On a Dirichlet problem related to anisotropic fluid flow in bidisperse porous media

Abstract

This paper is concerned with the study of a Dirichlet boundary value problem for a system of two coupled anisotropic Darcy-Forchheimer-Brinkman equations on a bounded Lipschitz domain in \(\mathbb{R}^{n}=\left( 2,3\right)\). Using variational methods and fixed point techniques, we obtain a well-posedness result in  \(L^{2}\)-based Sobolev spaces for sufficiently small data. As an application, we investigate numerically the lid-driven flow problem in a square cavity saturated with a bidisperse porous medium and analyze the effect of various physical parameters on the fluid motion.

Authors

Andrei Gasparovici
Faculty of Mathematics and ComputerScience, Babe¸s-Bolyai University,Cluj-Napoca, Romania

Keywords

?

Paper coordinates

A. Gasparovici, On a Dirichlet problem related to anisotropic fluid flow in bidisperse porous media, Mathematical Methods in the Applied Sciences, 48 (2025) no. 3, pp. 3652-3669, https://doi.org/10.1002/mma.10506

PDF

About this paper

Journal

Mathematical Methods in the
Applied Sciences

Publisher Name

Wiley

Print ISSN
Online ISSN

google scholar link

[1] D. A. Nield and A. Bejan, Convection in porous media, Springer, New York, 2013, Google Scholar
[2] A.-R. A. Khaled and K. Vafai, The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Trans. 46 (2003), no. 26, 49895003, DOI 10.1016/s0017-9310(03)00301-6, Web of Science®Google Scholar
[3] B. R. Duffy, Flow of a liquid with an anisotropic viscosity tensor, J. Non-Newtonian Fluid Mech. 4 (1978), no. 3, 177193, DOI 10.1016/0377-0257(78)80002-0, Google Scholar
[4] A. Y. Malkin and A. I. Isayev Eds., Rheology: concepts, methods, and applications, 2nd ed. Edited by A. Y. Malkin and A. I. Isayev, ChemTec Pub, Toronto, 2012, Google Scholar
[5] M. Kohr,~S. E. Mikhailov, and~W. L. Wendland,~Dirichlet and transmission problems for anisotropic Stokes and Navier-Stokes systems with \(L_{\infty}\) tensor coefficient under relaxed ellipticity condition, Disc. Contin. Dyn. Syst. 41 (2021), no. 9, 4421, DOI 10.3934/dcds.2021042, Google Scholar
, DOI 10.3934/dcds.2021042, Google Scholar
[6] M. Kohr and W. L. Wendland, Variational approach for the Stokes and Navier–Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds, Calc. Variat. Partial Differ. Equ. 57 (2018), no. 6, DOI 10.1007/s00526-018-1426-7, Google Scholar
[7] M. Kohr and W. L. Wendland,~Boundary value problems for the Brinkman system with \(L_{\infty}\) coefficients in Lipschitz domains on compact
Riemannian manifolds. A variational approach, J. Math. Pures Appl.131 (2019),17-63,
3, DOI 10.1016/j.matpur.2019.04.002, Web of Science®Google Scholar
[8] M. Kohr, S. E. Mikhailov, and W. L. Wendland, On some mixed-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces, J. Math. Anal. Appl. 516 (2022), no. 1, 126464, DOI 10.1016/j.jmaa.2022.126464, Web of Science®Google Scholar
[9]
M. Kohr, S. E. Mikhailov, and W. L. Wendland, Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces, Cal. Variat. Partial Differ. Equ 61 (2022), no. 6, 198, DOI 10.1007/s00526-022-02279-4, Google Scholar
[10] Z. Q. Chen, P. Cheng, and C. T. Hsu, A theoretical and experimental study on stagnant thermal conductivity of bi-dispersed porous media, Int. Commun. Heat Mass Trans. 27 (2000), no. 5, 601610, DOI 10.1016/s0735-1933(00)00142-1, CASWeb of Science®Google Scholar
[11]
D. A. Nield and A. V. Kuznetsov, The onset of convection in a bidisperse porous medium, Int. J. Heat Mass Trans. 49 (2006), no. 17-18, 30683074, DOI 10.1016/j.ijheatmasstransfer.2006.02.008, Web of Science®Google Scholar
[12]
D. A. Nield and A. V. Kuznetsov, A note on modeling high speed flow in a bidisperse porous medium, Trans. Porous Med. 96 (2012), no. 3, 495499, DOI 10.1007/s11242-012-0102-1, Google Scholar
[13] D. A. Nield and A. V. Kuznetsov, Natural convection about a vertical plate embedded in a bidisperse porous medium, Int. J. Heat Mass Trans. 51 (2008), no. 7-8, 16581664, DOI 10.1016/j.ijheatmasstransfer.2007.07.011, CASWeb of Science®Google Scholar
[14] C. Revnic, T. Groşan, I. Pop, and D. B. Ingham, Free convection in a square cavity filled with a bidisperse porous medium, Int. J. Thermal Sci. 48 (2009), no. 10, 18761883, DOI 10.1016/j.ijthermalsci.2009.02.016, CASWeb of Science®Google Scholar
[15] F. O. Pătrulescu, T. Groşan, and I. Pop, Natural convection from a vertical plate embedded in a non-Darcy bidisperse porous medium, J. Heat Trans. 142 (2019), no. 1, 111, DOI 10.1115/1.4045067, Google Scholar
[16] T. Groşan, F.-O. Pătrulescu, and I. Pop, Natural convection in a differentially heated cavity filled with a Brinkman bidisperse porous medium, Int. J. Numer. Meth. Heat Fluid Flow 33 (2023), no. 10, 33093326, DOI 10.1108/hff-10-2022-0600, Google Scholar
[17] M. Kohr and R. Precup, Analysis of Navier-Stokes models for flows in bidisperse porous media, J. Math. Fluid Mech. 25 (2023), no. 2, 914, DOI 10.1007/s00021-023-00784-w, Google Scholar
[18] U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys. 48 (1982), no. 3, 387411, DOI 10.1016/0021-9991(82)90058-4, Web of Science®Google Scholar
[19] E. Erturk, T. C. Corke, and C. Gökçöl, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Int. J. Numer. Meth. Fluids 48 (2005), no. 7, 747774, DOI 10.1002/fld.953, Web of Science®Google Scholar
[20] C. H. Marchi, R. Suero, and L. K. Araki, The lid-driven square cavity flow: numerical solution with a 1024 ×1024 grid, J. Brazilian Soc. Mech. Sci. Eng. 31 (2009), no. 3, DOI 10.1590/s1678-58782009000300004, Google Scholar
[21] M. M. Gupta and J. C. Kalita, A new paradigm for solving Navier–Stokes equations: streamfunction–velocity formulation, J. Comput. Phys. 207 (2005), no. 1, 5268, DOI 10.1016/j.jcp.2005.01.002, Web of Science®Google Scholar
[22] J. R. Koseff and R. L. Street, The lid-driven cavity flow: a synthesis of qualitative and quantitative observations, J. Fluids Eng. 106 (1984), no. 4, 390398, DOI 10.1115/1.3243136, Web of Science®Google Scholar
[23] C. Y. Wang, The recirculating flow due to a moving lid on a cavity containing a Darcy–Brinkman medium, Appl. Math.Modell. 33 (2009), no. 4, 20542061, DOI 10.1016/j.apm.2008.05.010, Google Scholar
[24] Z. Guo and T. S. Zhao, Lattice Boltzmann model for incompressible flows through porous media, Phys. Rev. E 66 (2002), no. 3, 036304, DOI 10.1103/physreve.66.036304, Web of Science®Google Scholar
[25] D. Yang, Z. Xue, and S. A. Mathias, Analysis of momentum transfer in a lid-driven cavity containing a Brinkman–Forchheimer medium, Trans. Porous Media 92 (2011), no. 1, 101118, DOI 10.1007/s11242-011-9893-8, Google Scholar
[26] R. Gutt and T. Groşan, On the lid-driven problem in a porous cavity. A theoretical and numerical approach, Appl. Math. Comput. 266 (2015), 10701082, DOI 10.1016/j.amc.2015.06.038, Web of Science®Google Scholar
[27] R. Gutt, BIE and BEM approach for the mixed Dirichlet-Robin boundary value problem for the nonlinear Darcy-Forchheimer-Brinkman system, 2018, DOI 10.48550/arxiv.1810.09543, Google Scholar
[28]
I. Papuc, On a Dirichlet problem for the Darcy-Forchheimer-Brinkman system with application to lid-driven porous cavity flow with internal square block, Appl. Math. Comput. 402 (2021), 125906, DOI 10.1016/j.amc.2020.125906, Web of Science®Google Scholar
[29] S. E. Mikhailov, Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains, J. Math. Anal. Appl. 378 (2011), no. 1, 324342, DOI 10.1016/j.jmaa.2010.12.027, Web of Science®Google Scholar
[30] R. Temam, Navier-Stokes equations: theory and numerical analysis, AMS Chelsea Publishing, AMS Chelsea Pub, Providence, R.I, 2012, Google Scholar
[31]
R. Precup, Linear and semilinear partial differential equations, De Gruyter, 2012, DOI 10.1515/9783110269055, Google Scholar
[32] R. Precup, Methods in nonlinear integral equations, Springer, Netherlands, 2002, DOI 10.1007/978-94-015-9986-3, Google Scholar
[33] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Springer New York, 2011, DOI 10.1007/978-0-387-09620-9, Google Scholar
[34] R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput. Modell. 49 (2009), no. 3-4, 703708, DOI 10.1016/j.mcm.2008.04.006, Google Scholar
[35] I. A. Rus and M.-A. Şerban, Some existence results for a system of operatorial equations, Bull. Math. Soc. Sci. Math. Roumanie 57 (2014), no. 105, 101108. http://www.jstor.org/stable/43678912, Google Scholar
[36]
G. K. Batchelor, An introduction to fluid dynamics, Cambridge University Press, 2000, DOI 10.1017/cbo9780511800955, Google Scholar
[37] T. Groşan, M. Kohr, and W. L. Wendland, Dirichlet problem for a nonlinear generalized Darcy–Forchheimer–Brinkman system in Lipschitz domains, Math. Meth. Appl. Sci. 38 (2014), no. 17, 36153628. DOI 10.1002/mma.3302, Google Scholar
[38] W. MacLean and W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, 2000. Literaturverz. S. 341 – 345, Google Scholar
[39]
O. A. Olejnik, Mathematical problems in elasticity and homogenization, Studies in mathematics and its applications, North-Holland, Amsterdam, 1992, Google Scholar
[40]
A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied mathematical sciences, Springer, New York, 2004, Google Scholar
[41] F. Brezzi and M. Fortin Eds., Mixed and hybrid finite element methods Edited by F. Brezzi and M. Fortin, Springer, New York, 1991, DOI 10.1007/978-1-4612-3172-1, Google Scholar
[42] C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J. 44 (1994), no. 1, 109140, Web of Science®Google Scholar
[43] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations, Springer, Berlin Heidelberg, 1986, DOI 10.1007/978-3-642-61623-5, Google Scholar
[44] M. Kohr, M. L. de Cristoforis, and W. L. Wendland, On the robin-transmission boundary value problems for the nonlinear Darcy–ForchHeimer–Brinkman and Navier–Stokes systems, J. Math. Fluid Mech. 18 (2016), no. 2, 293329, DOI 10.1007/s00021-015-0236-3, Google Scholar
[45] B. Straughan, Bidispersive double diffusive convection, Int. J. Heat Mass Trans. 126 (2018), 504508, DOI 10.1016/j.ijheatmasstransfer.2018.05.056, Web of Science®Google Scholar
[46] F. Hecht, New development in FreeFem++, J. Numer. Math. 20 (2012), no. 3-4, 251265. https://freefem.org/, DOI 10.1515/jnum-2012-0013, PubMedWeb of Science®Google Scholar
[47] V. John, Finite element methods for incompressible flow problems, Springer International Publishing, 2016, DOI 10.1007/978-3-319-45750-5, Google Scholar
48] P.-H. Cocquet, M. Rakotobe, D. Ramalingom, and A. Bastide, Error analysis for the finite element approximation of the Darcy–Brinkman–Forchheimer model for porous media with mixed boundary conditions, J. Comput. Appl. Math. 381 (2021), 113008, DOI 10.1016/j.cam.2020.113008, Web of Science®Google Scholar

2025

Related Posts