringer (1995). [Crossref][Google Scholar]

[11] Mac Lean, A.L.C. Lo Celso and M.P.H. StumpfPopulation dynamics of normal and leukaemia stem cells in the haematopoietic stem cell niche show distinct regimes where leukaemia will be controlledJ. R. Soc. Interface 10: 20120968 (2013). [Crossref][PubMed][Web of Science ®][Google Scholar]

[12] Sbeity, H. and R. YounesReview of optimization methods for cancer chemotherapy treatment planningJ. Comput. Sci. Syst. Biol. 8: 7495 (2015). [Crossref][Google Scholar]

[13] Mackey, M.C. and L. GlassOscillation and chaos in physiological control systemsScience 197: 287289 (1977). doi: 10.1126/science.267326 [Crossref][PubMed][Web of Science ®][Google Scholar]

[14] Dingli, D. and F. MichorSuccessful therapy must eradicate cancer stem cellsStem Cells 24: 26032610 (2006). doi: 10.1634/stemcells.2006-0136 [Crossref][PubMed][Web of Science ®][Google Scholar]

[15] Cucuianu, A. and R. PrecupA hypothetical-mathematical model of acute myeloid leukemia pathogenesisComput. Math. Methods Med. 11: 4965 (2010). doi: 10.1080/17486700902973751 [Taylor & Francis Online][Web of Science ®][Google Scholar]

[16] Parajdi, L. Modeling the treatment of tumor cells in a solid tumorJ. Nonlinear Sci. Appl. 7(3): 188195 (2014). doi: 10.22436/jnsa.007.03.05 [Crossref][Google Scholar]

[17] Michor, F.T.P. HughesY. Iwasaet alDynamics of chronic myeloid leukaemiaNature 435: 12671270 (2005). doi: 10.1038/nature03669 [Crossref][PubMed][Web of Science ®][Google Scholar]

[18] Precup, R.S. ArghirescuA. Cucuianuet alMathematical modeling of cell dynamics after allogeneic bone marrow transplantation in acute myeloid leukemiaInt. J. Biomath. 5: 1250026 [18 pages] doi: 10.1142/S1793524511001684 (2012). [Crossref][Web of Science ®][Google Scholar]

[19] Precup, R.M.A. SerbanD. Trifet alA planning algorithm for correction therapies after allogeneic stem cell transplantationJ. Math. Model. Algor. 11: 309323 (2012). doi: 10.1007/s10852-012-9187-3 [Crossref][Google Scholar]

[20] Precup, R. Mathematical understanding of the autologous stem cell transplantationAnn. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 10: 155167 (2012). [Google Scholar]

[21] Parajdi, L.G.R. PrecupE.A. Bonci and C. TomuleasaA mathematical model of the transition from the normal hematopoiesis to the chronic and acceleration-acute stages in myeloid leukemia. [Submitted] (2017). [Google Scholar]

[22] Hideo, E.M. Yohei and S. ToshioHeterogeneity and hierarchy of hematopoietic stem cellsExp. Hematol.. 42(2): 7482 (2014). doi: 10.1016/j.exphem.2013.11.004 [Crossref][PubMed][Web of Science ®][Google Scholar]

[23] Herzenberg, L.A.D. ParksB. Sahafet alThe History and Future of the Fluorescence Activated Cell Sorter and Flow Cytometry: A View from StanfordClin. Chem. 48(10): 18191827 (2002). [Crossref][PubMed][Web of Science ®][Google Scholar]

[24]  Dayneka, N.L.V. Garg and W.L. JuskoComparison of four basic models of indirect pharmacodynamic responsesJ. Pharmacokinet. Pharmacodyn. 21(4): 457478 (1993). doi: 10.1007/BF01061691 [Crossref][Web of Science ®][Google Scholar]

[25] Karmanov, V.G. Mathematical ProgrammingMoscowMir Publishers (1989). [Google Scholar]

[26] LuptáČik, M. Mathematical Optimization and Economic AnalysisNew YorkSpringer (2010). [Crossref][Google Scholar]

[27] Heck, A. Introduction to Maple, 3rd ednNew YorkSpringer (2003). [Crossref][Google Scholar]

[28] Parajdi, L.G. Mathematical modeling of cell dynamics and optimization problems in chronic myeloid leukemia therapy (Abstract)11th European Conference on Mathematical and Theoretical Biology (ECMTB 2018) – Book of Abstracts. Ed. Maira AguiarLisbonPortuguese Mathematical Society. pp. 252253 (2018[Google Scholar]


Related Posts