Order 1 autoregressive process of finite length

Abstract

The stochastic processes of finite length defined by recurrence relations request additional relations specifying the first terms of the process analogously to the initial conditions for the differential equations. As a general rule, in time series theory one analyzes only stochastic processes of infinite length which need no such initial conditions and their properties are less difficult to be determined.

In this paper we compare the properties of the order 1 autoregressive processes of finite and infinite length and we prove that the time series length has an important influence mainly if the serial correlation is significant. These different properties can manifest themselves as transient effects produced when a time series is numerically generated. We show that for an order 1 autoregressive process the transient behavior can be avoided if the first term is a Gaussian random variable with standard deviation equal to that of the theoretical infinite process and not to that of the white noise innovation.

Authors

Călin Vamoş

Ştefan M. Şoltuz

Maria Crăciun

Keywords

Autoregressive process; spectral analysis; time series.

Paper coordinates

C. Vamoş, Ş.M. Şoltuz, M. Crăciun, Order 1 autoregressive process of finite length. Rev. Anal. Numér. Théor. Approx., 36 (2007) 2, 199-214.

References

see the expanding block below.

PDF

About this paper

Journal

Rev. Anal. Numér. Théor. Approx.

Publisher Name

Editura Academiei Romane

Print ISSN

?

Online ISSN

?

References

Paper in html format

References

[1] Blender, R., Renormalization group analysis of autoregressive processes and fractional
noise, Phys. Rev. E, 64, 067101 (2001).
[2] Brockwell, P.J. and Davis, R., Time Series: Theory and Methods, Springer-Verlag,
New York, 1991.
[3] Brockwell, P.J. and Davis, R., Introduction to Time Series and Forecasting,
Springer-Verlag, New York, 1996.
[4] Box, G. E. P. and Jenkins, G. M. Time Series Analysis: Forcasting and Control, 2nd
ed., Holden-Day, San Francisco, 1976.
[5] Gao, J., Hu, J., Tung, W., Cao, Y., Sarshar, N. and Roychowdhury, V.P.,
Assessment of long-range correlation in time series: How to avoid pitfalls, Phys. Rev.
E, 73, 016117 (2006).
[6] Guzman-Vargas, L. and Angulo-Brown, F., Simple model of the aging effect in
heart interbeat time series, Phys. Rev. E, 67, 052901 (2003).
[7] Hallerberg, S., Altmann, E. G., Holstein, D. and Kantz, H., Precursors of
extreme increments, Phys. Rev. E, 75, 016706 (2007).
[8] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.
[9] Kaulakys, B., Autoregressive model of 1/f noise, Physics Letters A, 257, 37 (1999).
[10] Kiraly, A. ´ and Janosi, I. M. ´ , Stochastic modeling of daily temperature fluctuations,
Phys. Rev. E, 65, 051102 (2002).
[11] Kugiumtzis, D., Statically transformed autoregressive process and surrogate data test
for nonlinearity, Phys. Rev. E, 66, 025201 (2002).
[12] Liley, D. T., Cadusch, P. J., Gray, M. and Nathan, P. J., Drug-induced modification
of the system properties associated with spontaneous human electroencephalographic
activity, Phys. Rev. E, 68, 051906 (2003).
[13] Maraun, D., Rust, H.W. and Timmer, J., Tempting long-memory on the interpretation
of DFA results, Nonlinear Processes in Geophysics, 11, 495-503 (2004).
[14] Morariu, V.V. and Coza, A. , Nonlinear properties of the atomic vibrations in protein
backbones, Physica A, 320, 449 (2003).
[15] Palus, M. and Novotna, D., Sunspot Cycle: A Driven Nonlinear Oscillator? Phys.
Rev. Lett., 83, 3406 (1999).
[16] Stoica, P. and Moses, R. L., Introduction to Spectral Analysis, Prentice-Hall, New
Jersey, 1997.
[17] Timmer, J., Schwarz, U., Voss, H.U., Wardinski, I., Belloni, T., Hasinger, G.,
van der Klis, M and Kurths, J., Linear and nonlinear time series analysis of the
black hole candidate Cygnus X-1, Phys. Rev. E, 61, 1342 (2000).
[18] Vamos¸, C., Automatic algorithm for monotone trend removal, Phys. Rev. E, 75, 036705
(2007).

Related Posts

Menu