On the Galerkin finite element method for solving the diffusion-convection problem with variable diffusion coefficient

Abstract

Authors

D. Bradeanu
Institutul de Calcul Cluj-Napoca, Romania

Keywords

?

Paper coordinates

D. Brădeanu, Sur la méthode de Galerkin aux éléments finis pour la résolution du problème de diffusion-convection à coefficient de diffusion variable, Seminar on Functional Analysis and Numerical Methods, 9–24, Preprint, 87-1, Univ. “Babeş-Bolyai”, Cluj-Napoca,1987 (in French; English translation: Galerkin’s finite element method for the solution of the convection-diffusion problem with variable diffusion coefficient).

PDF

About this paper

Journal

Preprint

Publisher Name

Babs-Bolyai University Cluj Napoca, Romania

DOI
Print ISSN
Online ISSN

google scholar link

[1] Tellian, H., Resolution de l’equation de convection-diffusion et d’un modele de circulation aceaniques generales par des methodes d’elements finis, These, l’Institut Nat. Polytich. de Grenoble, 1983.
[2] Samarskii, A.A., Vvdeni teariju raznostnyh shem, Moskva, Nauka, 1971.
[3] Marchuk, G. I., Metode de analiză numerică, Acad. RSR, București, 1983
[4] Marchuk, G.I., Finiste Element ethods For Convection Dominated Flows, The Applied Mechanics Division (AMD), New-York, 1979 (ed. T.J.Hughes)
[5] Carrier, G. F., Pearson, C.E., Partial Diff. Equations, Theory and Technique, Acad. Press, New-York, 1976.
[6] Carrier, G. F., Pearson, C.E, Finite Elements In Fluids, vol.3, John Wiley and Sens, New0York- 1978 (cap.1 and cap.2, p.42).
[7] Connor, J.J., Brebbia, C.A., Finite Element Techniques For Fluid Flow, Newnes-Buttewert, London, 1977.
[8] Baker, A.J., Finite Element Computational Fluid Mechanics, Mc.Graw-Hill Book Comp., New-York, 1983.

1987

Related Posts