Iterative schemes for coupled flow and transport in porous media -Convergence and truncation errors

Abstract


Nonlinearities of coupled flow and transport problems for partially saturated porous media are solved with explicit iterative L-schemes. Their behavior is analyzed with the aid of the computational orders of convergence. This approach allows highlighting the influence of the truncation errors in the numerical schemes on the convergence of the iterations. Further, by using manufactured exact solutions, error-based orders of convergence of the iterative schemes are assessed and the convergence of the numerical solutions is demonstrated numerically through grid-convergence tests.

Authors

Nicolae Suciu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania 

Florin A. Radu
Center for Modeling of Coupled Subsurface Dynamics, University of Bergen, Norway 

Emil Cătinaş
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania 

Keywords

Richards’ equation; coupled flow and transport; finite differences; global random walk; iterative schemes; convergence order

Paper coordinates

N. Suciu, F.A. Radu, E. Cătinaş, Iterative schemes for coupled flow and transport in porous media – Convergence and truncation errors, J. Numer. Anal. Approx. Theory, 53 (2024) no. 1, pp. 158-183, https://doi.org/10.33993/jnaat531-1429

PDF

About this paper

Journal

Journal of Numerical Analysis and Approximation Theory

Publisher Name

Romanian Academy Publishing House

Editura Academiei Romane

Print ISSN

2457-6794

Online ISSN

2501-059X

google scholar link

]1] C.D. Alecsa, I. Boros, F. Frank, P. Knabner, M. Nechita, A. Prechtel, A.RuppandN. Suciu,Numerical benchmark study for fow in heterogeneous aquifers,Adv. Water Resour.,138(2020), 103558.https://doi.org/10.1016/j.advwatres.2020.103558
[2] E. Catinas, A survey on the high convergence orders and computational convergenceorders of sequences, Appl. Math. Comput.,343(2019), pp. 1–20.
https://doi.org/10.1016/j.amc.2018.08.006
[3] E. Catinas, How many steps stil l left to x*?, SIAM Rev.,63(2021) no. 3, pp. 585–624.https://doi.org/10.1137/19M1244858
[4] D. Illiano, I.S. Pop and F.A. Radu,Iterative schemes for surfactant transport inporous media, Comput. Geosci.,25(2021), pp. 805–822.https://doi.org/10.1007/s10596-020-09949-2
[5] P. Knabner, S. Bitterlich, R. Iza Teran, R., A. Prechtel and E. Schneid, Influence of surfactants on spreading of contaminants and soil remediation, pp.152–161,in Jager, W., Krebs, H.J. (Eds.),Mathematics–Key Technology for the Future, Springer,Berlin, Heidelberg, 2003.https://doi.org/10.1007/978-3-642-55753-8_12
[6] P. Knabne rand L. Angermann, Numerical Methods for El liptic and Parabolic PartialDifferential Equations, Springer, New York, 2003.https://doi.org/10.1007/b97419
[7] F. List and F.A. Radu, A study on iterative methods for solving Richards’ equa-tion, Comput. Geosci.,20(2016) no. 2, pp. 341–353.https://doi.org/10.1007/s10596-016-9566-3

[8] I.S. Pop, F.A. Radu and P. Knabner,Mixed finite elements for the Richards’ equation:linearization procedure, J. Comput. Appl. Math.,168(2004) no. 1, pp. 365–373.https://doi.org/10.1016/j.cam.2003.04.008
[9] F.A. Radu, K. Kumar, J.M. Nordbotten and I.S. Pop, A robust, mass con-servative scheme for two-phase flow in porous media including Holder continuous nonlinearities, IMA Journal Numer. Anal.,38(2018) no. 2, pp. 884–920. url-https://doi.org/10.1093/imanum/drx032
[10] P.J. Roache,Code verification by the method of manufactured solutions, J. Fluids Eng.,124(2002) no. 1, pp. 4–10.http://dx.doi.org/10.1115/1.1436090
[11] C.J. Roy,Review of code and solution verification procedures for computational simu-lation, J. Comput. Phys.,205(2005), pp. 131–156.
https://doi.org/10.1016/j.jcp.2004.10.036
[12] J.S. Stokke, K. Mitra, E. Storvik, J.W. BothandF.A. Radu, An adaptivesolution strategy for Richards’ equation, Comput. Math. Appl.,152(2023), pp. 155–167.https://doi.org/10.1016/j.camwa.2023.10.020
[13] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM,2004.https://doi.org/10.1137/1.9780898717938
[14] N. Suciu,Diffusion in Random Fields. Applications to Transport in Groundwater,Birkhauser, Cham, 2019.https://doi.org/10.1007/978-3-030-15081-5
[15] N. Suciu, Global Random Walk Solutions for Flow and Transport in Porous Media,inF.J. VermolenandC. Vuik(eds.),Numerical Mathematics and Advanced Applica-tions ENUMATH 2019, Lecture Notes in Computational Science and Engineering,139,Springer Nature, Switzerland, 2020.https://doi.org/10.1007/978-3-030-55874-1_93
[16] N. Suciu, D. Illiano, A. Prechtel and F.A. Radu, Global random walk solversfor ful ly coupled flow and transport in saturated/unsaturated porous media, Adv. WaterResour.,152(2021), 103935.https://doi.org/10.1016/j.advwatres.2021.103935
[17] N. Suciu and F.A. Radu, Global random walk solvers for reactive transport andbiodegradation processes in heterogeneous porous media, Adv. Water Res.,166(2022),104268.https://doi.org/10.1016/j.advwatres.2022.104268
[18] N. Suciu, F.A. Radu and I.S. Pop, Space-time upscaling of reactive transport inporous media, Adv. Water Resour.,176(2023), 104443.http://dx.doi.org/10.1016/j.advwatres.2023.104443
[19] N. Suciu, F.A. Radu, J.S. Stokke, E. Catinas and A. Malina, Computa-tional orders of convergence of iterative methods for Richards’ equation, arXiv preprintarXiv:2402.00194 (2024),https://doi.org/10.48550/arXiv.2402.00194
[20] C. Vamos, N. Suciu and M Peculea, Numerical model ling of the one-dimensional diffusion by random walkers, Rev. Anal. Numer. Theor. Approx.,26(1997) nos. 1–2, pp. 237–247.https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art32/
[21] C. Vamos, N. Suciu and H. Vereecken, Generalized random walk algorithm for thenumerical modeling of complex diffusion processes, J. Comput. Phys.,186(2003), pp.527–544.https://doi.org/10.1016/S0021-9991(03)00073-1Received by the editors: May 17, 2024; accepted: June 26, 2024; published online: July11, 2024.

2024

Related Posts