Best uniform approximation of semi-Lipschitz function by extension

Abstract

In this paper we consider the problem of best uniform approximation of a real valued semi-Lipschitz function \(F\) defined on an asymmetric metric space \((X,d)\), by the elements of the set \(E_{d}(F|_{Y})\) of all extensions of \(F|_{Y}(Y\subset X)\), preserving the smallest semi-Lipschitz constant. It is proved that, this problem has always at least a solution, if \((X,d)\) is \((d,\overline{d})\)-sequentially compact, or of finite diameter.

Authors

Costică Mustăţa
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academi,  Romania

Keywords

Semi-Lipschitz functions; uniform approximation; extensions of semi-Lipschitz functions.

Paper coordinates

C. Mustăţa, Best uniform approximation of semi-Lipschitz function by extension, Rev. Anal. Numér. Théor. Approx. 36 (2007) 2, pp. 161-171.

PDF

About this paper

Journal

Revue d’Analyse Numer. Theor. Approx.

Publisher Name

Publishing House of the Romanian Academy

Print ISSN

2501-059X

Online ISSN

2457-6794

google scholar link

[1] Cobzas, S., Separation of convex sets and best approximation in spaces with asymmetric norm, Quaest. Math., 27 (3), pp. 275–296, 2004.
[2] Cobzas, S., Asymmetric locally convex spaces, Int. J. Math. Math. Sci., 16, pp. 2585–2608, 2005.
[3] Cobzas, S. and Mustata, C., Best approximation in spaces with asymmetric norm,. Rev. Anal. Numer. Theor. Approx., 33 (1), pp. 17–31, 2006.
[4] Cobzas, S. and Mustata, C., Extension of bounded linear functionals and best approximation in spaces with asymmetric norm, Rev. Anal. Numer. Theor. Approx., 31, 1, pp. 35–50, 2004.
[5] Collins, J. and Zimmer, J., An asymmetric Arzela-Ascoli theorem, http://bath.ac.uk/math-sci/BICS, Preprint, 16, 12 pp, 2005.
[6] Garcia-Raffi, L. M., Romaguera, S. and Sanchez-Perez, E. A., The dual space of an asymmetric linear space, Quaest. Math., 26, pp. 83–96, 2003.
[7] Kunzi, H. P. A., Nonsymmetric distances and their associated topologies: about the origin of basic ideas in the area of asymmetric topologies, in: Handbook of the History of General Topology, ed. by C.E. Aull and R. Lower, 3, Hist. Topol. 3, Kluwer Acad. Publ. Dordrecht, pp. 853–968, 2001.
[8] Mc.Shane, E. T., Extension of range of functions, Bull. Amer. Math. Soc., 40, pp. 837–842, 1934.
[9] Menucci, A., On asymmetric distances, Technical Report, Scuola Normale Superiore, Pisa, 2004.
[10] Mustata, C., Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numer. Theor. Approx, 30, 1, pp. 61–67, 2001.
[11] Mustata, C., On the extremal semi-Lipschitz functions, Rev. Anal. Numer. Theor. Approx, 31, 1, pp. 103–108, 2002.
[12] Mustata, C., On the approximation of the global extremum of a semi-Lipschitz function, IJMMS (to appear).
[13] Reilly, I.L., Subrahmanyam, P. V. and Vamanamurthy, M. K., Cauchy sequences in quasi-pseudo-metric spaces, Mh. Math., 93 , pp. 127–140, 1982.
[14] Romaguera, S. and Sanchis, M., Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103, pp. 292–301, 2000.
[15] Romaguera, S. and Sanchis, M., Properties of the normed cone of semi-Lipschitz functions, Acta Math. Hungar., 108(1-2), pp. 55–70, 2005.
[16] Romaguera, S., Sanchez-Alvarez, J.M. and Sanchis, M., El espacio de funciones semi-Lipschitz, VI Jornadas de Matematica Aplicada, Universiadad Politecnica de Valencia, pp. 1–15, 2005.
[17] Sanchez-Alvarez, J. M., On semi-Lipschitz functions with values in a quasi-normed linear space, Applied General Topology, 6, 2, pp. 216–228, 2005.

Paper (preprint) in HTML form

2007-Mustata-Best uniform approximation of semi-Lipschitz-Jnaat

BEST UNIFORM APPROXIMATION OF SEMI-LIPSCHITZ FUNCTIONS BY EXTENSIONS*

COSTICĂ MUSTĂŢA ^(†){ }^{\dagger}

Abstract

In this paper we consider the problem of best uniform approximation of a real valued semi-Lipschitz function F F FFF defined on an asymmetric metric space ( X , d ) ( X , d ) (X,d)(X, d)(X,d), by the elements of the set E d ( F | Y ) E d F Y E_(d)(F|_(Y))\mathcal{E}_{d}\left(\left.F\right|_{Y}\right)Ed(F|Y) of all extensions of F | Y ( Y X ) F Y ( Y X ) F|_(Y)(Y sub X)\left.F\right|_{Y}(Y \subset X)F|Y(YX), preserving the smallest semi-Lipschitz constant. It is proved that, this problem has always at least a solution, if ( X , d X , d X,dX, dX,d ) is ( d , d ¯ d , d ¯ d, bar(d)d, \bar{d}d,d¯ )-sequentially compact, or of finite diameter.

MSC 2000. 41A65, 41A30.
Keywords. Semi-Lipschitz functions, uniform approximation, extensions of semi-Lipschitz functions.

1. INTRODUCTION

Let X X XXX be a non-empty set. A function d : X × X [ 0 , ) d : X × X [ 0 , ) d:X xx X rarr[0,oo)d: X \times X \rightarrow[0, \infty)d:X×X[0,) is called a quasi-metric on X 14 X 14 X 14X 14X14 if the following conditions hold:
  1. d ( x , y ) = d ( y , x ) = 0 d ( x , y ) = d ( y , x ) = 0 d(x,y)=d(y,x)=0quadd(x, y)=d(y, x)=0 \quadd(x,y)=d(y,x)=0 iff x = y x = y quad x=y\quad x=yx=y,
  2. d ( x , z ) d ( x , y ) + d ( y , z ) d ( x , z ) d ( x , y ) + d ( y , z ) d(x,z) <= d(x,y)+d(y,z)d(x, z) \leq d(x, y)+d(y, z)d(x,z)d(x,y)+d(y,z), for all x , y , z X x , y , z X x,y,z in Xx, y, z \in Xx,y,zX.
The function d ¯ : X × X [ 0 , ) d ¯ : X × X [ 0 , ) bar(d):X xx X rarr[0,oo)\bar{d}: X \times X \rightarrow[0, \infty)d¯:X×X[0,) defined by d ¯ ( x , y ) = d ( y , x ) d ¯ ( x , y ) = d ( y , x ) bar(d)(x,y)=d(y,x)\bar{d}(x, y)=d(y, x)d¯(x,y)=d(y,x), for all x , y X x , y X x,y in Xx, y \in Xx,yX is also a quasi-metric on X X XXX, called the conjugate quasi-metric of d d ddd.
A pair ( X , d X , d X,dX, dX,d ) where X X XXX is a non-empty set and d d ddd a quasi-metric on X X XXX, is called a quasi-metric space.
If d d ddd can take the value + + +oo+\infty+, then it is called a quasi-distance on X X XXX.
Each quasi-metric d d ddd on X X XXX induces a topology τ ( d ) τ ( d ) tau(d)\tau(d)τ(d) which has as a basis the family of balls (forward open balls [5])
(1) B + ( x , ε ) := { y X : d ( x , y ) < ε } , x X , ε > 0 . (1) B + ( x , ε ) := { y X : d ( x , y ) < ε } , x X , ε > 0 . {:(1)B^(+)(x","epsi):={y in X:d(x","y) < epsi}","x in X","epsi > 0.:}\begin{equation*} B^{+}(x, \varepsilon):=\{y \in X: d(x, y)<\varepsilon\}, x \in X, \varepsilon>0 . \tag{1} \end{equation*}(1)B+(x,ε):={yX:d(x,y)<ε},xX,ε>0.
This topology is called the forward topology of X X XXX ([5], [9]), and is denoted also by τ + τ + tau_(+)\tau_{+}τ+.
Observe that the topology τ + τ + tau_(+)\tau_{+}τ+is a T 0 T 0 T_(0)T_{0}T0-topology. If the condition 1) is replaced by 1 1 1^(')1^{\prime}1 ) d ( x , y ) = 0 d ( x , y ) = 0 d(x,y)=0d(x, y)=0d(x,y)=0 iff x = y x = y x=yx=yx=y, then the topology τ + τ + tau_(+)\tau_{+}τ+is a T 1 T 1 T_(1)T_{1}T1-topology (see [14, [15]).
Analogously, the quasi-metric d ¯ d ¯ bar(d)\bar{d}d¯ induces the topology τ ( d ¯ ) τ ( d ¯ ) tau( bar(d))\tau(\bar{d})τ(d¯) on X X XXX, which has as a basis the family of backward open balls (5)
(2) B ( x , ε ) := { y X : d ( y , x ) < ε } , x X , ε > 0 (2) B ( x , ε ) := { y X : d ( y , x ) < ε } , x X , ε > 0 {:(2)B^(-)(x","epsi):={y in X:d(y","x) < epsi}","x in X","epsi > 0:}\begin{equation*} B^{-}(x, \varepsilon):=\{y \in X: d(y, x)<\varepsilon\}, x \in X, \varepsilon>0 \tag{2} \end{equation*}(2)B(x,ε):={yX:d(y,x)<ε},xX,ε>0
This topology is called the backward topology of X X XXX ([5], [9]) and is denoted also by τ τ tau_(-)\tau_{-}τ.
For more information about quasi-metric spaces and their applications see, for example, the papers [5, 66, 7, 9], 14) and the references quoted therein.
Let ( X , d X , d X,dX, dX,d ) be a quasi-metric space. A sequence ( x k ) k 1 X x k k 1 X (x_(k))_(k >= 1)sub X\left(x_{k}\right)_{k \geq 1} \subset X(xk)k1X is called d d ddd-convergent (forward convergent) to x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X, respectively d ¯ d ¯ bar(d)\bar{d}d¯-convergent (backward convergent) to x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X iff
(3) lim k d ( x 0 , x k ) = 0 , respectively lim k 0 d ( x k , x 0 ) = lim k d ¯ ( x 0 , x k ) = 0 (3) lim k d x 0 , x k = 0 ,  respectively  lim k 0 d x k , x 0 = lim k d ¯ x 0 , x k = 0 {:(3)lim_(k rarr oo)d(x_(0),x_(k))=0","" respectively "lim_(k rarr0)d(x_(k),x_(0))=lim_(k rarr oo) bar(d)(x_(0),x_(k))=0:}\begin{equation*} \lim _{k \rightarrow \infty} d\left(x_{0}, x_{k}\right)=0, \text { respectively } \lim _{k \rightarrow 0} d\left(x_{k}, x_{0}\right)=\lim _{k \rightarrow \infty} \bar{d}\left(x_{0}, x_{k}\right)=0 \tag{3} \end{equation*}(3)limkd(x0,xk)=0, respectively limk0d(xk,x0)=limkd¯(x0,xk)=0
(see 5], Definition 2.4)
A subset K K KKK of X X XXX is called d d ddd-compact (forward compact) if every open cover of K K KKK with respect to the forward topology τ + τ + tau_(+)\tau_{+}τ+has a finite subcover. We say that a subset K K KKK of X X XXX is d d ddd-sequentially compact (forward-sequentially compact) if every sequence in K K KKK has a d d ddd-convergent (forward convergent) subsequence with limit in K K KKK ([5], Definition 4.1).
The d ¯ d ¯ bar(d)\bar{d}d¯-compact (backward compact) and d ¯ d ¯ bar(d)\bar{d}d¯-sequentially compact (backward -sequentially compact) subset of X X XXX - are defined in a similar way.
Finally, a subset Y Y YYY of ( X , d X , d X,dX, dX,d ) is called ( d , d ¯ d , d ¯ d, bar(d)d, \bar{d}d,d¯ )-sequentially compact if every sequence ( y n ) n 1 y n n 1 (y_(n))_(n >= 1)\left(y_{n}\right)_{n \geq 1}(yn)n1 in Y Y YYY has a subsequence ( y n k ) k 1 , d y n k k 1 , d (y_(n_(k)))_(k >= 1),d\left(y_{n_{k}}\right)_{k \geq 1}, d(ynk)k1,d-convergent to some u Y u Y u in Yu \in YuY and d ¯ d ¯ bar(d)\bar{d}d¯-convergent to some v Y v Y v in Yv \in YvY. By Lemma 3.1 in [5] if follows that we can take u = v u = v u=vu=vu=v in the definition of ( d , d ¯ d , d ¯ d, bar(d)d, \bar{d}d,d¯ )-sequentially compactness, if ( X , d X , d X,dX, dX,d ) is a T 1 T 1 T_(1)T_{1}T1 quasi-metric space. A subset Y Y YYY of ( X , d X , d X,dX, dX,d ) is called d d ddd-bounded (forward bounded in [5]) if there exist x X x X x in Xx \in XxX and r > 0 r > 0 r > 0r>0r>0, such that Y B + ( x , r ) . Y Y B + ( x , r ) . Y Y subB^(+)(x,r).YY \subset B^{+}(x, r) . YYB+(x,r).Y is called d d ddd-totally bounded if for every ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0, there exists n N n N n inNn \in \mathbb{N}nN, and the forward balls B + ( y 1 , ε ) , B + ( y 2 , ε ) , , B n ( y n , ε ) , y i Y , i = 1 , n B + y 1 , ε , B + y 2 , ε , , B n y n , ε , y i Y , i = 1 , n ¯ B^(+)(y_(1),epsi),B^(+)(y_(2),epsi),dots,B_(n)(y_(n),epsi),y_(i)in Y,i= bar(1,n)B^{+}\left(y_{1}, \varepsilon\right), B^{+}\left(y_{2}, \varepsilon\right), \ldots, B_{n}\left(y_{n}, \varepsilon\right), y_{i} \in Y, i=\overline{1, n}B+(y1,ε),B+(y2,ε),,Bn(yn,ε),yiY,i=1,n such that Y i = 1 n B + ( y i , ε ) Y i = 1 n B + y i , ε Y subuuu_(i=1)^(n)B^(+)(y_(i),epsi)Y \subset \bigcup_{i=1}^{n} B^{+}\left(y_{i}, \varepsilon\right)Yi=1nB+(yi,ε).
Similar definitions are given for d ¯ d ¯ bar(d)\bar{d}d¯-boundedness and d ¯ d ¯ bar(d)\bar{d}d¯-total boundedness of a subset Y Y YYY of ( X , d X , d X,dX, dX,d ).

2. THE CONE OF SEMI-LIPSCHITZ FUNCTIONS

Definition 1. [15] Let Y Y YYY be a non-empty subset of a quasi-metric space ( X , d ) ( X , d ) (X,d)(X, d)(X,d). A function f : Y R f : Y R f:Y rarrRf: Y \rightarrow \mathbb{R}f:YR is called d d ddd-semi-Lipschitz if there exists a number L 0 L 0 L >= 0L \geq 0L0 (named a d d ddd-semi-Lipschitz constant for f f fff ) such that
(4) f ( x ) f ( y ) L d ( x , y ) (4) f ( x ) f ( y ) L d ( x , y ) {:(4)f(x)-f(y) <= Ld(x","y):}\begin{equation*} f(x)-f(y) \leq L d(x, y) \tag{4} \end{equation*}(4)f(x)f(y)Ld(x,y)
for all x , y Y x , y Y x,y in Yx, y \in Yx,yY.
A function f : Y R f : Y R f:Y rarrRf: Y \rightarrow \mathbb{R}f:YR, is called d d <= _(d)\leq_{d}d-increasing if f ( x ) f ( y ) f ( x ) f ( y ) f(x) <= f(y)f(x) \leq f(y)f(x)f(y), whenever d ( x , y ) = 0 d ( x , y ) = 0 d(x,y)=0d(x, y)=0d(x,y)=0.
Denote by R d Y R d Y R_( <= d)^(Y)\mathbb{R}_{\leq d}^{Y}RdY the set of all d d <= _(d)\leq_{d}d-increasing functions on Y Y YYY. This set is a cone in the linear space R Y R Y R^(Y)\mathbb{R}^{Y}RY of real valued functions defined on Y Y YYY, i.e. for each f , g R d Y f , g R d Y f,g inR_( <= d)^(Y)f, g \in \mathbb{R}_{\leq d}^{Y}f,gRdY and λ 0 λ 0 lambda >= 0\lambda \geq 0λ0 it follows that f + g R d Y f + g R d Y f+g inR_( <= d)^(Y)f+g \in \mathbb{R}_{\leq d}^{Y}f+gRdY and λ f R d Y λ f R d Y lambda f inR_( <= d)^(Y)\lambda f \in \mathbb{R}_{\leq d}^{Y}λfRdY.
For a d d ddd-semi-Lipschitz function f f fff on Y Y YYY, put [14]:
(5) f | d = sup { ( f ( x ) f ( y ) ) 0 d ( x , y ) : d ( x , y ) > 0 ; x , y Y } (5) f d = sup ( f ( x ) f ( y ) ) 0 d ( x , y ) : d ( x , y ) > 0 ; x , y Y {:(5)||f|_(d)=s u p{((f(x)-f(y))vv0)/(d(x,y)):d(x,y) > 0;x,y in Y}:}\begin{equation*} \|\left. f\right|_{d}=\sup \left\{\frac{(f(x)-f(y)) \vee 0}{d(x, y)}: d(x, y)>0 ; x, y \in Y\right\} \tag{5} \end{equation*}(5)f|d=sup{(f(x)f(y))0d(x,y):d(x,y)>0;x,yY}
Then f | d f d ||f|_(d)\|\left. f\right|_{d}f|d is the smallest d d ddd-semi-Lipschitz constant of f f fff (see also [10, [15]).
For a fixed element θ Y θ Y theta in Y\theta \in YθY denote
(6) d SLip 0 Y := { f R d Y : f | d < and f ( θ ) = 0 } (6) d SLip 0 Y := f R d Y : f d <  and  f ( θ ) = 0 {:(6)d-SLip_(0)Y:={f inR_( <= d)^(Y):||f|_(d) < oo" and "f(theta)=0}:}\begin{equation*} d-\operatorname{SLip}_{0} Y:=\left\{f \in \mathbb{R}_{\leq d}^{Y}: \|\left. f\right|_{d}<\infty \text { and } f(\theta)=0\right\} \tag{6} \end{equation*}(6)dSLip0Y:={fRdY:f|d< and f(θ)=0}
the set of all d d ddd-semi-Lipschitz real valued functions defined on Y Y YYY vanishing at the fixed element θ Y θ Y theta in Y\theta \in YθY.
Observe that if ( X , d X , d X,dX, dX,d ) is a T 1 T 1 T_(1)T_{1}T1 quasi-metric space, then every real-valued function on X X XXX is d d <= _(d)\leq_{d}d-increasing [14].
The set d SLip 0 Y d SLip 0 Y d-SLip_(0)Yd-\operatorname{SLip}_{0} YdSLip0Y is a cone (a subcone of R d Y R d Y R_( <= d)^(Y)\mathbb{R}_{\leq d}^{Y}RdY ) and the functional | d : d SLip 0 Y [ 0 , ) d : d SLip 0 Y [ 0 , ) ||*|_(d):d-SLip_(0)Y rarr[0,oo)\|\left.\cdot\right|_{d}: d- \operatorname{SLip}_{0} Y \rightarrow[0, \infty)|d:dSLip0Y[0,) defined by (5) is subadditive and positive homogeneous on d d ddd-SLip 0 Y 0 Y _(0)Y{ }_{0} Y0Y. Moreover f | d = 0 f d = 0 ||f|_(d)=0\|\left. f\right|_{d}=0f|d=0 iff f = 0 f = 0 f=0f=0f=0, and consequently | d d ||*|_(d)\|\left.\cdot\right|_{d}|d is a quasi-norm (asymmetric norm) on the cone d SLip 0 Y d SLip 0 Y d-SLip_(0)Yd-\operatorname{SLip}_{0} YdSLip0Y.
In [15] some properties of the "normed cone" ( d SLip 0 Y , | d d SLip 0 Y , d d-SLip_(0)Y,||*|_(d)d-\operatorname{SLip}_{0} Y, \|\left.\cdot\right|_{d}dSLip0Y,|d ) are presented. Similar properties in the case of d d ddd-semi-Lipschitz functions on a quasi-metric space with values in a quasi-normed space (space with asymmetric norm) are discussed in [16], [17]. For more information concerning other properties of quasi-metric spaces, see also [7], [13].
Now, let ( X , d X , d X,dX, dX,d ) be a quasi-metric space and let Y Y YYY be a non-empty subset of X X XXX. A real valued function f f fff defined on Y Y YYY is called τ + τ + tau_(+)\tau_{+}τ+-lower semi-continuous ( τ + τ + tau_(+)\tau_{+}τ+-l.s.c in short) (respectively τ τ tau_(-)\tau_{-}τ-upper semi-continuous ( τ τ tau_(-)-\tau_{-}-τu.s.c. ) ) )))) at x 0 Y x 0 Y x_(0)in Yx_{0} \in Yx0Y, if for every ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0 there exists r > 0 r > 0 r > 0r>0r>0 such that for every x B + ( x 0 , r ) x B + x 0 , r x inB^(+)(x_(0),r)x \in B^{+}\left(x_{0}, r\right)xB+(x0,r) (respectively, for every x B ( x 0 , r ) ) , f ( x ) > f ( x 0 ) ε x B x 0 , r , f ( x ) > f x 0 ε {:x inB^(-)(x_(0),r)),f(x) > f(x_(0))-epsi\left.x \in B^{-}\left(x_{0}, r\right)\right), f(x)>f\left(x_{0}\right)-\varepsilonxB(x0,r)),f(x)>f(x0)ε (respectively f ( x ) < f ( x 0 ) + ε ) f ( x ) < f x 0 + ε f(x) < {:f(x_(0))+epsi)f(x)< \left.f\left(x_{0}\right)+\varepsilon\right)f(x)<f(x0)+ε).
Proposition 2. Let ( X , d X , d X,dX, dX,d ) be a quasi-metric space, θ X θ X theta in X\theta \in XθX a fixed element, and Y X Y X Y sube XY \subseteq XYX with θ Y θ Y theta in Y\theta \in YθY. Then every f d SLip 0 Y f d SLip 0 Y f in d-SLip_(0)Yf \in d-\operatorname{SLip}_{0} YfdSLip0Y is τ τ tau_(-)-\tau_{-}-τu.s.c and τ + τ + tau_(+)\tau_{+}τ+-l.s.c., and every f d ¯ SLip 0 Y f d ¯ SLip 0 Y f in bar(d)-SLip_(0)Yf \in \bar{d}-\operatorname{SLip}_{0} Yfd¯SLip0Y is τ + τ + tau_(+)-\tau_{+}-τ+u.s.c. and τ τ tau_(-)-\tau_{-}-τl.s.c. on Y Y YYY.
Proof. Let f d SLip 0 Y f d SLip 0 Y f in d-SLip_(0)Yf \in d-\operatorname{SLip}_{0} YfdSLip0Y such that f | d = 0 f d = 0 ||f|_(d)=0\|\left. f\right|_{d}=0f|d=0. Then f 0 f 0 f-=0f \equiv 0f0 and f f fff is τ τ tau_(-)-\tau_{-}-τu.s.c. and τ + τ + tau_(+)\tau_{+}τ+-l.s.c at every y Y y Y y in Yy \in YyY.
Now, let f | d > 0 f d > 0 ||f|_(d) > 0\|\left. f\right|_{d}>0f|d>0 and y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y. The inequality
f ( y ) f ( y 0 ) f | d d ( y , y 0 ) , y Y f ( y ) f y 0 f d d y , y 0 , y Y f(y)-f(y_(0)) <= ||f|_(d)d(y,y_(0)),y in Yf(y)-f\left(y_{0}\right) \leq \|\left. f\right|_{d} d\left(y, y_{0}\right), y \in Yf(y)f(y0)f|dd(y,y0),yY
implies
f ( y ) f ( y 0 ) + f | d d ( y , y 0 ) , y Y . f ( y ) f y 0 + f d d y , y 0 , y Y . f(y) <= f(y_(0))+||f|_(d)d(y,y_(0)),y in Y.f(y) \leq f\left(y_{0}\right)+\|\left. f\right|_{d} d\left(y, y_{0}\right), y \in Y .f(y)f(y0)+f|dd(y,y0),yY.
So that
f ( y ) < f ( y 0 ) + ε , f ( y ) < f y 0 + ε , f(y) < f(y_(0))+epsi,f(y)<f\left(y_{0}\right)+\varepsilon,f(y)<f(y0)+ε,
for every ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0 and every y B ( y 0 , ε f | d ) y B y 0 , ε f d y inB^(-)(y_(0),(epsi)/(||f|_(d)))y \in B^{-}\left(y_{0}, \frac{\varepsilon}{\|\left. f\right|_{d}}\right)yB(y0,εf|d), showing that f f fff is τ τ tau_(-)-\tau_{-}-τu.s.c at y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y.
Similarly,
f ( y 0 ) f ( y ) f | d d ( y 0 , y ) , y Y , f y 0 f ( y ) f d d y 0 , y , y Y , f(y_(0))-f(y) <= ||f|_(d)*d(y_(0),y),y in Y,f\left(y_{0}\right)-f(y) \leq \|\left. f\right|_{d} \cdot d\left(y_{0}, y\right), y \in Y,f(y0)f(y)f|dd(y0,y),yY,
implies
f ( y ) f ( y 0 ) f | d d ( y 0 , y ) , f ( y ) f y 0 f d d y 0 , y , f(y) >= f(y_(0))-||f|_(d)d(y_(0),y),f(y) \geq f\left(y_{0}\right)-\|\left. f\right|_{d} d\left(y_{0}, y\right),f(y)f(y0)f|dd(y0,y),
so that
f ( y ) > f ( y 0 ) ε , f ( y ) > f y 0 ε , f(y) > f(y_(0))-epsi,f(y)>f\left(y_{0}\right)-\varepsilon,f(y)>f(y0)ε,
for every y B + ( Y 0 , ε f | d ) y B + Y 0 , ε f d y inB^(+)(Y_(0),(epsi)/(||f|_(d)))y \in B^{+}\left(Y_{0}, \frac{\varepsilon}{\|\left. f\right|_{d}}\right)yB+(Y0,εf|d), showing that f f fff is τ + τ + tau_(+)\tau_{+}τ+-l.s.c. in y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y.
Similarly one prove that every f d ¯ SLip 0 Y f d ¯ SLip 0 Y f in bar(d)-SLip_(0)Yf \in \bar{d}-\operatorname{SLip}_{0} Yfd¯SLip0Y is τ + τ + tau_(+)-\tau_{+}-τ+u.s.c. and τ τ tau_(-)-\tau_{-}-τl.s.c. on Y Y YYY.
Observe that if f f fff is in d SLip 0 Y d SLip 0 Y d-SLip_(0)Yd-\operatorname{SLip}_{0} YdSLip0Y, then f d ¯ SLip 0 Y f d ¯ SLip 0 Y -f in bar(d)-SLip_(0)Y-f \in \bar{d}-\operatorname{SLip}_{0} Yfd¯SLip0Y, and f f -f-ff is τ + τ + tau_(+)-\tau_{+}-τ+u.s.c, and τ τ tau_(-)-\tau_{-}-τl.s.c. on Y Y YYY, i.e. if y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y then
  • ε > 0 , r > 0 ε > 0 , r > 0 AA epsi > 0,EE r > 0\forall \varepsilon>0, \exists r>0ε>0,r>0 such that ( f ) ( y ) < ( f ) ( y 0 ) + ε ( f ) ( y ) < ( f ) y 0 + ε (-f)(y) < (-f)(y_(0))+epsi(-f)(y)<(-f)\left(y_{0}\right)+\varepsilon(f)(y)<(f)(y0)+ε, for all y B + ( y 0 , r ) y B + y 0 , r y inB^(+)(y_(0),r)y \in B^{+}\left(y_{0}, r\right)yB+(y0,r), and respectively
  • ε > 0 , r > 0 ε > 0 , r > 0 AA epsi > 0,EE r > 0\forall \varepsilon>0, \exists r>0ε>0,r>0 such that ( f ) ( y ) > ( f ) ( y 0 ) ε ( f ) ( y ) > ( f ) y 0 ε (-f)(y) > (-f)(y_(0))-epsi(-f)(y)>(-f)\left(y_{0}\right)-\varepsilon(f)(y)>(f)(y0)ε, for all y B ( y 0 , r ) y B y 0 , r y inB^(-)(y_(0),r)y \in B^{-}\left(y_{0}, r\right)yB(y0,r).
Proposition 3. Let ( X , d X , d X,dX, dX,d ) be a quasi-metric space, θ X θ X theta in X\theta \in XθX a fixed element, and Y X Y X Y sub XY \subset XYX, with θ Y θ Y theta in Y\theta \in YθY.
(a) If Y Y YYY is d ¯ d ¯ bar(d)\bar{d}d¯-sequentially compact, then each f d f d f in df \in dfd-SLip 0 Y 0 Y _(0)Y{ }_{0} Y0Y attains its maximum value on Y Y YYY;
(b) If Y Y YYY is d d ddd - sequentially compact, then each f d f d f in df \in dfd-SLip 0 Y 0 Y _(0)Y{ }_{0} Y0Y attains its minimum value on Y Y YYY.
Proof. (a) Let Y Y YYY be d ¯ d ¯ bar(d)\bar{d}d¯-sequentially compact and M := sup f ( Y ) M := sup f ( Y ) M:=s u p f(Y)M:=\sup f(Y)M:=supf(Y), where M R { + } M R { + } M inRuu{+oo}M \in \mathbb{R} \cup\{+\infty\}MR{+}. Then there exists a sequence ( y n ) n 1 y n n 1 (y_(n))_(n >= 1)\left(y_{n}\right)_{n \geq 1}(yn)n1 in Y Y YYY such that lim n f ( y n ) = M lim n f y n = M lim_(n rarr oo)f(y_(n))=M\lim _{n \rightarrow \infty} f\left(y_{n}\right)= Mlimnf(yn)=M. Because Y Y YYY is d ¯ d ¯ bar(d)\bar{d}d¯-sequentially compact, there exists y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y and a subsequence ( y n k ) k 1 y n k k 1 (y_(n_(k)))_(k >= 1)\left(y_{n_{k}}\right)_{k \geq 1}(ynk)k1 of ( y n ) n 1 y n n 1 (y_(n))_(n >= 1)\left(y_{n}\right)_{n \geq 1}(yn)n1 such that lim n d ( y n , k , y 0 ) = 0 lim n d y n , k , y 0 = 0 lim_(n rarr oo)d(y_(n,k),y_(0))=0\lim _{n \rightarrow \infty} d\left(y_{n, k}, y_{0}\right)=0limnd(yn,k,y0)=0. By the τ τ tau_(-)-\tau_{-}-τu.s.c. of f f fff at y 0 y 0 y_(0)y_{0}y0 it follows:
M = lim k f ( y n k ) = lim sup k f ( y n k ) f ( y 0 ) = M , M = lim k f y n k = lim sup k f y n k f y 0 = M , M=lim_(k rarr oo)f(y_(n_(k)))=l i m   s u p_(k)f(y_(n_(k))) <= f(y_(0))=M,M=\lim _{k \rightarrow \infty} f\left(y_{n_{k}}\right)=\limsup _{k} f\left(y_{n_{k}}\right) \leq f\left(y_{0}\right)=M,M=limkf(ynk)=lim supkf(ynk)f(y0)=M,
implying M < M < M < ooM<\inftyM< and f ( y 0 ) = M f y 0 = M f(y_(0))=Mf\left(y_{0}\right)=Mf(y0)=M.
(b) If f d f d f in df \in dfd-SLip 0 Y 0 Y _(0)Y{ }_{0} Y0Y, it follows- f d ¯ f d ¯ f in bar(d)f \in \bar{d}fd¯-SLip 0 Y 0 Y _(0)Y{ }_{0} Y0Y, and because Y Y YYY is d d ddd-sequentially compact, by (a), it follows that f f -f-ff attains its maximum value on Y Y YYY, i.e. f f fff attains its minimum value on Y Y YYY.
Proposition 4. Let ( X , d X , d X,dX, dX,d ) be a quasi-metric space, θ X θ X theta in X\theta \in XθX a fixed element, and Y X Y X Y sube XY \subseteq XYX with θ Y θ Y theta in Y\theta \in YθY.
(a) If Y Y YYY is d ¯ d ¯ bar(d)\bar{d}d¯-sequentially compact, then the functional | d ¯ : d SLip 0 Y [ 0 , ) d ¯ : d SLip 0 Y [ 0 , ) ||*|_(oo)^( bar(d)):d-SLip_(0)Y rarr[0,oo)\|\left.\cdot\right|_{\infty} ^{\bar{d}}: d-\operatorname{SLip}_{0} Y \rightarrow [0, \infty)|d¯:dSLip0Y[0,) defined by
(7) f | d ¯ = max { f ( y ) : y Y } (7) f d ¯ = max { f ( y ) : y Y } {:(7)||f|_(oo)^( bar(d))=max{f(y):y in Y}:}\begin{equation*} \|\left. f\right|_{\infty} ^{\bar{d}}=\max \{f(y): y \in Y\} \tag{7} \end{equation*}(7)f|d¯=max{f(y):yY}
is an asymmetric norm on d SLip 0 Y d SLip 0 Y d-SLip_(0)Yd-\operatorname{SLip}_{0} YdSLip0Y.
(b) If Y Y YYY is d d ddd-sequentially compact, then the functional | d : d SLip 0 Y [ 0 , ) d : d SLip 0 Y [ 0 , ) ||*|_(oo)^(d):d-SLip_(0)Y rarr[0,oo)\|\left.\cdot\right|_{\infty} ^{d}: d-\operatorname{SLip}_{0} Y \rightarrow [0, \infty)|d:dSLip0Y[0,) defined by
(8) f | d = max { f ( y ) : y Y } , f d SLip 0 Y (8) f d = max { f ( y ) : y Y } , f d SLip 0 Y {:(8)||f|_(oo)^(d)=max{-f(y):y in Y}","f in d-SLip_(0)Y:}\begin{equation*} \|\left. f\right|_{\infty} ^{d}=\max \{-f(y): y \in Y\}, f \in d-\operatorname{SLip}_{0} Y \tag{8} \end{equation*}(8)f|d=max{f(y):yY},fdSLip0Y
is an asymmetric norm on d SLip 0 Y d SLip 0 Y d-SLip_(0)Yd-\operatorname{SLip}_{0} YdSLip0Y;
(c) If Y Y YYY is ( d , d ¯ ) ( d , d ¯ ) (d, bar(d))(d, \bar{d})(d,d¯)-sequentially compact, then the functional | : d SLip 0 Y [ 0 , ) : d SLip 0 Y [ 0 , ) ||*|_(oo):d-SLip_(0)Y rarr[0,oo)\|\left.\cdot\right|_{\infty}: d-\operatorname{SLip}_{0} Y \rightarrow [0, \infty)|:dSLip0Y[0,) defined by
(9) f | = f | d f | d ¯ , f d SLip 0 Y (9) f = f d f d ¯ , f d SLip 0 Y {:(9)||f|_(oo)=||f|_(oo)^(d)vv||f|_(oo)^( bar(d))","f in d-SLip_(0)Y:}\begin{equation*} \left.\left\|\left.f\right|_{\infty}=\right\| f\right|_{\infty} ^{d} \vee \|\left. f\right|_{\infty} ^{\bar{d}}, f \in d-\operatorname{SLip}_{0} Y \tag{9} \end{equation*}(9)f|=f|df|d¯,fdSLip0Y
is the uniform norm on the cone d SLip 0 Y d SLip 0 Y d-SLip_(0)Yd-\operatorname{SLip}_{0} YdSLip0Y.
Proof. (a) By Proposition 3 (a), the functional (7) is well defined. For every f d f d f in df \in dfd - SLip 0 Y SLip 0 Y SLip_(0)Y\operatorname{SLip}_{0} YSLip0Y, we have f | d ¯ f ( θ ) = 0 f d ¯ f ( θ ) = 0 ||f|_(oo)^( bar(d)) >= f(theta)=0\|\left. f\right|_{\infty} ^{\bar{d}} \geq f(\theta)=0f|d¯f(θ)=0. If f d SLip 0 Y f d SLip 0 Y f in d-SLip_(0)Yf \in d-\operatorname{SLip}_{0} YfdSLip0Y and f | d > 0 f d > 0 ||f|_(oo)^(d) > 0\|\left. f\right|_{\infty} ^{d}>0f|d>0 then there exists y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y such that f ( y 0 ) = f | d ¯ > 0 f y 0 = f d ¯ > 0 f(y_(0))=||f|_(oo)^( bar(d)) > 0f\left(y_{0}\right)=\|\left. f\right|_{\infty} ^{\bar{d}}>0f(y0)=f|d¯>0. It follows f 0 f 0 f!=0f \neq 0f0.
  • Obviously,
f + g | d ¯ f | d ¯ + g | d ¯ f + g d ¯ f d ¯ + g d ¯ ||f+g|_(oo)^( bar(d)) <= ||f|_(oo)^( bar(d))+||g|_(oo)^( bar(d))\left.\left\|f+\left.g\right|_{\infty} ^{\bar{d}} \leq\right\| f\right|_{\infty} ^{\bar{d}}+\|\left. g\right|_{\infty} ^{\bar{d}}f+g|d¯f|d¯+g|d¯
and
λ f | d ¯ = λ f | d ¯ λ f d ¯ = λ f d ¯ || lambda f|_(oo)^( bar(d))=lambda||f|_(oo)^( bar(d))\left.\left\|\left.\lambda f\right|_{\infty} ^{\bar{d}}=\lambda\right\| f\right|_{\infty} ^{\bar{d}}λf|d¯=λf|d¯
for all f , g d SLip 0 Y f , g d SLip 0 Y f,g in d-SLip_(0)Yf, g \in d-\operatorname{SLip}_{0} Yf,gdSLip0Y and λ 0 λ 0 lambda >= 0\lambda \geq 0λ0.
(b) For every f d f d f in df \in dfd - SLip 0 Y SLip 0 Y SLip_(0)Y\operatorname{SLip}_{0} YSLip0Y it follows that f d ¯ SLip 0 Y f d ¯ SLip 0 Y -f in bar(d)-SLip_(0)Y-f \in \bar{d}-\operatorname{SLip}_{0} Yfd¯SLip0Y, and because Y Y YYY is d d ddd-sequentially compact, then f f -f-ff attains its maximum value on Y Y YYY, and
f | d = max { f ( y ) : y Y } f d = max { f ( y ) : y Y } ||f|_(oo)^(d)=max{-f(y):y in Y}\|\left. f\right|_{\infty} ^{d}=\max \{-f(y): y \in Y\}f|d=max{f(y):yY}
is an asymmetric norm on d SLip 0 Y d SLip 0 Y d-SLip_(0)Yd-\operatorname{SLip}_{0} YdSLip0Y.
(c) By Proposition 3, if Y Y YYY is ( d , d ¯ ) ( d , d ¯ ) (d, bar(d))(d, \bar{d})(d,d¯)-sequentially compact, then every f d f d f in df \in dfd SLip 0 Y SLip 0 Y SLip_(0)Y\operatorname{SLip}_{0} YSLip0Y, attains its maximum and minimum value on Y Y YYY.
  • We have
f = max { | f ( y ) | : y Y } = = ( max { f ( y ) : y Y } ) ( max { f ( y ) : y Y } ) = f | d f | d ¯ f = max { | f ( y ) | : y Y } = = ( max { f ( y ) : y Y } ) ( max { f ( y ) : y Y } ) = f d f d ¯ {:[||f||_(oo)=max{|f(y)|:y in Y}=],[=(max{f(y):y in Y})vv(max{-f(y):y in Y})],[=||f|_(oo)^(d)vv||f|_(oo)^( bar(d))]:}\begin{aligned} \|f\|_{\infty} & =\max \{|f(y)|: y \in Y\}= \\ & =(\max \{f(y): y \in Y\}) \vee(\max \{-f(y): y \in Y\}) \\ & =\left.\left\|\left.f\right|_{\infty} ^{d} \vee\right\| f\right|_{\infty} ^{\bar{d}} \end{aligned}f=max{|f(y)|:yY}==(max{f(y):yY})(max{f(y):yY})=f|df|d¯

3. BEST UNIFORM APPROXIMATION BY EXTENSIONS

In the following the quasi-metric space ( X , d ) ( X , d ) (X,d)(X, d)(X,d) is supposed ( d , d ¯ ) ( d , d ¯ ) (d, bar(d))(d, \bar{d})(d,d¯)-sequentially compact. Let θ X θ X theta in X\theta \in XθX be a fixed element, and Y X Y X Y sube XY \subseteq XYX with θ Y θ Y theta in Y\theta \in YθY. Consider also the normed cones ( d SLip 0 Y , | d d SLip 0 Y , d d-SLip_(0)Y,||*|_(d)d-\operatorname{SLip}_{0} Y, \|\left.\cdot\right|_{d}dSLip0Y,|d ) and ( d ¯ SLip 0 X , | d ¯ d ¯ SLip 0 X , d ¯ bar(d)-SLip_(0)X,||*|_( bar(d))\bar{d}-\operatorname{SLip}_{0} X, \|\left.\cdot\right|_{\bar{d}}d¯SLip0X,|d¯ ), where | d ¯ d ¯ ||*|_( bar(d))\|\left.\cdot\right|_{\bar{d}}|d¯ is the asymmetric norm defined as in (5), where d d ddd is replaced by d ¯ d ¯ bar(d)\bar{d}d¯.
An extension results for semi-Lipschitz functions, analogous to Mc Shane's Extension Theorem [8] for real-valued Lipschitz functions defined on a subset of a metric space was proved in [10] (see also [12]).
Proposition 5. 10] For every f d f d f in df \in dfd - SLip 0 Y SLip 0 Y SLip_(0)Y\operatorname{SLip}_{0} YSLip0Y there exists at least one function F d SLip 0 X F d SLip 0 X F in d-SLip_(0)XF \in d-\mathrm{SLip}_{0} XFdSLip0X, such that
(10) F | Y = f and F | d = f | d . (10) F Y = f  and  F d = f d . {:(10)F|_(Y)=f" and "||F|_(d)=||f|_(d).:}\begin{equation*} \left.F\right|_{Y}=f \text { and }\left.\left\|\left.F\right|_{d}=\right\| f\right|_{d} . \tag{10} \end{equation*}(10)F|Y=f and F|d=f|d.
A function F F FFF with the properties included in Proposition 5, is called an extension, preserving the asymmetric norm of f f fff (or an extension preserving the smallest semi-Lipschitz constant of f f fff ).
Denote the set of all extensions of f f fff preserving asymmetric norm, by
(11) E d ( f ) = { F d SLip 0 X : F | Y = f and F | d = f | d } (11) E d ( f ) = F d SLip 0 X : F Y = f  and  F d = f d {:(11)E_(d)(f)={F in d-SLip_(0)X:F|_(Y)=f" and "||F|_(d)=||f|_(d)}:}\begin{equation*} \mathcal{E}_{d}(f)=\left\{F \in d-\operatorname{SLip}_{0} X:\left.F\right|_{Y}=f \text { and }\left.\left\|\left.F\right|_{d}=\right\| f\right|_{d}\right\} \tag{11} \end{equation*}(11)Ed(f)={FdSLip0X:F|Y=f and F|d=f|d}
The set E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f) is convex in d d ddd-SLip 0 X 0 X _(0)X{ }_{0} X0X, the functions
(12) F d ( f ) ( x ) = inf { f ( y ) + f | d d ( x , y ) : y Y } , x X (12) F d ( f ) ( x ) = inf f ( y ) + f d d ( x , y ) : y Y , x X {:(12)F_(d)(f)(x)=i n f{f(y)+||f|_(d)d(x,y):y in Y}","x in X:}\begin{equation*} F_{d}(f)(x)=\inf \left\{f(y)+\|\left. f\right|_{d} d(x, y): y \in Y\right\}, x \in X \tag{12} \end{equation*}(12)Fd(f)(x)=inf{f(y)+f|dd(x,y):yY},xX
and
(13) G d ( f ) ( x ) = sup { f ( y ) f | d d ( y , x ) : y Y } , x X (13) G d ( f ) ( x ) = sup f ( y ) f d d ( y , x ) : y Y , x X {:(13)G_(d)(f)(x)=s u p{f(y)-||f|_(d)*d(y,x):y in Y}","x in X:}\begin{equation*} G_{d}(f)(x)=\sup \left\{f(y)-\|\left. f\right|_{d} \cdot d(y, x): y \in Y\right\}, x \in X \tag{13} \end{equation*}(13)Gd(f)(x)=sup{f(y)f|dd(y,x):yY},xX
are extremal elements of E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f), and
(14) G d ( f ) ( x ) F ( x ) F d ( f ) ( x ) (14) G d ( f ) ( x ) F ( x ) F d ( f ) ( x ) {:(14)G_(d)(f)(x) <= F(x) <= F_(d)(f)(x):}\begin{equation*} G_{d}(f)(x) \leq F(x) \leq F_{d}(f)(x) \tag{14} \end{equation*}(14)Gd(f)(x)F(x)Fd(f)(x)
for all F E d ( f ) F E d ( f ) F inE_(d)(f)F \in \mathcal{E}_{d}(f)FEd(f) (see [10, [1]).
Now let R X R X R^(X)\mathbb{R}^{X}RX be the linear space of all real valued functions defined on ( X , d ) ( X , d ) (X,d)(X, d)(X,d). One considers the quasi-distance ( [15, p.67)
D d : R X × R X [ 0 , ) D d : R X × R X [ 0 , ) D_(d):R^(X)xxR^(X)rarr[0,oo)D_{d}: \mathbb{R}^{X} \times \mathbb{R}^{X} \rightarrow[0, \infty)Dd:RX×RX[0,)
defined by
(15) D d ( f , g ) = sup { ( f ( x ) g ( x ) ) 0 : x X } (15) D d ( f , g ) = sup { ( f ( x ) g ( x ) ) 0 : x X } {:(15)D_(d)(f","g)=s u p{(f(x)-g(x))vv0:x in X}:}\begin{equation*} D_{d}(f, g)=\sup \{(f(x)-g(x)) \vee 0: x \in X\} \tag{15} \end{equation*}(15)Dd(f,g)=sup{(f(x)g(x))0:xX}
Obviously, d d ddd-SLip 0 X R d X R X 0 X R d X R X _(0)X subR_( <= d)^(X)subR^(X){ }_{0} X \subset \mathbb{R}_{\leq d}^{X} \subset \mathbb{R}^{X}0XRdXRX, and the quasi-distance D d D d D_(d)D_{d}Dd may be restricted to d SLip 0 X d SLip 0 X d-SLip_(0)Xd-\operatorname{SLip}_{0} XdSLip0X.
The quasi-distance D d D d D_(d)D_{d}Dd generates the topology τ ( D d ) τ D d tau(D_(d))\tau\left(D_{d}\right)τ(Dd), named the topology of quasi-uniform convergence. In [15] (Corollary 4, p.67), it is proved that the unit ball U 0 U 0 U_(0)U_{0}U0 of d d ddd - SLip 0 X SLip 0 X SLip_(0)X\mathrm{SLip}_{0} XSLip0X is compact with respect to the topology of quasiuniform convergence τ ( D d ) τ D d tau(D_(d))\tau\left(D_{d}\right)τ(Dd), (and τ ( D ¯ d ) τ D ¯ d tau( bar(D)_(d))\tau\left(\bar{D}_{d}\right)τ(D¯d) too, where D ¯ d ( f , g ) = D d ( g , f ) , f , g d SLip 0 X ) D ¯ d ( f , g ) = D d ( g , f ) , f , g d SLip 0 X bar(D)_(d)(f,g)=D_(d)(g,f),f,g in{:d-SLip_(0)X)\bar{D}_{d}(f, g)=D_{d}(g, f), f, g \in \left.d-\operatorname{SLip}_{0} X\right)D¯d(f,g)=Dd(g,f),f,gdSLip0X).
We have
Proposition 6. For every f d SLip 0 Y f d SLip 0 Y f in d-SLip_(0)Yf \in d-\operatorname{SLip}_{0} YfdSLip0Y, the set E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f) is compact with respect to the topology τ ( D d ) τ D d tau(D_(d))\tau\left(D_{d}\right)τ(Dd), (and τ ( D ¯ d ) τ D ¯ d tau( bar(D)_(d))\tau\left(\bar{D}_{d}\right)τ(D¯d), too).
Proof. Because F d ( f ) F d ( f ) F_(d)(f)F_{d}(f)Fd(f) defined in (12) and G d ( f ) G d ( f ) G_(d)(f)G_{d}(f)Gd(f) defined in (13) are in E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f), and they satisfy the inequalities (14), it follows
D d ( F , F d ( f ) ) = 0 , and D ¯ d ( F , G d ( f ) = D d ( G d ( f ) , F ) = 0 D d F , F d ( f ) = 0 ,  and  D ¯ d F , G d ( f ) = D d G d ( f ) , F = 0 D_(d)(F,F_(d)(f))=0," and " bar(D)_(d)(F,G_(d)(f)=D_(d)(G_(d)(f),F)=0:}D_{d}\left(F, F_{d}(f)\right)=0, \text { and } \bar{D}_{d}\left(F, G_{d}(f)=D_{d}\left(G_{d}(f), F\right)=0\right.Dd(F,Fd(f))=0, and D¯d(F,Gd(f)=Dd(Gd(f),F)=0
for every F E d ( f ) F E d ( f ) F inE_(d)(f)F \in \mathcal{E}_{d}(f)FEd(f). It follows that E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f) is D d D d D_(d^(-))D_{d^{-}}Dd-totally bounded (and D ¯ d D ¯ d bar(D)_(d^(-))\bar{D}_{d^{-}}D¯d totally bounded too).
Let ( F n ) n 1 F n n 1 (F_(n))_(n >= 1)\left(F_{n}\right)_{n \geq 1}(Fn)n1 be a sequence in E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f). Because F n ( x ) F d ( f ) ( x ) F n ( x ) F d ( f ) ( x ) F_(n)(x) <= F_(d)(f)(x)F_{n}(x) \leq F_{d}(f)(x)Fn(x)Fd(f)(x), for all x X x X x in Xx \in XxX, it follows that D d ( F n , F d ( f ) ) = 0 , n = 1 , 2 , D d F n , F d ( f ) = 0 , n = 1 , 2 , D_(d)(F_(n),F_(d)(f))=0,n=1,2,dotsD_{d}\left(F_{n}, F_{d}(f)\right)=0, n=1,2, \ldotsDd(Fn,Fd(f))=0,n=1,2,, i.e. ( F n ) n 1 F n n 1 (F_(n))_(n >= 1)\left(F_{n}\right)_{n \geq 1}(Fn)n1 is D d D d D_(d^(-))D_{d^{-}}Dd convergent to F d ( f ) F d ( f ) F_(d)(f)F_{d}(f)Fd(f). It follows that E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f) is D d D d D_(d)D_{d}Dd-sequentially compact. By Proposition 4.6 in [5], because E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f) is totally D d D d D_(d)D_{d}Dd-bounded an D d D d D_(d)D_{d}Dd-sequentially compact it follows that the set E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f) is D d D d D_(d)D_{d}Dd-compact (i.e. compact with respect to the topology τ ( D d ) τ D d tau(D_(d))\tau\left(D_{d}\right)τ(Dd) ).
Because G d ( f ) ( x ) F ( x ) G d ( f ) ( x ) F ( x ) G_(d)(f)(x) <= F(x)G_{d}(f)(x) \leq F(x)Gd(f)(x)F(x), for all x X x X x in Xx \in XxX and every F E d ( f ) F E d ( f ) F inE_(d)(f)F \in \mathcal{E}_{d}(f)FEd(f), it follows that D d ( G d ( f ) , F ) = D ¯ d ( F , G d ( f ) ) = 0 D d G d ( f ) , F = D ¯ d F , G d ( f ) = 0 D_(d)(G_(d)(f),F)= bar(D)_(d)(F,G_(d)(f))=0D_{d}\left(G_{d}(f), F\right)=\bar{D}_{d}\left(F, G_{d}(f)\right)=0Dd(Gd(f),F)=D¯d(F,Gd(f))=0. Consequently, E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f) is D ¯ d D ¯ d bar(D)_(d)\bar{D}_{d}D¯d-compact too. (i.e. with respect to the topology τ ( D ¯ d ) ) τ D ¯ d {: tau( bar(D)_(d)))\left.\tau\left(\bar{D}_{d}\right)\right)τ(D¯d)).
Obviously, for every F d SLip 0 X , F | Y d SLip 0 Y F d SLip 0 X , F Y d SLip 0 Y F in d-SLip_(0)X,F|_(Y)in d-SLip_(0)YF \in d-\operatorname{SLip}_{0} X,\left.F\right|_{Y} \in d-\operatorname{SLip}_{0} YFdSLip0X,F|YdSLip0Y and the set E d ( F | Y ) E d F Y E_(d)(F|_(Y))\mathcal{E}_{d}\left(\left.F\right|_{Y}\right)Ed(F|Y) is a ( D d , D ¯ d ) D d , D ¯ d (D_(d), bar(D)_(d))\left(D_{d}, \bar{D}_{d}\right)(Dd,D¯d)-compact subset of d SLip 0 X d SLip 0 X d-SLip_(0)Xd-\operatorname{SLip}_{0} XdSLip0X, by Proposition 6 .
Now, we consider the following optimization problem:
For F d SLip 0 X F d SLip 0 X F in d-SLip_(0)XF \in d-\operatorname{SLip}_{0} XFdSLip0X, find G 0 E d ( F | Y ) G 0 E d F Y G_(0)inE_(d)(F|_(Y))G_{0} \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)G0Ed(F|Y) such that
(16) D d ( F , G 0 ) = inf { D d ( F , G ) : G E d ( F | Y ) } (16) D d F , G 0 = inf D d ( F , G ) : G E d F Y {:(16)D_(d)(F,G_(0))=i n f{D_(d)(F,G):G inE_(d)(F|_(Y))}:}\begin{equation*} D_{d}\left(F, G_{0}\right)=\inf \left\{D_{d}(F, G): G \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)\right\} \tag{16} \end{equation*}(16)Dd(F,G0)=inf{Dd(F,G):GEd(F|Y)}
This problem (of best approximation) has always at least one solution, because E d ( F | Y ) E d F Y E_(d)(F|_(Y))\mathcal{E}_{d}\left(\left.F\right|_{Y}\right)Ed(F|Y) is D d D d D_(d)D_{d}Dd-compact. Analogously, the problem of existence of an element G ¯ 0 E d ( F | Y ) G ¯ 0 E d F Y bar(G)_(0)inE_(d)(F|_(Y))\bar{G}_{0} \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)G¯0Ed(F|Y) such that
(17) D ¯ d ( F , G ¯ 0 ) = inf { D ¯ d ( F , G ) : G E d ( F | Y ) } (17) D ¯ d F , G ¯ 0 = inf D ¯ d ( F , G ) : G E d F Y {:(17) bar(D)_(d)(F, bar(G)_(0))=i n f{ bar(D)_(d)(F,G):G inE_(d)(F|_(Y))}:}\begin{equation*} \bar{D}_{d}\left(F, \bar{G}_{0}\right)=\inf \left\{\bar{D}_{d}(F, G): G \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)\right\} \tag{17} \end{equation*}(17)D¯d(F,G¯0)=inf{D¯d(F,G):GEd(F|Y)}
is also assured, because E d ( F | Y ) E d F Y E_(d)(F|_(Y))\mathcal{E}_{d}\left(\left.F\right|_{Y}\right)Ed(F|Y) is D ¯ d D ¯ d bar(D)_(d)\bar{D}_{d}D¯d-compact too.
Now, because ( X , d X , d X,dX, dX,d ) is supposed ( d , d ¯ d , d ¯ d, bar(d)d, \bar{d}d,d¯ )-sequentially compact, every F d F d F in dF \in dFd SLip 0 X SLip 0 X SLip_(0)X\operatorname{SLip}_{0} XSLip0X is bounded, and the uniform norm
(18) F = max { F ( x ) : x X } max { F ( x ) : x X } (18) F = max { F ( x ) : x X } max { F ( x ) : x X } {:(18)||F||_(oo)=max{F(x):x in X}vv max{-F(x):x in X}:}\begin{equation*} \|F\|_{\infty}=\max \{F(x): x \in X\} \vee \max \{-F(x): x \in X\} \tag{18} \end{equation*}(18)F=max{F(x):xX}max{F(x):xX}
is well defined, by Proposition 4, (c).
Moreover, for every G E d ( F | Y ) G E d F Y G inE_(d)(F|_(Y))G \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)GEd(F|Y), we have
(19) F G = D d ( F , G ) D ¯ d ( F , G ) (19) F G = D d ( F , G ) D ¯ d ( F , G ) {:(19)||F-G||_(oo)=D_(d)(F","G)vv bar(D)_(d)(F","G):}\begin{equation*} \|F-G\|_{\infty}=D_{d}(F, G) \vee \bar{D}_{d}(F, G) \tag{19} \end{equation*}(19)FG=Dd(F,G)D¯d(F,G)
Now, we consider the following problem of uniform best approximation:
For F d SLip 0 X F d SLip 0 X F in d-SLip_(0)XF \in d-\operatorname{SLip}_{0} XFdSLip0X, find G 0 E d ( F | Y ) G 0 E d F Y G_(0)inE_(d)(F|_(Y))G_{0} \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)G0Ed(F|Y), such that
(20) F G 0 = inf { F G : G E d ( F | Y ) } (20) F G 0 = inf F G : G E d F Y {:(20)||F-G_(0)||_(oo)=i n f{||F-G||_(oo):G inE_(d)(F|_(Y))}:}\begin{equation*} \left\|F-G_{0}\right\|_{\infty}=\inf \left\{\|F-G\|_{\infty}: G \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)\right\} \tag{20} \end{equation*}(20)FG0=inf{FG:GEd(F|Y)}
Proposition 7. Let ( X , d ) ( X , d ) (X,d)(X, d)(X,d) be a ( d , d ¯ ) ( d , d ¯ ) (d, bar(d))(d, \bar{d})(d,d¯)-sequentially compact quasi-metric space, θ X θ X theta in X\theta \in XθX a fixed element, and Y X Y X Y sub XY \subset XYX with θ Y θ Y theta in Y\theta \in YθY. Then for every F d F d F in dF \in dFd SLip 0 X SLip 0 X SLip_(0)X\operatorname{SLip}_{0} XSLip0X, there exists at least one element G 0 E d ( F | Y ) G 0 E d F Y G_(0)inE_(d)(F|_(Y))G_{0} \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)G0Ed(F|Y), such that
F G 0 = inf { F G : G E d ( F | Y ) } F G 0 = inf F G : G E d F Y ||F-G_(0)||_(oo)=i n f{||F-G||_(oo):G inE_(d)(F|_(Y))}\left\|F-G_{0}\right\|_{\infty}=\inf \left\{\|F-G\|_{\infty}: G \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)\right\}FG0=inf{FG:GEd(F|Y)}
Proof. For every G E d ( F | Y ) G E d F Y G inE_(d)(F|_(Y))G \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)GEd(F|Y), using the equality (18), one obtains
inf { F G : G E d ( F | Y ) } = = inf { D d ( F , G ) D d ( G , F ) : G E d ( F | Y ) } inf F G : G E d F Y = = inf D d ( F , G ) D d ( G , F ) : G E d F Y {:[i n f{||F-G||_(oo):}{::G inE_(d)(F|_(Y))}=],[=i n f{D_(d)(F,G)vvD_(d)(G,F):G inE_(d)(F|_(Y))}]:}\begin{aligned} \inf \left\{\|F-G\|_{\infty}\right. & \left.: G \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)\right\}= \\ & =\inf \left\{D_{d}(F, G) \vee D_{d}(G, F): G \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)\right\} \end{aligned}inf{FG:GEd(F|Y)}==inf{Dd(F,G)Dd(G,F):GEd(F|Y)}
Because E d ( F | Y ) E d F Y E_(d)(F|_(Y))\mathcal{E}_{d}\left(\left.F\right|_{Y}\right)Ed(F|Y) is ( D d , D ¯ d D d , D ¯ d D_(d), bar(D)_(d)D_{d}, \bar{D}_{d}Dd,D¯d )-compact, the conclusion of Proposition follows.
Any solution G 0 E d ( F | Y ) G 0 E d F Y G_(0)inE_(d)(F|_(Y))G_{0} \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)G0Ed(F|Y) of problem (20) is called an element of best uniform approximation of F F FFF by elements of E d ( F | Y ) E d ¯ F Y bar(E_(d))(F|_(Y))\overline{\mathcal{E}_{d}}\left(\left.F\right|_{Y}\right)Ed(F|Y).
Using (19), one obtains:
If F F FFF is such that
F ( x ) F d ( F | Y ) ( x ) , x X F ( x ) F d F Y ( x ) , x X F(x) >= F_(d)(F|_(Y))(x),x in XF(x) \geq F_{d}\left(\left.F\right|_{Y}\right)(x), x \in XF(x)Fd(F|Y)(x),xX
then G 0 = F d ( F | Y ) G 0 = F d F Y G_(0)=F_(d)(F|_(Y))G_{0}=F_{d}\left(\left.F\right|_{Y}\right)G0=Fd(F|Y) is the unique solution of (20), where F d ( F | Y ) F d F Y F_(d)(F|_(Y))F_{d}\left(\left.F\right|_{Y}\right)Fd(F|Y) is defined as in (12);
If F F FFF is such that
F ( x ) G d ( F | Y ) ( x ) , x X , F ( x ) G d F Y ( x ) , x X , F(x) <= G_(d)(F|_(Y))(x),x in X,F(x) \leq G_{d}\left(\left.F\right|_{Y}\right)(x), x \in X,F(x)Gd(F|Y)(x),xX,
then G 0 = G d ( F | Y ) G 0 = G d F Y G_(0)=G_(d)(F|_(Y))G_{0}=G_{d}\left(\left.F\right|_{Y}\right)G0=Gd(F|Y) is the unique solution of (20), where G d ( F | Y ) G d F Y G_(d)(F|_(Y))G_{d}\left(\left.F\right|_{Y}\right)Gd(F|Y) is defined as in (13);
Finally, if F E d ( F | Y ) F E d F Y F inE_(d)(F|_(Y))F \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)FEd(F|Y) i.e. F | d = F | Y | d F d = F Y d ||F|_(d)=||F|_(Y)|_(d)\left.\left.\left\|\left.F\right|_{d}=\right\| F\right|_{Y}\right|_{d}F|d=F|Y|d, then G 0 = F G 0 = F G_(0)=FG_{0}=FG0=F.
In the following we consider another situation where a uniform best approximation problem by extensions may be posed and solved.
This is the case when the quasi-metric space ( X , d X , d X,dX, dX,d ) is of finite diameter, i.e. such that sup { d ( x , y ) : x , y X } = diam X < sup { d ( x , y ) : x , y X } = diam X < s u p{d(x,y):x,y in X}=diam X < oo\sup \{d(x, y): x, y \in X\}=\operatorname{diam} X<\inftysup{d(x,y):x,yX}=diamX<.
For θ ( X , d ) θ ( X , d ) theta in(X,d)\theta \in(X, d)θ(X,d) denote c l τ ( d ) { θ } = { x X : d ( θ , x ) = 0 } c l τ ( d ) { θ } = { x X : d ( θ , x ) = 0 } cl_(tau(d)){theta}={x in X:d(theta,x)=0}c l_{\tau(d)}\{\theta\}=\{x \in X: d(\theta, x)=0\}clτ(d){θ}={xX:d(θ,x)=0} and c l τ ( d ¯ ) { θ } = { x X : d ( x , θ ) = 0 } c l τ ( d ¯ ) { θ } = { x X : d ( x , θ ) = 0 } cl_(tau( bar(d))){theta}={x in X:d(x,theta)=0}c l_{\tau(\bar{d})}\{\theta\}= \{x \in X: d(x, \theta)=0\}clτ(d¯){θ}={xX:d(x,θ)=0} (see 15, p.68). Let also c l { θ } = c l τ ( d ) { θ } c l τ ( d ¯ ) { θ } c l { θ } = c l τ ( d ) { θ } c l τ ( d ¯ ) { θ } cl{theta}=cl_(tau(d)){theta}uu cl_(tau( bar(d))){theta}c l\{\theta\}=c l_{\tau(d)}\{\theta\} \cup c l_{\tau(\bar{d})}\{\theta\}cl{θ}=clτ(d){θ}clτ(d¯){θ}.
The following proposition holds:
Proposition 8. Let ( X , d X , d X,dX, dX,d ) be a quasi-metric space of finite diameter, and θ X θ X theta in X\theta \in XθX a fixed element. Then every f d SLip 0 X f d SLip 0 X f in d-SLip_(0)Xf \in d-\operatorname{SLip}_{0} XfdSLip0X is bounded on X cl { θ } X cl { θ } X\\cl{theta}X \backslash \operatorname{cl}\{\theta\}Xcl{θ}.
Proof. Let f f fff be in d d ddd-SLip 0 X 0 X _(0)X{ }_{0} X0X. By definition, we have f ( θ ) = 0 f ( θ ) = 0 f(theta)=0f(\theta)=0f(θ)=0, and for x c l τ ( d ¯ ) { θ } = { x X : d ( x , θ ) = 0 } x c l τ ( d ¯ ) { θ } = { x X : d ( x , θ ) = 0 } x in cl_(tau( bar(d))){theta}={x in X:d(x,theta)=0}x \in c l_{\tau(\bar{d})}\{\theta\}=\{x \in X: d(x, \theta)=0\}xclτ(d¯){θ}={xX:d(x,θ)=0}-it follows f ( x ) 0 f ( x ) 0 f(x) <= 0f(x) \leq 0f(x)0, because d ( x , θ ) = 0 d ( x , θ ) = 0 d(x,theta)=0d(x, \theta)=0d(x,θ)=0 implies f ( x ) f ( θ ) = 0 f ( x ) f ( θ ) = 0 f(x) <= f(theta)=0f(x) \leq f(\theta)=0f(x)f(θ)=0.
Analogously, for x c l τ ( d ) { θ } = { x X : d ( θ , x ) = 0 } x c l τ ( d ) { θ } = { x X : d ( θ , x ) = 0 } x in cl_(tau(d)){theta}={x in X:d(theta,x)=0}x \in c l_{\tau(d)}\{\theta\}=\{x \in X: d(\theta, x)=0\}xclτ(d){θ}={xX:d(θ,x)=0} it follows 0 = f ( θ ) f ( x ) 0 = f ( θ ) f ( x ) 0=f(theta) <= f(x)0=f(\theta) \leq f(x)0=f(θ)f(x).
For every x X c l τ ( d ¯ ) { θ } x X c l τ ( d ¯ ) { θ } x in X\\cl_(tau( bar(d))){theta}x \in X \backslash c l_{\tau(\bar{d})}\{\theta\}xXclτ(d¯){θ}, we have
f ( x ) f ( θ ) f | d d ( x , θ ) f | d diam X , f ( x ) f ( θ ) f d d ( x , θ ) f d diam X , f(x)-f(theta) <= ||f|_(d)d(x,theta) <= ||f|_(d)diam X,f(x)-f(\theta) \leq\left.\left\|\left.f\right|_{d} d(x, \theta) \leq\right\| f\right|_{d} \operatorname{diam} X,f(x)f(θ)f|dd(x,θ)f|ddiamX,
and consequently f ( x ) f | d diam X < f ( x ) f d diam X < f(x) <= ||f|_(d)diam X < oof(x) \leq \|\left. f\right|_{d} \operatorname{diam} X<\inftyf(x)f|ddiamX<.
It follows, f ( x ) f | d diam X < f ( x ) f d diam X < f(x) <= ||f|_(d)diam X < oof(x) \leq \|\left. f\right|_{d} \operatorname{diam} X<\inftyf(x)f|ddiamX< for all x X c l τ ( d ¯ ) { θ } x X c l τ ( d ¯ ) { θ } x in X\\cl_(tau( bar(d))){theta}x \in X \backslash c l_{\tau(\bar{d})}\{\theta\}xXclτ(d¯){θ}.
For every x X c l τ ( d ) { θ } x X c l τ ( d ) { θ } x in X\\cl_(tau(d)){theta}x \in X \backslash c l_{\tau(d)}\{\theta\}xXclτ(d){θ} it follows
f ( θ ) f ( x ) f | d d ( θ , x ) f | d diam X . f ( θ ) f ( x ) f d d ( θ , x ) f d diam X . f(theta)-f(x) <= ||f|_(d)d(theta,x) <= ||f|_(d)diam X.f(\theta)-f(x) \leq\left.\left\|\left.f\right|_{d} d(\theta, x) \leq\right\| f\right|_{d} \operatorname{diam} X .f(θ)f(x)f|dd(θ,x)f|ddiamX.
Then f ( x ) f | d diam X > f ( x ) f d diam X > f(x) >= -||f|_(d)diam X > -oof(x) \geq-\|\left. f\right|_{d} \operatorname{diam} X>-\inftyf(x)f|ddiamX>, for all x X c l τ ( d ) { θ } x X c l τ ( d ) { θ } x in X\\cl_(tau(d)){theta}x \in X \backslash c l_{\tau(d)}\{\theta\}xXclτ(d){θ}. Consequently f | d diam X f ( x ) f | d diam X , x X c l { θ } f d diam X f ( x ) f d diam X , x X c l { θ } -||f|_(d)diam X <= f(x) <= ||f|_(d)diam X,x in X\\cl{theta}-\left.\left\|\left.f\right|_{d} \operatorname{diam} X \leq f(x) \leq\right\| f\right|_{d} \operatorname{diam} X, x \in X \backslash c l\{\theta\}f|ddiamXf(x)f|ddiamX,xXcl{θ}.
Now, let ( X , d X , d X,dX, dX,d ) be a quasi-metric space of finite diameter, θ X θ X theta in X\theta \in XθX a fixed element, and Y X Y X Y sub XY \subset XYX with θ Y θ Y theta in Y\theta \in YθY. Then, for every F d SLip 0 X F d SLip 0 X F in d-SLip_(0)XF \in d-\operatorname{SLip}_{0} XFdSLip0X, it follows F | Y d SLip 0 Y F Y d SLip 0 Y F|_(Y)in d-SLip_(0)Y\left.F\right|_{Y} \in d-\operatorname{SLip}_{0} YF|YdSLip0Y, and the set
E d ( F | Y ) = { G d SLip 0 X : G | Y = F | Y , G | d = F | Y | d } E d F Y = G d SLip 0 X : G Y = F Y , G d = F Y d E_(d)(F|_(Y))={G in d-SLip_(0)X:G|_(Y)=F|_(Y),||G|_(d)=||F|_(Y)|_(d)}\mathcal{E}_{d}\left(\left.F\right|_{Y}\right)=\left\{G \in d-\operatorname{SLip}_{0} X:\left.G\right|_{Y}=\left.F\right|_{Y},\left.\left.\left\|\left.G\right|_{d}=\right\| F\right|_{Y}\right|_{d}\right\}Ed(F|Y)={GdSLip0X:G|Y=F|Y,G|d=F|Y|d}
is non empty.
This set is also ( D d , D ¯ d D d , D ¯ d D_(d), bar(D)_(d)D_{d}, \bar{D}_{d}Dd,D¯d )-compact and the following proposition holds:
Proposition 9. Let ( X , d X , d X,dX, dX,d ) be a quasi-metric space of finite diameter, θ X θ X theta in X\theta \in XθX a fixed element, and Y X Y X Y sub XY \subset XYX with θ Y θ Y theta in Y\theta \in YθY. Then for every F d SLip 0 X F d SLip 0 X F in d-SLip_(0)XF \in d-\operatorname{SLip}_{0} XFdSLip0X, there exists at least one element G 0 E d ( F | Y ) G 0 E d F Y G_(0)inE_(d)(F|_(Y))G_{0} \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)G0Ed(F|Y) such that
( F G 0 ) | X c l { θ } = inf { ( F G ) | X c l { θ } : G E d ( F | Y ) } . F G 0 X c l { θ } = inf ( F G ) X c l { θ } : G E d F Y . ||(F-G_(0))|_(X\\cl{theta})||_(oo)=i n f{||(F-G)|_(X\\cl{theta})||_(oo):G inE_(d)(F|_(Y))}.\left\|\left.\left(F-G_{0}\right)\right|_{X \backslash c l\{\theta\}}\right\|_{\infty}=\inf \left\{\left\|\left.(F-G)\right|_{X \backslash c l\{\theta\}}\right\|_{\infty}: G \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)\right\} .(FG0)|Xcl{θ}=inf{(FG)|Xcl{θ}:GEd(F|Y)}.
The proof is immediate.
Example 10. Let X = [ 10 , 10 ] X = [ 10 , 10 ] X=[-10,10]X=[-10,10]X=[10,10] and the quasi-metric d : X × X [ 0 , ) d : X × X [ 0 , ) d:X xx X rarr[0,oo)d: X \times X \rightarrow[0, \infty)d:X×X[0,) defined by
d ( x , y ) = { y x if x y 2 ( x y ) if x > y d ( x , y ) = y x  if  x y 2 ( x y )  if  x > y d(x,y)={[y-x" if "x <= y],[2(x-y)" if "x > y]:}d(x, y)=\left\{\begin{array}{c} y-x \text { if } x \leq y \\ 2(x-y) \text { if } x>y \end{array}\right.d(x,y)={yx if xy2(xy) if x>y
Consider θ = 0 θ = 0 theta=0\theta=0θ=0 and Y = { 1 , 0 , 1 } Y = { 1 , 0 , 1 } Y={-1,0,1}Y=\{-1,0,1\}Y={1,0,1}. Then the function f : Y R f : Y R f:Y rarrRf: Y \rightarrow \mathbb{R}f:YR
f ( y ) = { 1 , y = 1 , 0 , y = 0 , 3 , y = 1 , f ( y ) = 1 , y = 1 , 0 , y = 0 , 3 , y = 1 , f(y)={[-1","y=-1","],[0","y=0","],[3","y=1","]:}f(y)=\left\{\begin{aligned} -1, & y=-1, \\ 0, & y=0, \\ 3, & y=1, \end{aligned}\right.f(y)={1,y=1,0,y=0,3,y=1,
is in d SLip 0 Y d SLip 0 Y d-SLip_(0)Yd-\operatorname{SLip}_{0} YdSLip0Y and f | d = 3 f d = 3 ||f|_(d)=3\|\left. f\right|_{d}=3f|d=3.
The functions
F d ( f ) ( x ) = inf y Y { f ( y ) + 3 d ( x , y ) } = { 4 3 x , x [ 10 , 1 ] , 6 x + 5 , x ( 1 , 5 9 ] , 3 x , x ( 5 9 , 0 ] , 6 x , x ( 0 , 2 3 ] , 6 3 x , x ( 2 3 , 1 ] , 6 x 3 , x ( 1 , 10 ] . F d ( f ) ( x ) = inf y Y { f ( y ) + 3 d ( x , y ) } = 4 3 x , x [ 10 , 1 ] , 6 x + 5 , x 1 , 5 9 , 3 x , x 5 9 , 0 , 6 x , x 0 , 2 3 , 6 3 x , x 2 3 , 1 , 6 x 3 , x ( 1 , 10 ] . {:[F_(d)(f)(x)=i n f_(y in Y){f(y)+3d(x","y)}],[={[-4-3x","quad x in[-10","-1]","],[6x+5","quad x in(-1,(-5)/(9)]","],[-3x","quad x in((-5)/(9),0]","],[6x","quad x in(0,(2)/(3)]","],[6-3x","quad x in((2)/(3),1]","],[6x-3","quad x in(1","10].]:}]:}\begin{aligned} F_{d}(f)(x) & =\inf _{y \in Y}\{f(y)+3 d(x, y)\} \\ & =\left\{\begin{array}{l} -4-3 x, \quad x \in[-10,-1], \\ 6 x+5, \quad x \in\left(-1, \frac{-5}{9}\right], \\ -3 x, \quad x \in\left(\frac{-5}{9}, 0\right], \\ 6 x, \quad x \in\left(0, \frac{2}{3}\right], \\ 6-3 x, \quad x \in\left(\frac{2}{3}, 1\right], \\ 6 x-3, \quad x \in(1,10] . \end{array}\right. \end{aligned}Fd(f)(x)=infyY{f(y)+3d(x,y)}={43x,x[10,1],6x+5,x(1,59],3x,x(59,0],6x,x(0,23],63x,x(23,1],6x3,x(1,10].
and, respectively
G d ( f ) ( x ) = sup y Y { f ( y ) 3 d ( y , x ) } = = { 6 x + 5 , x [ 10 , 1 ] 3 x + 4 , x ( 1 , 4 9 ] 6 x , x ( 4 9 , 0 ] 3 x , x ( 0 , 1 3 ] 6 x 3 , x ( 1 3 , 1 ] 3 x 6 , x ( 1 , 10 ] G d ( f ) ( x ) = sup y Y { f ( y ) 3 d ( y , x ) } = = 6 x + 5 , x [ 10 , 1 ] 3 x + 4 , x 1 , 4 9 6 x , x 4 9 , 0 3 x , x 0 , 1 3 6 x 3 , x 1 3 , 1 3 x 6 , x ( 1 , 10 ] {:[G_(d)(f)(x)=s u p_(y in Y){f(y)-3d(y","x)}=],[={[6x+5","quad x in[-10","-1]],[-3x+4","quad x in(-1,(-4)/(9)]],[6x","quad x in((-4)/(9),0]],[-3x","quad x in(0,(1)/(3)]],[6x-3","quad x in((1)/(3),1]],[-3x-6","quad x in(1","10]]:}]:}\begin{aligned} G_{d}(f)(x)= & \sup _{y \in Y}\{f(y)-3 d(y, x)\}= \\ = & \left\{\begin{array}{l} 6 x+5, \quad x \in[-10,-1] \\ -3 x+4, \quad x \in\left(-1, \frac{-4}{9}\right] \\ 6 x, \quad x \in\left(\frac{-4}{9}, 0\right] \\ -3 x, \quad x \in\left(0, \frac{1}{3}\right] \\ 6 x-3, \quad x \in\left(\frac{1}{3}, 1\right] \\ -3 x-6, \quad x \in(1,10] \end{array}\right. \end{aligned}Gd(f)(x)=supyY{f(y)3d(y,x)}=={6x+5,x[10,1]3x+4,x(1,49]6x,x(49,0]3x,x(0,13]6x3,x(13,1]3x6,x(1,10]
verifies the conditions:
F d ( f ) | Y = G d ( f ) | Y = f F d ( f ) | d = G d ( f ) | d = f | d = 3 F d ( f ) Y = G d ( f ) Y = f F d ( f ) d = G d ( f ) d = f d = 3 {:[F_(d)(f)|_(Y)=G_(d)(f)|_(Y)=f],[||F_(d)(f)|_(d)=||G_(d)(f)|_(d)=||f|_(d)=3]:}\begin{aligned} \left.F_{d}(f)\right|_{Y} & =\left.G_{d}(f)\right|_{Y}=f \\ \|\left. F_{d}(f)\right|_{d} & =\left.\left\|\left.G_{d}(f)\right|_{d}=\right\| f\right|_{d}=3 \end{aligned}Fd(f)|Y=Gd(f)|Y=fFd(f)|d=Gd(f)|d=f|d=3
and
F d ( f ) ( x ) H ( x ) G d ( f ) ( x ) , x [ 10 , 10 ] F d ( f ) ( x ) H ( x ) G d ( f ) ( x ) , x [ 10 , 10 ] F_(d)(f)(x) >= H(x) >= G_(d)(f)(x),x in[-10,10]F_{d}(f)(x) \geq H(x) \geq G_{d}(f)(x), x \in[-10,10]Fd(f)(x)H(x)Gd(f)(x),x[10,10]
where H E d ( f ) H E d ( f ) H inE_(d)(f)H \in \mathcal{E}_{d}(f)HEd(f) is an arbitrary extension of f f fff.
Obviously, ( X , d X , d X,dX, dX,d ) is ( d , d ¯ d , d ¯ d, bar(d)d, \bar{d}d,d¯ )-sequentially compact and E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f) is compact in the uniform topology.
Let F d SLip 0 X F d SLip 0 X F in d-SLip_(0)XF \in d-\operatorname{SLip}_{0} XFdSLip0X such that F | Y = f F Y = f F|_(Y)=f\left.F\right|_{Y}=fF|Y=f.
Then
E d ( F | Y ) = E d ( f ) E d F Y = E d ( f ) E_(d)(F|_(Y))=E_(d)(f)\mathcal{E}_{d}\left(\left.F\right|_{Y}\right)=\mathcal{E}_{d}(f)Ed(F|Y)=Ed(f)
If
F ( x ) F d ( f ) ( x ) , x [ 10 , 10 ] F ( x ) F d ( f ) ( x ) , x [ 10 , 10 ] F(x) >= F_(d)(f)(x),AA x in[-10,10]F(x) \geq F_{d}(f)(x), \forall x \in[-10,10]F(x)Fd(f)(x),x[10,10]
then
F F d ( f ) = inf { F H : H E d ( F | Y ) } F F d ( f ) = inf F H : H E d F Y ||F-F_(d)(f)||_(oo)=i n f{||F-H||_(oo):H inE_(d)(F|_(Y))}\left\|F-F_{d}(f)\right\|_{\infty}=\inf \left\{\|F-H\|_{\infty}: H \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)\right\}FFd(f)=inf{FH:HEd(F|Y)}
For example, let F F FFF be the function
F ( x ) = { F d ( f ) ( x ) , x [ 1 , 1 ] , 4 x 5 , x [ 10 , 1 ) 7 x 4 , x ( 1 , 10 ) F ( x ) = F d ( f ) ( x ) , x [ 1 , 1 ] , 4 x 5 , x [ 10 , 1 ) 7 x 4 , x ( 1 , 10 ) F(x)={[F_(d)(f)(x)",",x in[-1","1]","],[-4x-5",",x in[-10","-1)],[7x-4",",x in(1","10)]:}F(x)=\left\{\begin{array}{cc} F_{d}(f)(x), & x \in[-1,1], \\ -4 x-5, & x \in[-10,-1) \\ 7 x-4, & x \in(1,10) \end{array}\right.F(x)={Fd(f)(x),x[1,1],4x5,x[10,1)7x4,x(1,10)
Then
F F d ( f ) = max x [ 10 , 1 ] { x 1 } max x [ 1 , 10 ] { x 1 } = = 9 F F d ( f ) = max x [ 10 , 1 ] { x 1 } max x [ 1 , 10 ] { x 1 } = = 9 {:[||F-F_(d)(f)||_(oo)=max_(x in[-10,1]){-x-1}vvmax_(x in[1,10]){x-1}=],[=9]:}\begin{aligned} \left\|F-F_{d}(f)\right\|_{\infty} & =\max _{x \in[-10,1]}\{-x-1\} \vee \max _{x \in[1,10]}\{x-1\}= \\ & =9 \end{aligned}FFd(f)=maxx[10,1]{x1}maxx[1,10]{x1}==9
Similarly, if F ( x ) G d ( f ) ( x ) , x [ 10 , 10 ] F ( x ) G d ( f ) ( x ) , x [ 10 , 10 ] F(x) <= G_(d)(f)(x),AA x in[-10,10]F(x) \leq G_{d}(f)(x), \forall x \in[-10,10]F(x)Gd(f)(x),x[10,10]
then
F G d ( f ) = inf { F H : H E d ( F | Y ) } F G d ( f ) = inf F H : H E d F Y ||F-G_(d)(f)||_(oo)=i n f{||F-H||_(oo):H inE_(d)(F|_(Y))}\left\|F-G_{d}(f)\right\|_{\infty}=\inf \left\{\|F-H\|_{\infty}: H \in \mathcal{E}_{d}\left(\left.F\right|_{Y}\right)\right\}FGd(f)=inf{FH:HEd(F|Y)}

REFERENCES

[1] Cobzaş, S., Separation of convex sets and best approximation in spaces with asymmetric norm, Quaest. Math., 27 (3), pp. 275-296, 2004.
[2] Cobzaş, S., Asymmetric locally convex spaces, Int. J. Math. Math. Sci., 16, pp. 25852608, 2005.
[3] Cobzaş, S. and Mustăţa, C., Best approximation in spaces with asymmetric norm,. Rev. Anal. Numér. Thèor. Approx., 33 (1), pp. 17-31, 2006. 주
[4] Cobzaş, S. and Mustăţa, C., Extension of bounded linear functionals and best approximation in spaces with asymmetric norm, Rev. Anal. Numér. Théor. Approx., 31, 1, pp. 35-50, 2004. 짖
[5] Collins, J. and Zimmer, J., An asymmetric Arzelà-Ascoli theorem, http://bath.ac.uk/math-sci/BICS, Preprint, 16, 12 pp, 2005.
[6] Garcia-Raffi, L. M., Romaguera, S. and Sánchez-Pérez, E. A., The dual space of an asymmetric linear space, Quaest. Math., 26, pp. 83-96, 2003.
[7] Künzi, H. P. A., Nonsymmetric distances and their associated topologies: about the origin of basic ideas in the area of asymmetric topologies, in: Handbook of the History of General Topology, ed. by C.E. Aull and R. Lower, 3, Hist. Topol. 3, Kluwer Acad. Publ. Dordrecht, pp. 853-968, 2001.
[8] Mc.Shane, E. T., Extension of range of functions, Bull. Amer. Math. Soc., 40, pp. 837842, 1934.
[9] Menucci, A., On asymmetric distances, Technical Report, Scuola Normale Superiore, Pisa, 2004.
[10] Mustăţa, C., Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numér. Theor. Approx, 30, 1, pp. 61-67, 2001. ©
[11] Mustăţa, C., On the extremal semi-Lipschitz functions, Rev. Anal. Numér. Theor. Approx, 31, 1, pp. 103-108, 2002. 중
[12] Mustăţa, C., On the approximation of the global extremum of a semi-Lipschitz function, IJMMS (to appear).
[13] Reilly, I.L., Subrahmanyam, P. V. and Vamanamurthy, M. K., Cauchy sequences in quasi-pseudo-metric spaces, Mh. Math., 93 , pp. 127-140, 1982.
[14] Romaguera, S. and Sanchis, M., Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103, pp. 292-301, 2000.
[15] Romaguera, S. and Sanchis, M., Properties of the normed cone of semi-Lipschitz functions, Acta Math. Hungar., 108(1-2), pp. 55-70, 2005.
[16] Romaguera, S., Sánchez-Álvarez, J.M. and Sanchis, M., El espacio de funciones semi-Lipschitz, VI Jornadas de Matematica Aplicada, Universiadad Politécnica de Valencia, pp. 1-15, 2005.
[17] Sánchez-Álvarez, J. M., On semi-Lipschitz functions with values in a quasi-normed linear space, Applied General Topology, 6, 2, pp. 216-228, 2005.
Received by the editors: October 20, 2006.

  1. ^(**){ }^{*} This work has been supported by MEdC under Grant 2-CEx06-11-96/ 19.09.2006.
    ^(†){ }^{\dagger} "Tiberiu Popoviciu" Institute of Numerical Analysis, P.O. Box. 68-1, Cluj-Napoca, Romania, e-mail: cmustata2001@yahoo.com.
2007

Related Posts