Strong forces in Celestial Mechanics

(original), paper

Abstract

Strong forces in celestial mechanics have the property that the particle moving under their action can describe periodic orbits, whose existence follows in a natural way from variational principles. The Newtonian potential does not give rise to strong forces; we prove that potentials of the form \(1-r^{\alpha}\) produce strong forces if and only if \(\alpha \geq2\). Perturbations of the Newtonian potential with this property are also examined.

Authors

Mira-Cristiana Anisiu
Tiberiu Popoviciu Institute of Numerical Analysis Cluj-Napoca, Romania

Valeriu Anisiu
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

celestial mechanics; force function.

Paper coordinates

M.-C. Anisiu, V. Anisiu, Strong forces in Celestial Mechanics, Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity 2 (2004), 3-9 (pdf file here)

PDF

About this paper

Journal
Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

[1] M.-C. Anisiu, Metode ale analizei neliniare cu aplicații în mecanica cerească, Presa Universitară Clujeană, Cluj-Napoca, 1998
[2] W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. A. M. S. 204 (1975), 113-135
[3] F. Diacu, V. Mioc, C. Stoica, Phase-space structure and regularization of Manev-type problems, Nonlinear Analysis 41 (2000), 1029-1055
[4] G. Maneff, La gravitation et le principe de l’egalite de l’action et de la reaction, Comptes Rendus Acad. Sci. Paris 178 (1924), 2159-2161
[5] H. Poincare, Sur les solutions periodiques et le principe de moindre action, Comptes Rendus Acad. Sci. CXXIII (1896), 915-918
[6] K. Schwarzschild, Uber das Gravitationsfeld eines Massenpunktes nach  der Einsteinschen Theorie, Sitzber. Preuss. Akad. Wiss., Berlin, 1916, 189-196
[7] C. Stoica, V. Mioc, The Schwarzschild problem in astrophysics, Astrophys. Space Sci. 249 (1997), 161-173

2004-Anisiu-Anisiu-StrongForces
Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity vol 2, 2004, pp. 3-9 Strong forces in celestial mechanics

MIRA-CRISTIANA ANISIU VALERIU ANISIU
(CLUJ-NAPOCA) (CLUJ-NAPOCA)

Abstract

Strong forces in celestial mechanics have the property that the particle moving under their action can describe periodic orbits, whose existence follows in a natural way from variational principles. The Newtonian potential does not give rise to strong forces; we prove that potentials of the form 1 / r α 1 / r α -1//r^(alpha)-1 / r^{\alpha}1/rα produce strong forces if and only if α 2 α 2 alpha >= 2\alpha \geq 2α2. Perturbations of the Newtonian potential with this property are also examined.

KEY WORDS: celestial mechanics; force function
MSC 2000: 70F05, 70F15

1 Introduction

Strong forces were considered in 1975 by Gordon [2], when he tried to obtain existence results of periodic solutions in the two-body problem by means of variational methods. As it is well-known, the planar motion of a body (e. g. the Earth) around a much bigger one (e. g. the Sun) is classically modelled by the system
(1) x ¨ 1 = x 1 r 3 x ¨ 2 = x 2 r 3 (1) x ¨ 1 = x 1 r 3 x ¨ 2 = x 2 r 3 {:[(1)x^(¨)_(1)=-(x_(1))/(r^(3))],[x^(¨)_(2)=-(x_(2))/(r^(3))]:}\begin{align*} \ddot{x}_{1} & =-\frac{x_{1}}{r^{3}} \tag{1}\\ \ddot{x}_{2} & =-\frac{x_{2}}{r^{3}} \end{align*}(1)x¨1=x1r3x¨2=x2r3
with r = x 1 2 + x 2 2 r = x 1 2 + x 2 2 r=sqrt(x_(1)^(2)+x_(2)^(2))r=\sqrt{x_{1}^{2}+x_{2}^{2}}r=x12+x22, or, alternatively
(2) x ¨ = V , (2) x ¨ = V , {:(2)x^(¨)=-grad V",":}\begin{equation*} \ddot{x}=-\nabla V, \tag{2} \end{equation*}(2)x¨=V,
with the Newtonian potential
(3) V = 1 r (3) V = 1 r {:(3)V=-(1)/(r):}\begin{equation*} V=-\frac{1}{r} \tag{3} \end{equation*}(3)V=1r
and x = ( x 1 , x 2 ) R 2 { ( 0 , 0 ) } x = x 1 , x 2 R 2 { ( 0 , 0 ) } x=(x_(1),x_(2))inR^(2)\\{(0,0)}x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \backslash\{(0,0)\}x=(x1,x2)R2{(0,0)}. The potential V V VVV has a singularity at the origin of the plane. Even if one works in a class of 'noncollisional' loops ( x ( t ) ( 0 , 0 ) , t R ) ( x ( t ) ( 0 , 0 ) , t R ) (x(t)!=(0,0),AA t inR)(x(t) \neq(0,0), \forall t \in \mathbb{R})(x(t)(0,0),tR), the extremal offered by a variational principle will be the limit of a sequence of such loops, hence we have no guarantee that it will avoid the origin. Gordon remarked that for other type of conservative forces, called by him strong forces, the extremals are not collisional trajectories.

2 Main results

We shall consider systems of the type
(4) x ¨ = W , (4) x ¨ = W , {:(4)x^(¨)=grad W",":}\begin{equation*} \ddot{x}=\nabla W, \tag{4} \end{equation*}(4)x¨=W,
where x = ( x 1 , , x N ) R N x = x 1 , , x N R N x=(x_(1),dots,x_(N))inR^(N)x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}x=(x1,,xN)RN, and W C 2 ( R N { 0 } ) W C 2 R N { 0 } W inC^(2)(R^(N)\\{0})W \in C^{2}\left(\mathbb{R}^{N} \backslash\{0\}\right)WC2(RN{0}) is the force function ( W = V W = V W=-VW=-VW=V ). We shall denote by | | | | |*||\cdot||| the Euclidean norm in R N R N R^(N)\mathbb{R}^{N}RN. The cases physically meaningful are those with N { 1 , 2 , 3 } N { 1 , 2 , 3 } N in{1,2,3}N \in\{1,2,3\}N{1,2,3}.
Definition 1 (Gordon [2]) The system (4) satisfies the strong force (SF) condition if and only if there exists a neighbourhood N N N\mathcal{N}N of the origin 0 of R N R N R^(N)\mathbb{R}^{N}RN and a function U C 2 ( R N { 0 } ) U C 2 R N { 0 } U inC^(2)(R^(N)\\{0})U \in C^{2}\left(\mathbb{R}^{N} \backslash\{0\}\right)UC2(RN{0}) such that
(i) U ( x ) U ( x ) U(x)rarr-ooU(x) \rightarrow-\inftyU(x) as x 0 x 0 x rarr0x \rightarrow 0x0;
(ii) W ( x ) | U ( x ) | 2 W ( x ) | U ( x ) | 2 W(x) >= |grad U(x)|^(2)W(x) \geq|\nabla U(x)|^{2}W(x)|U(x)|2 for all x x xxx in N { 0 } N { 0 } N\\{0}\mathcal{N} \backslash\{0\}N{0}.
Remark 2 As a matter of fact, one can choose another differentiable norm instead of the Euclidean one, hence in Definition 1 N 1 N 1N1 \mathcal{N}1N may be supposed to be the unit ball { x R N : | x | < 1 } x R N : | x | < 1 {x inR^(N):|x| < 1}\left\{x \in \mathbb{R}^{N}:|x|<1\right\}{xRN:|x|<1}.
Remark 3 If the force function W W WWW gives rise to a strong force, the function a W a W aWa WaW (with a > 0 a > 0 a > 0a>0a>0 ) has the same property; this happens also for each function W 1 C 2 ( R N { 0 } ) W 1 C 2 R N { 0 } W_(1)inC^(2)(R^(N)\\{0})W_{1} \in C^{2}\left(\mathbb{R}^{N} \backslash\{0\}\right)W1C2(RN{0}) with W 1 ( x ) W ( x ) , x N { 0 } W 1 ( x ) W ( x ) , x N { 0 } W_(1)(x) >= W(x),x inN\\{0}W_{1}(x) \geq W(x), x \in \mathcal{N} \backslash\{0\}W1(x)W(x),xN{0}.
The example given by Gordon to illustrate the definition is W ( x ) = 1 / | x | 2 W ( x ) = 1 / | x | 2 W(x)=1//|x|^(2)W(x)= 1 /|x|^{2}W(x)=1/|x|2; he remarks also that W ( x ) = 1 / | x | W ( x ) = 1 / | x | W(x)=1//|x|W(x)=1 /|x|W(x)=1/|x|, corresponding to the Newtonian potential, is not strong, fact which determines him to say that 'it is disappointing that the gravitational case is excluded by the SF condition'. Nevertheless he obtained existence results for periodic orbits in strong force fields, and this was the starting point for applying systematically the variational methods in celestial mechanics. It is interesting to mention that, in 1896, Poincaré [5] had the same idea of using the least action principle to find periodic orbits in the planar three-body problem, for a force of the type 1 / r n 1 / r n 1//r^(n)1 / r^{n}1/rn with n 2 n 2 n >= 2n \geq 2n2 (excluding again the Newtonian potential). By that time the variational methods were not formulated in a rigourous way, and there was a strong belief that Newtonian potential governs the motion of celestial bodies, so Poincaré's result remained for years purely theoretical.
Our first concern is to find out which functions W α C 2 ( R N { 0 } ) W α C 2 R N { 0 } W_(alpha)inC^(2)(R^(N)\\{0})W_{\alpha} \in C^{2}\left(\mathbb{R}^{N} \backslash\{0\}\right)WαC2(RN{0}),
(5) W α ( x ) = 1 | x | α , α > 0 (5) W α ( x ) = 1 | x | α , α > 0 {:(5)W_(alpha)(x)=(1)/(|x|^(alpha))","alpha > 0:}\begin{equation*} W_{\alpha}(x)=\frac{1}{|x|^{\alpha}}, \alpha>0 \tag{5} \end{equation*}(5)Wα(x)=1|x|α,α>0
satisfy the SF condition.
Theorem 4 For α > 0 , W α α > 0 , W α alpha > 0,W_(alpha)\alpha>0, W_{\alpha}α>0,Wα from (5) satisfies the S F S F SFS FSF condition if and only if α 2 α 2 alpha >= 2\alpha \geq 2α2.
Proof. Let α 2 , N = { x R N : | x | < 1 } α 2 , N = x R N : | x | < 1 alpha >= 2,N={x inR^(N):|x| < 1}\alpha \geq 2, \mathcal{N}=\left\{x \in \mathbb{R}^{N}:|x|<1\right\}α2,N={xRN:|x|<1} and U = ln | x | U = ln | x | U=ln |x|U=\ln |x|U=ln|x|. It follows that | U ( x ) | 2 = 1 / | x | 2 W α ( x ) | U ( x ) | 2 = 1 / | x | 2 W α ( x ) |grad U(x)|^(2)=1//|x|^(2) <= W_(alpha)(x)|\nabla U(x)|^{2}=1 /|x|^{2} \leq W_{\alpha}(x)|U(x)|2=1/|x|2Wα(x) whatever x x xxx in N { 0 } N { 0 } N\\{0}\mathcal{N} \backslash\{0\}N{0}, hence W α W α W_(alpha)W_{\alpha}Wα satisfies the SF condition.
Let us consider now 0 < α < 2 0 < α < 2 0 < alpha < 20<\alpha<20<α<2. We suppose that there exists a function U U UUU as in Definition 1. We fix x 0 R N { 0 } x 0 R N { 0 } x_(0)inR^(N)\\{0}x_{0} \in \mathbb{R}^{N} \backslash\{0\}x0RN{0}; for μ , λ > 0 , μ < λ < 1 / | x 0 | μ , λ > 0 , μ < λ < 1 / x 0 mu,lambda > 0,mu < lambda < 1//|x_(0)|\mu, \lambda>0, \mu<\lambda<1 /\left|x_{0}\right|μ,λ>0,μ<λ<1/|x0| we evaluate
| U ( λ x 0 ) U ( μ x 0 ) | = | μ λ d U ( t x 0 , x 0 ) d t | | x 0 | μ λ | U ( t x 0 ) | d t U λ x 0 U μ x 0 = μ λ d U t x 0 , x 0 d t x 0 μ λ U t x 0 d t |U(lambdax_(0))-U(mux_(0))|=|int_(mu)^(lambda)dU(tx_(0),x_(0))dt| <= |x_(0)|int_(mu)^(lambda)|grad U(tx_(0))|dt\left|U\left(\lambda x_{0}\right)-U\left(\mu x_{0}\right)\right|=\left|\int_{\mu}^{\lambda} d U\left(t x_{0}, x_{0}\right) d t\right| \leq\left|x_{0}\right| \int_{\mu}^{\lambda}\left|\nabla U\left(t x_{0}\right)\right| d t|U(λx0)U(μx0)|=|μλdU(tx0,x0)dt||x0|μλ|U(tx0)|dt
Using (ii) we obtain
| x 0 | μ λ | U ( t x 0 ) | d t | x 0 | μ λ 1 | t x 0 | α / 2 d t = | x 0 | 1 α / 2 μ λ 1 t α / 2 d t = | x 0 | 1 α / 2 1 1 α / 2 ( λ 1 α / 2 μ 1 α / 2 ) x 0 μ λ U t x 0 d t x 0 μ λ 1 t x 0 α / 2 d t = x 0 1 α / 2 μ λ 1 t α / 2 d t = x 0 1 α / 2 1 1 α / 2 λ 1 α / 2 μ 1 α / 2 {:[|x_(0)|int_(mu)^(lambda)|grad U(tx_(0))|dt <= |x_(0)|int_(mu)^(lambda)(1)/(|tx_(0)|^(alpha//2))dt=],[|x_(0)|^(1-alpha//2)int_(mu)^(lambda)(1)/(t^(alpha//2))dt=|x_(0)|^(1-alpha//2)(1)/(1-alpha//2)(lambda^(1-alpha//2)-mu^(1-alpha//2))]:}\begin{gathered} \left|x_{0}\right| \int_{\mu}^{\lambda}\left|\nabla U\left(t x_{0}\right)\right| d t \leq\left|x_{0}\right| \int_{\mu}^{\lambda} \frac{1}{\left|t x_{0}\right|^{\alpha / 2}} d t= \\ \left|x_{0}\right|^{1-\alpha / 2} \int_{\mu}^{\lambda} \frac{1}{t^{\alpha / 2}} d t=\left|x_{0}\right|^{1-\alpha / 2} \frac{1}{1-\alpha / 2}\left(\lambda^{1-\alpha / 2}-\mu^{1-\alpha / 2}\right) \end{gathered}|x0|μλ|U(tx0)|dt|x0|μλ1|tx0|α/2dt=|x0|1α/2μλ1tα/2dt=|x0|1α/211α/2(λ1α/2μ1α/2)
hence | U ( λ x 0 ) U ( μ x 0 ) | | x 0 | 1 α / 2 ( 1 α / 2 ) 1 ( λ 1 α / 2 μ 1 α / 2 ) U λ x 0 U μ x 0 x 0 1 α / 2 ( 1 α / 2 ) 1 λ 1 α / 2 μ 1 α / 2 |U(lambdax_(0))-U(mux_(0))| <= |x_(0)|^(1-alpha//2)(1-alpha//2)^(-1)(lambda^(1-alpha//2)-mu^(1-alpha//2))\left|U\left(\lambda x_{0}\right)-U\left(\mu x_{0}\right)\right| \leq\left|x_{0}\right|^{1-\alpha / 2}(1-\alpha / 2)^{-1}\left(\lambda^{1-\alpha / 2}-\mu^{1-\alpha / 2}\right)|U(λx0)U(μx0)||x0|1α/2(1α/2)1(λ1α/2μ1α/2). In this last relation we make μ 0 + μ 0 + mu rarr0_(+)\mu \rightarrow 0_{+}μ0+and we obtain the contradiction | x 0 | 1 α / 2 x 0 1 α / 2 |x_(0)|^(1-alpha//2)\left|x_{0}\right|^{1-\alpha / 2}|x0|1α/2. ( 1 α / 2 ) 1 λ 1 α / 2 ( 1 α / 2 ) 1 λ 1 α / 2 (1-alpha//2)^(-1)lambda^(1-alpha//2) >= oo(1-\alpha / 2)^{-1} \lambda^{1-\alpha / 2} \geq \infty(1α/2)1λ1α/2. It follows that, for any 0 < α < 2 , W α 0 < α < 2 , W α 0 < alpha < 2,W_(alpha)0<\alpha<2, W_{\alpha}0<α<2,Wα does not satisfy the SF condition.
In view of Remark 3, we have
Corollary 5 Each function W C 2 ( R N { 0 } ) W C 2 R N { 0 } W inC^(2)(R^(N)\\{0})W \in C^{2}\left(\mathbb{R}^{N} \backslash\{0\}\right)WC2(RN{0}) with W ( x ) a / | x | α ( a > 0 W ( x ) a / | x | α ( a > 0 W(x) >= a//|x|^(alpha)quad(a > 0W(x) \geq a /|x|^{\alpha} \quad(a>0W(x)a/|x|α(a>0, α 2 ) α 2 ) alpha >= 2)\alpha \geq 2)α2) satisfies the S F S F SFS FSF condition.
Example 6 Corollary 5 includes among the functions which satisfy the SF condition those related to various perturbations of the Newtonian force. One of them, with great physical significance, corresponds to the Manev potential [4] and is given by
(6) W M = m ( 1 r + 3 m 2 c 2 1 r 2 ) (6) W M = m 1 r + 3 m 2 c 2 1 r 2 {:(6)W_(M)=m((1)/(r)+(3m)/(2c^(2))(1)/(r^(2))):}\begin{equation*} W_{M}=m\left(\frac{1}{r}+\frac{3 m}{2 c^{2}} \frac{1}{r^{2}}\right) \tag{6} \end{equation*}(6)WM=m(1r+3m2c21r2)
m m mmm being the gravitational parameter of the two-body system and c c ccc the speed of light. This potential is a good substitute for relativity theory at the solar system's level. It was mentioned as a strong force by Anisiu [1]. The advances in the qualitative understanding of the motion in a Manev-type field are exposed in [3]. A potential of Manev-type was studied by Newton himself, and he showed that the force generated by such a potential produces a precessionally elliptic orbit.
Schwarzschild [6] solved the relativistic analog of the classical Kepler problem and derived the force function
(7) W S = G M ( 1 r + b r 3 ) , (7) W S = G M 1 r + b r 3 , {:(7)W_(S)=GM((1)/(r)+(b)/(r^(3)))",":}\begin{equation*} W_{S}=G M\left(\frac{1}{r}+\frac{b}{r^{3}}\right), \tag{7} \end{equation*}(7)WS=GM(1r+br3),
where G G GGG is the gravitational constant, M M MMM is the mass of the field-generating body and b b bbb a positive constant. The motion in a Schwarzschild field, with implications in astrophysics, is studied by Stoica and Mioc [7].
We can establish precisely what perturbations of the Newtonian potential are strong or not.
Theorem 7 For α > 0 α > 0 alpha > 0\alpha>0α>0, the perturbation of the Newtonian force W ~ α C 2 ( R N { 0 } ) W ~ α C 2 R N { 0 } widetilde(W)_(alpha)inC^(2)(R^(N)\\{0})\widetilde{W}_{\alpha} \in C^{2}\left(\mathbb{R}^{N} \backslash\{0\}\right)W~αC2(RN{0}) given by
W ~ α ( x ) = 1 | x | + b | x | α , b > 0 , W ~ α ( x ) = 1 | x | + b | x | α , b > 0 , widetilde(W)_(alpha)(x)=(1)/(|x|)+(b)/(|x|^(alpha)),b > 0,\widetilde{W}_{\alpha}(x)=\frac{1}{|x|}+\frac{b}{|x|^{\alpha}}, b>0,W~α(x)=1|x|+b|x|α,b>0,
satisfies the S F S F SFS FSF condition if and only if α 2 α 2 alpha >= 2\alpha \geq 2α2.
Proof. The fact that W ~ α W ~ α widetilde(W)_(alpha)\widetilde{W}_{\alpha}W~α satisfies the SF condition for α 2 α 2 alpha >= 2\alpha \geq 2α2 follows directly from Corollary 5.
For 0 < α 1 0 < α 1 0 < alpha <= 10<\alpha \leq 10<α1 and x N { 0 } x N { 0 } x inN\\{0}x \in \mathcal{N} \backslash\{0\}xN{0} (as mentioned in Remark 2, we take N N N\mathcal{N}N the unit ball), we have W ~ α ( x ) ( 1 + b ) / | x | W ~ α ( x ) ( 1 + b ) / | x | widetilde(W)_(alpha)(x) <= (1+b)//|x|\widetilde{W}_{\alpha}(x) \leq(1+b) /|x|W~α(x)(1+b)/|x|, so W ~ α W ~ α widetilde(W)_(alpha)\widetilde{W}_{\alpha}W~α cannot satisfy the SF condition, because from Theorem 4 it follows that W 1 ( x ) = 1 / | x | W 1 ( x ) = 1 / | x | W_(1)(x)=1//|x|W_{1}(x)=1 /|x|W1(x)=1/|x| does not satisfy it. For 1 < α < 2 1 < α < 2 1 < alpha < 21<\alpha<21<α<2, we suppose that there exists a function U U UUU as in Definition 1. We fix x 0 R N { 0 } x 0 R N { 0 } x_(0)inR^(N)\\{0}x_{0} \in \mathbb{R}^{N} \backslash\{0\}x0RN{0}; for μ , λ > 0 , μ < λ < 1 / | x 0 | μ , λ > 0 , μ < λ < 1 / x 0 mu,lambda > 0,mu < lambda < 1//|x_(0)|\mu, \lambda>0, \mu<\lambda<1 /\left|x_{0}\right|μ,λ>0,μ<λ<1/|x0| we evaluate as in the proof of Theorem 4
| U ( λ x 0 ) U ( μ x 0 ) | | x 0 | μ λ | U ( t x 0 ) | d t | x 0 | μ λ 1 | t x 0 | + b | t x 0 | α d t | x 0 | 1 α / 2 1 + b μ λ 1 t α / 2 d t = | x 0 | 1 α / 2 1 + b 1 α / 2 ( λ 1 α / 2 μ 1 α / 2 ) U λ x 0 U μ x 0 x 0 μ λ U t x 0 d t x 0 μ λ 1 t x 0 + b t x 0 α d t x 0 1 α / 2 1 + b μ λ 1 t α / 2 d t = x 0 1 α / 2 1 + b 1 α / 2 λ 1 α / 2 μ 1 α / 2 {:[|U(lambdax_(0))-U(mux_(0))| <= |x_(0)|int_(mu)^(lambda)|grad U(tx_(0))|dt <= |x_(0)|int_(mu)^(lambda)sqrt((1)/(|tx_(0)|)+(b)/(|tx_(0)|^(alpha)))dt],[quad <= |x_(0)|^(1-alpha//2)sqrt(1+b)int_(mu)^(lambda)(1)/(t^(alpha//2))dt=|x_(0)|^(1-alpha//2)(sqrt(1+b))/(1-alpha//2)(lambda^(1-alpha//2)-mu^(1-alpha//2))]:}\begin{aligned} & \left|U\left(\lambda x_{0}\right)-U\left(\mu x_{0}\right)\right| \leq\left|x_{0}\right| \int_{\mu}^{\lambda}\left|\nabla U\left(t x_{0}\right)\right| d t \leq\left|x_{0}\right| \int_{\mu}^{\lambda} \sqrt{\frac{1}{\left|t x_{0}\right|}+\frac{b}{\left|t x_{0}\right|^{\alpha}}} d t \\ & \quad \leq\left|x_{0}\right|^{1-\alpha / 2} \sqrt{1+b} \int_{\mu}^{\lambda} \frac{1}{t^{\alpha / 2}} d t=\left|x_{0}\right|^{1-\alpha / 2} \frac{\sqrt{1+b}}{1-\alpha / 2}\left(\lambda^{1-\alpha / 2}-\mu^{1-\alpha / 2}\right) \end{aligned}|U(λx0)U(μx0)||x0|μλ|U(tx0)|dt|x0|μλ1|tx0|+b|tx0|αdt|x0|1α/21+bμλ1tα/2dt=|x0|1α/21+b1α/2(λ1α/2μ1α/2)
It follows that
| U ( λ x 0 ) U ( μ x 0 ) | | x 0 | 1 α / 2 1 + b 1 α / 2 ( λ 1 α / 2 μ 1 α / 2 ) U λ x 0 U μ x 0 x 0 1 α / 2 1 + b 1 α / 2 λ 1 α / 2 μ 1 α / 2 |U(lambdax_(0))-U(mux_(0))| <= |x_(0)|^(1-alpha//2)(sqrt(1+b))/(1-alpha//2)(lambda^(1-alpha//2)-mu^(1-alpha//2))\left|U\left(\lambda x_{0}\right)-U\left(\mu x_{0}\right)\right| \leq\left|x_{0}\right|^{1-\alpha / 2} \frac{\sqrt{1+b}}{1-\alpha / 2}\left(\lambda^{1-\alpha / 2}-\mu^{1-\alpha / 2}\right)|U(λx0)U(μx0)||x0|1α/21+b1α/2(λ1α/2μ1α/2)
and, making μ 0 + μ 0 + mu rarr0_(+)\mu \rightarrow 0_{+}μ0+, we obtain a contradiction. It follows that, for any 0 < α < 2 , W ~ α 0 < α < 2 , W ~ α 0 < alpha < 2, widetilde(W)_(alpha)0<\alpha<2, \widetilde{W}_{\alpha}0<α<2,W~α does not satisfy the SF condition.
By Corollary 5 we have that each force function with W ( x ) a / | x | 2 W ( x ) a / | x | 2 W(x) >= a//|x|^(2)W(x) \geq a /|x|^{2}W(x)a/|x|2, a > 0 a > 0 a > 0a>0a>0, satisfies the SF condition; due to the simplicity of this description, it is sometimes considered as SF definition. The next example shows that there are SF potentials which do not satisfy the mentioned inequality.
Example 8 Define φ : ( 0 , 1 / 2 ] R , φ ( t ) = ln ( ln t ) φ : ( 0 , 1 / 2 ] R , φ ( t ) = ln ( ln t ) varphi:(0,1//2]rarrR,varphi(t)=ln(-ln t)\varphi:(0,1 / 2] \rightarrow \mathbb{R}, \varphi(t)=\ln (-\ln t)φ:(0,1/2]R,φ(t)=ln(lnt). The function φ φ varphi\varphiφ can be extended to a C 3 C 3 C^(3)C^{3}C3 function defined on ( 0 , 0 , 0,oo0, \infty0, ) by taking φ ( t ) φ ( t ) varphi(t)\varphi(t)φ(t) a polynomial of third degree for t > 1 / 2 t > 1 / 2 t > 1//2t>1 / 2t>1/2. Then W ( x ) := φ ( | x | ) 2 W ( x ) := φ ( | x | ) 2 W(x):=varphi^(')(|x|)^(2)W(x):=\varphi^{\prime}(|x|)^{2}W(x):=φ(|x|)2 satisfies the SF condition. Indeed, we can choose U ( x ) = φ ( | x | ) U ( x ) = φ ( | x | ) U(x)=-varphi(|x|)U(x)=-\varphi(|x|)U(x)=φ(|x|) and we have lim x 0 U ( x ) = lim t 0 + φ ( t ) = lim x 0 U ( x ) = lim t 0 + φ ( t ) = lim_(x rarr0)U(x)=-lim_(t rarr0_(+))varphi(t)=-oo\lim _{x \rightarrow 0} U(x)=-\lim _{t \rightarrow 0_{+}} \varphi(t)=-\inftylimx0U(x)=limt0+φ(t)= and
| U ( x ) | 2 = | φ ( | x | ) x | x | | 2 = φ ( | x | ) 2 = W ( x ) , x R N { 0 } | U ( x ) | 2 = φ ( | x | ) x | x | 2 = φ ( | x | ) 2 = W ( x ) , x R N { 0 } |grad U(x)|^(2)=|varphi^(')(|x|)(x)/(|x|)|^(2)=varphi^(')(|x|)^(2)=W(x),x inR^(N)\\{0}|\nabla U(x)|^{2}=\left|\varphi^{\prime}(|x|) \frac{x}{|x|}\right|^{2}=\varphi^{\prime}(|x|)^{2}=W(x), x \in \mathbb{R}^{N} \backslash\{0\}|U(x)|2=|φ(|x|)x|x||2=φ(|x|)2=W(x),xRN{0}
On the other side, let us suppose that for | x | 1 / 2 , W ( x ) a / | x | 2 | x | 1 / 2 , W ( x ) a / | x | 2 |x| <= 1//2,W(x) >= a//|x|^(2)|x| \leq 1 / 2, W(x) \geq a /|x|^{2}|x|1/2,W(x)a/|x|2, where a > 0 a > 0 a > 0a>0a>0. This would imply φ ( t ) 2 a / t 2 φ ( t ) 2 a / t 2 varphi^(')(t)^(2) >= a//t^(2)\varphi^{\prime}(t)^{2} \geq a / t^{2}φ(t)2a/t2, that is a 1 / ln 2 t a 1 / ln 2 t a <= 1//ln^(2)ta \leq 1 / \ln ^{2} ta1/ln2t for each t t t int \int ( 0 , 1 / 2 ] 0 , 1 / 2 ] 0,1//2]0,1 / 2]0,1/2], hence a 0 a 0 a <= 0a \leq 0a0, contradiction.
Note that, in this example, condition (ii) from Definition 1 is in fact an equality over R N { 0 } R N { 0 } R^(N)\\{0}\mathbb{R}^{N} \backslash\{0\}RN{0}.

References

[1] M.-C. Anisiu, Metode ale analizei neliniare cu aplicaţii în mecanica cerească, Presa Universitară Clujeană, Cluj-Napoca, 1998
[2] W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. A. M. S. 204 (1975), 113-135
[3] F. Diacu, V. Mioc, C. Stoica, Phase-space structure and regularization of Manev-type problems, Nonlinear Analysis 41 (2000), 1029-1055
[4] G. Maneff, La gravitation et le principe de l'égalité de l'action et de la réaction, Comptes Rendus Acad. Sci. Paris 178 (1924), 2159-2161
[5] H. Poincaré, Sur les solutions périodiques et le principe de moindre action, Comptes Rendus Acad. Sci. CXXIII (1896), 915-918
[6] K. Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzber. Preuss. Akad. Wiss., Berlin, 1916, 189-196
[7] C. Stoica, V. Mioc, The Schwarzschild problem in astrophysics, Astrophys. Space Sci. 249 (1997), 161-173
2004

Related Posts