A fixed-point approach to control problems for Kolmogorov type second-order equations and systems

Abstract

In this paper, the second-order differential equations and systems of Kolmogorov type are defined. With reference to population dynamics models, unlike the first-order equations which give the expression of the per capita rate, in the case of the second-order equations, the law of change of the per capita rate is given. Several control problems with fixed final time and fixed final state, with additive and multiplicative control, are studied. Their controllability is proved with fixed-point methods, the theorems of Banach, Schauder, Krasnoselskii, Avramescu and Perov.

Authors

Radu Precup
Faculty of Mathematics and Computer Science and Institute of Advanced Studies in Science and Technology Babes-Bolyai University, Cluj-Napoca Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy,Β Cluj-Napoca, Romania

Alexandru Hofman
Faculty of Mathematics and Computer Science Babes-Bolyai University, Cluj-Napoca Romania

Keywords

Kolmogorov system; Lotka–Volterra system; control problem; fixed point; matrix convergent to zero; Volterra–Fredholm integral equation.

Paper coordinates

Al. Hofman, R. Precup, A fixed-point approach to control problems for Kolmogorov type second-order equations and systems, 27 (2025), art. no. 7, https://doi.org/10.1007/s11784-024-01160-5

PDF

freely available at the publisher

About this paper

Journal

Journal of Fixed Point Theory and ApplicationsΒ 

Publisher Name
Print ISSN

1661-7738

Online ISSN

1661-7746

google scholar link

[1] Allen, L.J.S.: An Introduction to Mathematical Biology. Pearson Education, London (2006)
[2] Avramescu, C.: On a fixed point theorem (in Romanian). Studii ΒΈsi Cercet˘ari Matematice 22(2), 215–221 (1970)
[3] Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, Berlin (2012)
[4] Coron, J.M.: Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136. American Mathematical Society, Providence (2007)
[5] Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)
[6] Haplea, I.SΒΈ, Parajdi, L.G., Precup, R.: On the controllability of a system modeling cell dynamics related to leukemia. Symmetry 13, 1867 (2021)
[7] He, X., Zhu, Z., Chen, J., Chen, F.: Dynamical analysis of a Lotka Volterra commensalism model with additive Allee effect. Open Math. 20, 646–665 (2022)
[8] Hofman, A.: An algorithm for solving a control problem for Kolmogorov systems, Studia. Universitatis Babes-Bolyai. Mathematica 68, 331–340 (2023)
[9] Hofman, A., Precup, R.: On some control problems for Kolmogorov type systems. Math. Model. Control 2, 90–99 (2022)
[10] Hofman, A., Precup, R.: Vector fixed point approach to control of Kolmogorov differential systems. Contemp. Math. 5(2), 1968–1981 (2024)
[11] Kolmogorov, A.N.: Sulla teoria di Volterra della lotta per l’esistenza. Giornale dell Istituto Italiano degli Attuari 7, 74–80 (1936)
[12] Krasnoselskii, M.A.: Some problems of nonlinear analysis. Am. Math. Soc. Transl. Ser. 2(10), 345–409 (1958)
[13] Li, X., Liu, Z.H., MigΒ΄orski, S.: Approximate controllability for second-order nonlinear evolution hemivariational inequalities. Electron. J. Qual. Theory Differ. Equ. 2015, 100 (2015)
[14] Li, J.: Control Schemes to reduce risk of extinction in the Lotka-Volterra predator-prey model. J. Appl. Math. Phys. 2(7), 644–652 (2014)
[15] Li, J., Zhao, A., Yan, J.: The permanence and global attractivity of a Kolmogorov system with feedback controls. Nonlinear Anal. Real World Appl. 10, 506–518 (2009)
[16] Llibre, J., Salhi, T.: On the dynamics of a class of Kolmogorov systems. Appl. Math. Comput. 225, 242–245 (2013)
[17] Lois-Prados, C., Precup, R.: Positive periodic solutions for Lotka-Volterra systems with a general attack rate. Nonlinear Anal. Real World Appl. 52, 103024
(2020)
[18] Mahmudov, N.I., Udhayakumar, R., Vijayakumar, V.: On the approximate controllability of second-order evolution hemivariational inequalities. Results Math. 75, 160 (2020)
[19] Murray, J.D.: An Introduction to Mathematical Biology, vol. 1. Springer, New York (2011)
[20] Parajdi, L.G., P˘atrulescu, F., Precup, R., Haplea, I.SΒΈ: Two numerical methods for solving a nonlinear system of integral equations of mixed Volterra-Fredholm type arising from a control problem related to leukemia. J. Appl. Anal. Comput. 13, 1797–1812 (2023)
[21] Perov, A.I.: On the Cauchy problem for a system of ordinary differential equations (Russian). Pviblizhen. Met. Reshen. Differ. Uvavn. 2, 115–134 (1964)
[22] Precup, R.: Methods in Nonlinear Integral Equations. Springer, Dordrecht (2002)
[23] Precup, R.: The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comput. Model. 49, 703–708 (2009)
[24] Precup, R.: On some applications of the controllability principle for fixed point equations. Results Appl. Math. 13, 100236 (2022)
[25] Quinn, M.D., Carmichael, N.: An approach to non-linear control problems using fixed-point methods, degree theory and pseudo-inverses. Numer. Funct. Anal. Optim. 7, 197–219 (1985)
[26] Reich, S.: Fixed points of condensing functions. J. Math. Anal. Appl. 41, 460–467 (1973)
[27] Sigmund, K.: Kolmogorov and population dynamics. In: Charpentier, E., Lesne, A., Nikolski, N.K. (eds.) Kolmogorov’s Heritage in Mathematics. Springer, Berlin (2007)
[28] Tigan, G., Lazureanu, C., Munteanu, F., Sterbeti, C., Florea, A.: Analysis of a class of Kolmogorov systems. Nonlinear Anal. Real World Appl. 57, 103202 (2021)

Paper (preprint) in HTML form

A fixed point approach to control problems for Kolmogorov type second order equations and systems

Alexandru Hofman, Radu Precup A. Hofman, Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania alexandru.hofman@ubbcluj.ro R. Precup, Faculty of Mathematics and Computer Science and Institute of Advanced Studies in Science and Technology, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania & Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O. Box 68-1, 400110 Cluj-Napoca, Romania r.precup@ictp.acad.ro
Abstract.

In this paper the second order differential equations and systems of Kolmogorov type are defined. With reference to population dynamics models, unlike the first order equations which give the expression of the per capita rate, in the case of the second order equations, the law of change of the per capita rate is given. Several control problems with fixed final time and fixed final state, with additive and multiplicative control are studied. Their controllability is proved with fixed point methods, the theorems of Banach, Schauder, Krasnoselskii, Avramescu and Perov.

Key words and phrases:
Kolmogorov system, Lotka-Volterra system, control problem, fixed point, matrix convergent to zero, Volterra-Fredholm integral equation.
1991 Mathematics Subject Classification:
34H05, 37N25, 34A12, 34K35

1. Introduction and Preliminaries

The well-known Lotka-Volterra system for the dynamics of two species in competition (prey-predator),

{xβ€²=x⁒(Ξ±βˆ’Ξ²β’y)yβ€²=βˆ’y⁒(Ξ²βˆ’Ξ³β’x),casessuperscriptπ‘₯β€²π‘₯𝛼𝛽𝑦otherwisesuperscript𝑦′𝑦𝛽𝛾π‘₯otherwise\begin{cases}x^{\prime}=x\left(\alpha-\beta y\right)\\ y^{\prime}=-y\left(\beta-\gamma x\right),\end{cases}{ start_ROW start_CELL italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_x ( italic_Ξ± - italic_Ξ² italic_y ) end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = - italic_y ( italic_Ξ² - italic_Ξ³ italic_x ) , end_CELL start_CELL end_CELL end_ROW

finds its generalization in the form of Kolmogorov’s system [11, 27]

(1.1) {xβ€²=x⁒f⁒(x,y)yβ€²=y⁒g⁒(x,y).casessuperscriptπ‘₯β€²π‘₯𝑓π‘₯𝑦otherwisesuperscript𝑦′𝑦𝑔π‘₯𝑦otherwise\begin{cases}x^{\prime}=xf(x,y)\\ y^{\prime}=yg(x,y).\end{cases}{ start_ROW start_CELL italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_x italic_f ( italic_x , italic_y ) end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_y italic_g ( italic_x , italic_y ) . end_CELL start_CELL end_CELL end_ROW

The particularity of this system consists in the explicit expressions f⁒(x,y)𝑓π‘₯𝑦f\left(x,y\right)italic_f ( italic_x , italic_y ) and g⁒(x,y)𝑔π‘₯𝑦g\left(x,y\right)italic_g ( italic_x , italic_y ) of the growth rates per capita xβ€²xsuperscriptπ‘₯β€²π‘₯\frac{x^{\prime}}{x}divide start_ARG italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_ARG start_ARG italic_x end_ARG and yβ€²ysuperscript𝑦′𝑦\frac{y^{\prime}}{y}divide start_ARG italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_ARG start_ARG italic_y end_ARG of the two species. Systems of this type, with rates f𝑓fitalic_f and g𝑔gitalic_g given by explicit expressions, arise by modeling from numerous problems in ecology, biology, medicine, engineering and economics (see, e.g., [1, 3, 6, 7, 19]), and their analysis covers a series of mathematical aspects such as the existence of solutions, periodicity, permanence, extinction, stability, bifurcation and control [6, 7, 14, 15, 16, 17, 28].

Through variable changes x=euπ‘₯superscript𝑒𝑒x=e^{u}italic_x = italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT and y=ev,𝑦superscript𝑒𝑣y=e^{v},italic_y = italic_e start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT , system (1.1) turns into the normal form

{uβ€²=f⁒(eu,ev)vβ€²=g⁒(eu,ev).casessuperscript𝑒′𝑓superscript𝑒𝑒superscript𝑒𝑣otherwisesuperscript𝑣′𝑔superscript𝑒𝑒superscript𝑒𝑣otherwise\begin{cases}u^{\prime}=f\left(e^{u},e^{v}\right)\\ v^{\prime}=g\left(e^{u},e^{v}\right).\end{cases}{ start_ROW start_CELL italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_f ( italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT ) end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_v start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_g ( italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT ) . end_CELL start_CELL end_CELL end_ROW

In this paper, by a first-order Kolmogorov equation we mean an equation of the form xβ€²=x⁒f⁒(t,x).superscriptπ‘₯β€²π‘₯𝑓𝑑π‘₯\ x^{\prime}=xf(t,x).\ italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_x italic_f ( italic_t , italic_x ) .As before, by changing the variable x=euπ‘₯superscript𝑒𝑒x=e^{u}italic_x = italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT it becomes uβ€²=f⁒(t,eu)superscript𝑒′𝑓𝑑superscript𝑒𝑒u^{\prime}=f\left(t,e^{u}\right)italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_f ( italic_t , italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT ).

By analogy we say that a second-order equation is a second-order Kolmogorov equation if it has the form

(xβ€²x)β€²=f⁒(t,x),superscriptsuperscriptπ‘₯β€²π‘₯′𝑓𝑑π‘₯\left(\frac{x^{\prime}}{x}\right)^{\prime}=f(t,x),( divide start_ARG italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_ARG start_ARG italic_x end_ARG ) start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_f ( italic_t , italic_x ) ,

or equivalently

xβ€²β€²βˆ’1x⁒xβ€²2=x⁒f⁒(t,x).x^{\prime\prime}-\frac{1}{x}x^{\prime^{2}}=xf(t,x).italic_x start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG italic_x end_ARG italic_x start_POSTSUPERSCRIPT β€² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT = italic_x italic_f ( italic_t , italic_x ) .

For these equations, in the language of population dynamics, f⁒(t,x)𝑓𝑑π‘₯f(t,x)italic_f ( italic_t , italic_x ) gives the change in the per capita rate xβ€²x.superscriptπ‘₯β€²π‘₯\frac{x^{\prime}}{x}.divide start_ARG italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_ARG start_ARG italic_x end_ARG . More generally, we call Kolmogorov equations of order n,𝑛n,italic_n , the equations of the form

(xβ€²x)(nβˆ’1)=f⁒(t,x).superscriptsuperscriptπ‘₯β€²π‘₯𝑛1𝑓𝑑π‘₯\left(\frac{x^{\prime}}{x}\right)^{(n-1)}=f(t,x).( divide start_ARG italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_ARG start_ARG italic_x end_ARG ) start_POSTSUPERSCRIPT ( italic_n - 1 ) end_POSTSUPERSCRIPT = italic_f ( italic_t , italic_x ) .

All these equations have the property that by changing the variable x=euπ‘₯superscript𝑒𝑒x=e^{u}italic_x = italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT they become

uβ€²β€²=f⁒(t,eu)superscript𝑒′′𝑓𝑑superscript𝑒𝑒u^{\prime\prime}=f\left(t,e^{u}\right)italic_u start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT = italic_f ( italic_t , italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT )

and

u(n)=f⁒(t,eu),superscript𝑒𝑛𝑓𝑑superscript𝑒𝑒u^{(n)}=f\left(t,e^{u}\right),italic_u start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT = italic_f ( italic_t , italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT ) ,

respectively.

Generally speaking (see [4]), from a practical point of view, it is important that a mathematical model that describes a certain process can be controlled so that its solution representing the state of the process satisfies a certain requirement, called the controllability condition. The control, which can be a constant, a vector or a function of time, is most often exercised over the parameters of the model (see [20]). For Kolmogorov equations and systems, in case that the rate of change f𝑓fitalic_f is given and no parameters are highlighted, one can exercise the control on f𝑓fitalic_f itself. We can perform the control by changing this rate f𝑓fitalic_f either additively as fβˆ’Ξ»,π‘“πœ†f-\lambda,italic_f - italic_Ξ» , or multiplicatively as λ⁒f.πœ†π‘“\lambda f.italic_Ξ» italic_f . One of the common approaches in dealing with the controllability of models is based on fixed point theory (see, e.g., [4, 13, 18, 24, 25]).

In this paper we deal with control problems for second-order equations and systems of Kolmogorov type with additive and multiplicative controls. In case of one equation, the requirement is that, starting from a known initial state, say x⁒(0)=a,x′⁒(0)=0,formulae-sequenceπ‘₯0π‘Žsuperscriptπ‘₯β€²00x(0)=a,\ x^{\prime}(0)=0,italic_x ( 0 ) = italic_a , italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = 0 , the state variable reaches at a moment of time T,𝑇T,italic_T , a desired level xTsubscriptπ‘₯𝑇x_{T}italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT, i.e., x⁒(T)=xT.π‘₯𝑇subscriptπ‘₯𝑇x\left(T\right)=x_{T}.italic_x ( italic_T ) = italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT . For a two-dimensional system, the controllability condition will be x⁒(T)=xT,y⁒(T)=yT.formulae-sequenceπ‘₯𝑇subscriptπ‘₯𝑇𝑦𝑇subscript𝑦𝑇x\left(T\right)=x_{T},\ y\left(T\right)=y_{T}.italic_x ( italic_T ) = italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT , italic_y ( italic_T ) = italic_y start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT . The controllability is proved via the general controllability principle of fixed point equations [24] and the fixed point theorems of Banach, Schauder, Krasnoselskii, Perov and Avramescu. For systems we use the vector approach based on matrices (see [22]), which allows the formulation of the conditions on the functions f𝑓fitalic_f and g𝑔gitalic_g cumulatively. This work is a continuation of our previous papers [24, 9, 8, 10, 20].

Working with general Kolmogorov equations and systems, our results can be applied to numerous particular cases, subject to satisfying the required conditions for the functions f,g.𝑓𝑔f,\ g.italic_f , italic_g .


We conclude this introductory section by recalling some notions and results in fixed point theory that are probably less well known, such as the Krasnoseskii, Avramescu, and Perov theorems (see [2, 5, 12, 21, 22, 26, 23]).

Theorem 1.1 (Krasnoselskii).

Let D𝐷Ditalic_D be a closed bounded convex subset of a Banach space X,A:Dβ†’X:𝑋𝐴→𝐷𝑋X,\ A:D\rightarrow Xitalic_X , italic_A : italic_D β†’ italic_X a contraction and B:Dβ†’X:𝐡→𝐷𝑋B:D\rightarrow Xitalic_B : italic_D β†’ italic_X a continuous mapping with B⁒(D)𝐡𝐷B\left(D\right)italic_B ( italic_D ) relatively compact. If

A⁒(x)+B⁒(y)∈Dfor every β’x,y∈D,formulae-sequence𝐴π‘₯𝐡𝑦𝐷for every π‘₯𝑦𝐷A\left(x\right)+B\left(y\right)\in D\ \ \ \text{for every\ \ }x,y\in D,italic_A ( italic_x ) + italic_B ( italic_y ) ∈ italic_D for every italic_x , italic_y ∈ italic_D ,

then the mapping A+B𝐴𝐡A+Bitalic_A + italic_B has at least one fixed point.

Theorem 1.2 (Avramescu).

Let (D1,d)subscript𝐷1𝑑\left(D_{1},\ d\right)( italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_d ) be a complete metric space, D2subscript𝐷2D_{2}italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT a closed convex subset of a normed space Y,π‘ŒY,italic_Y , and let Ni:D1Γ—D2β†’Di,:subscript𝑁𝑖→subscript𝐷1subscript𝐷2subscript𝐷𝑖N_{i}:D_{1}\times D_{2}\rightarrow D_{i},italic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT : italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT Γ— italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β†’ italic_D start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , i=1,2𝑖12i=1,2italic_i = 1 , 2 be continuous mappings. Assume that the following conditions are satisfied:

(a):

There is a constant L∈[0,1)𝐿01L\in[0,1)italic_L ∈ [ 0 , 1 ) such that

d⁒(N1⁒(x,y),N1⁒(xΒ―,y))≀L⁒d⁒(x,xΒ―)𝑑subscript𝑁1π‘₯𝑦subscript𝑁1Β―π‘₯𝑦𝐿𝑑π‘₯Β―π‘₯d\left(N_{1}\left(x,y\right),\ N_{1}\left(\overline{x},y\right)\right)\leq Ld% \left(x,\ \overline{x}\right)italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( overΒ― start_ARG italic_x end_ARG , italic_y ) ) ≀ italic_L italic_d ( italic_x , overΒ― start_ARG italic_x end_ARG )

for all x,x¯∈D1π‘₯Β―π‘₯subscript𝐷1x,\overline{x}\in D_{1}italic_x , overΒ― start_ARG italic_x end_ARG ∈ italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and y∈D2;𝑦subscript𝐷2y\in D_{2};italic_y ∈ italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ;

(b):

N2⁒(D1Γ—D2)subscript𝑁2subscript𝐷1subscript𝐷2N_{2}\left(D_{1}\times D_{2}\right)italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT Γ— italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) is a relatively compact subset of Y.π‘ŒY.italic_Y .

Then there exists (x,y)∈D1Γ—D2π‘₯𝑦subscript𝐷1subscript𝐷2\left(x,y\right)\in D_{1}\times D_{2}( italic_x , italic_y ) ∈ italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT Γ— italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with

N1⁒(x,y)=x,N2⁒(x,y)=y.formulae-sequencesubscript𝑁1π‘₯𝑦π‘₯subscript𝑁2π‘₯𝑦𝑦N_{1}\left(x,y\right)=x,\ \ \ N_{2}\left(x,y\right)=y.italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) = italic_x , italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) = italic_y .

Finally, we recall some notions about positive matrices and the vector analog of Banach contraction theorem, namely Perov’s fixed point theorem. For a square matrix M𝑀Mitalic_M βˆˆβ„³nΓ—n⁒(ℝ+),absentsubscriptℳ𝑛𝑛subscriptℝ\in\mathcal{M}_{n\times n}\left(\mathbb{R}_{+}\right),∈ caligraphic_M start_POSTSUBSCRIPT italic_n Γ— italic_n end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) , the spectral radius ρ⁒(M)πœŒπ‘€\rho\left(M\right)italic_ρ ( italic_M ) is the maximum among the absolute values of its eigenvalues, and the following statements are equivalent (see, e.g., [22]):

(a):

ρ⁒(M)<1;πœŒπ‘€1\rho\left(M\right)<1;italic_ρ ( italic_M ) < 1 ;

(b):

Mkβ†’0β†’superscriptπ‘€π‘˜0M^{k}\rightarrow 0italic_M start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT β†’ 0 as kβ†’βˆžβ†’π‘˜k\rightarrow\inftyitalic_k β†’ ∞ (where 00 stands for the zero matrix of the same order as M𝑀Mitalic_M);

(c):

Iβˆ’M𝐼𝑀I-Mitalic_I - italic_M is nonsingular and inverse-positive, i.e., (Iβˆ’M)βˆ’1superscript𝐼𝑀1(I-M)^{-1}( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT has nonnegative entries (here I𝐼Iitalic_I stands for the unit matrix of the same order as M𝑀Mitalic_M).

A matrix M𝑀Mitalic_M having these properties is said to be convergent to zero.

We note that a vector-matrix inequality x≀M⁒x+yπ‘₯𝑀π‘₯𝑦x\leq Mx+yitalic_x ≀ italic_M italic_x + italic_y for a matrix which is convergent to zero and two column vectors x,yβˆˆβ„+n,π‘₯𝑦superscriptsubscriptℝ𝑛x,y\in\mathbf{\mathbb{R}}_{+}^{n},italic_x , italic_y ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , equivalently (Iβˆ’M)⁒x≀y,𝐼𝑀π‘₯𝑦\ \left(I-M\right)x\leq y,( italic_I - italic_M ) italic_x ≀ italic_y , can be multiplied by matrix (Iβˆ’M)βˆ’1superscript𝐼𝑀1(I-M)^{-1}( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT without changing the inequality to become equivalently x≀(Iβˆ’M)βˆ’1⁒y.π‘₯superscript𝐼𝑀1𝑦x\leq\left(I-M\right)^{-1}y.italic_x ≀ ( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_y .

In addition we note that the entries from the diagonal of a matrix that is convergent to zero are strictly less than one and for n=2,𝑛2n=2,italic_n = 2 , the necessary and sufficient condition for a matrix M=[ai⁒j]1≀i,j≀2𝑀subscriptdelimited-[]subscriptπ‘Žπ‘–π‘—formulae-sequence1𝑖𝑗2M=\left[a_{ij}\right]_{1\leq i,j\leq 2}\ italic_M = [ italic_a start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ] start_POSTSUBSCRIPT 1 ≀ italic_i , italic_j ≀ 2 end_POSTSUBSCRIPTwith nonnegative entries to be convergent to zero is

a11+a22<min⁑{2, 1+det β’M}.subscriptπ‘Ž11subscriptπ‘Ž2221det π‘€a_{11}+a_{22}<\min\left\{2,\ 1+\text{det\ }M\right\}.italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT < roman_min { 2 , 1 + det italic_M } .

A matrix that is convergent to zero replaces the contraction constant from Banach contraction principle when dealing with mappings N𝑁Nitalic_N from Xmsuperscriptπ‘‹π‘šX^{m}italic_X start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT to Xm,superscriptπ‘‹π‘šX^{m},italic_X start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT , where X𝑋Xitalic_X is a complete metric space with metric d.𝑑d.italic_d . More exactly, Perov’s vector analog of Banach’s contraction principle is the following.

Theorem 1.3 (Perov).

Assume that there are numbers ai⁒jβˆˆβ„+subscriptπ‘Žπ‘–π‘—subscriptℝa_{ij}\in\mathbf{\mathbb{R}}_{+}italic_a start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT (i,j=1,2,…,m)formulae-sequence𝑖𝑗12β€¦π‘š\left(i,j=1,2,...,m\right)( italic_i , italic_j = 1 , 2 , … , italic_m ) with

d⁒(Ni⁒(x),Ni⁒(y))β‰€βˆ‘j=1mai⁒j⁒d⁒(xj,yj),i=1,2,…,m,formulae-sequence𝑑subscript𝑁𝑖π‘₯subscript𝑁𝑖𝑦superscriptsubscript𝑗1π‘šsubscriptπ‘Žπ‘–π‘—π‘‘subscriptπ‘₯𝑗subscript𝑦𝑗𝑖12β€¦π‘šd\left(N_{i}\left(x\right),N_{i}\left(y\right)\right)\leq\sum\limits_{j=1}^{m}% a_{ij}d\left(x_{j},y_{j}\right),\ \ i=1,2,...,m,italic_d ( italic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) , italic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_y ) ) ≀ βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) , italic_i = 1 , 2 , … , italic_m ,

for all x,y∈Xm,x=(x1,x2,…,xm),formulae-sequenceπ‘₯𝑦superscriptπ‘‹π‘šπ‘₯subscriptπ‘₯1subscriptπ‘₯2…subscriptπ‘₯π‘šx,y\in X^{m},\ x=\left(x_{1},\ x_{2},\ ...,\ x_{m}\right),italic_x , italic_y ∈ italic_X start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT , italic_x = ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) , y=(y1,y=(y_{1},italic_y = ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , y2,subscript𝑦2y_{2},italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , …,…...,… , ym).y_{m}).italic_y start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) . If ρ⁒(M)<1,πœŒπ‘€1\rho\left(M\right)<1,italic_ρ ( italic_M ) < 1 , where M=[ai⁒j]1≀i,j≀m,𝑀subscriptdelimited-[]subscriptπ‘Žπ‘–π‘—formulae-sequence1π‘–π‘—π‘šM=\left[a_{ij}\right]_{1\leq i,j\leq m},italic_M = [ italic_a start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ] start_POSTSUBSCRIPT 1 ≀ italic_i , italic_j ≀ italic_m end_POSTSUBSCRIPT , then N𝑁Nitalic_N has a unique fixed point in Xm.superscriptπ‘‹π‘šX^{m}.italic_X start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT . In addition, the fixed point is the limit of the sequence of successive approximations (Nk⁒(x))superscriptπ‘π‘˜π‘₯\left(N^{k}\left(x\right)\right)( italic_N start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( italic_x ) ) starting from any point xπ‘₯xitalic_x of Xm.superscriptπ‘‹π‘šX^{m}.italic_X start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT .

Using Perov’s theorem, the nonlinear terms of a system of equations can behave as independently as possible with respect to the variables of the system.

2. Control of second order Kolmogorov equations

2.1. Problems with additive control

We consider the following control problem of a second-order Kolmogorov equation

(2.1) {(x′⁒(t)x⁒(t))β€²=f⁒(t,x⁒(t))βˆ’Ξ»x⁒(0)=a,x′⁒(0)=0x>0⁒ on β’[0,T],x⁒(T)=xT,casessuperscriptsuperscriptπ‘₯′𝑑π‘₯𝑑′𝑓𝑑π‘₯π‘‘πœ†otherwiseformulae-sequenceπ‘₯0π‘Žsuperscriptπ‘₯β€²00otherwiseformulae-sequenceπ‘₯0 on 0𝑇π‘₯𝑇subscriptπ‘₯𝑇otherwise\begin{cases}\left(\frac{x^{\prime}(t)}{x(t)}\right)^{\prime}=f(t,x(t))-% \lambda\\ x(0)=a,\ \ \ x^{\prime}(0)=0\\ x>0\text{ on\ }\left[0,T\right],\ \ \ x\left(T\right)=x_{T},\end{cases}{ start_ROW start_CELL ( divide start_ARG italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) end_ARG start_ARG italic_x ( italic_t ) end_ARG ) start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_f ( italic_t , italic_x ( italic_t ) ) - italic_Ξ» end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_x ( 0 ) = italic_a , italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = 0 end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_x > 0 on [ 0 , italic_T ] , italic_x ( italic_T ) = italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT , end_CELL start_CELL end_CELL end_ROW

where a,xT>0,π‘Žsubscriptπ‘₯𝑇0a,\ x_{T}>0,italic_a , italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT > 0 , and the additive control Ξ»πœ†\lambdaitalic_Ξ» is scalar.

Our first result is an existence and uniqueness theorem of the solution (x,Ξ»)π‘₯πœ†\left(x,\lambda\right)( italic_x , italic_Ξ» ) of the control problem with xπ‘₯xitalic_x in a ball of a given radius ρ𝜌\rhoitalic_ρ of the space C⁒[0,T]𝐢0𝑇C\left[0,T\right]italic_C [ 0 , italic_T ] endowed with the Chebyshev norm β€–xβ€–βˆž=maxt∈[0,T]⁑|x⁒(t)|.subscriptnormπ‘₯subscript𝑑0𝑇π‘₯𝑑\left\|x\right\|_{\infty}=\max_{t\in\left[0,T\right]}\left|x\left(t\right)% \right|.βˆ₯ italic_x βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT = roman_max start_POSTSUBSCRIPT italic_t ∈ [ 0 , italic_T ] end_POSTSUBSCRIPT | italic_x ( italic_t ) | . Denote

Ξ±=ln⁑a,uT=ln⁑xT,Ξ³=2β’Ξ±βˆ’uTT2,R=ln⁑ρformulae-sequenceπ›Όπ‘Žformulae-sequencesubscript𝑒𝑇subscriptπ‘₯𝑇formulae-sequence𝛾2𝛼subscript𝑒𝑇superscript𝑇2π‘…πœŒ\alpha=\ln a,\ \ \ u_{T}=\ln x_{T},\ \ \ \ \gamma=2\frac{\alpha-u_{T}}{T^{2}},% \ \ \ R=\ln\rhoitalic_Ξ± = roman_ln italic_a , italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT = roman_ln italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT , italic_Ξ³ = 2 divide start_ARG italic_Ξ± - italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , italic_R = roman_ln italic_ρ

and for a nonnegative number L,𝐿L,italic_L , in case that L=0,𝐿0L=0,italic_L = 0 , by 1L1𝐿\frac{1}{L}divide start_ARG 1 end_ARG start_ARG italic_L end_ARG let it mean +∞.+\infty.+ ∞ .

Theorem 2.1.

Let Lβˆˆβ„+𝐿subscriptℝL\in\mathbb{R}_{+}italic_L ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT and ρ>0.𝜌0\rho>0.italic_ρ > 0 . Assume that

(2.2) exp⁑(max⁑{|Ξ±|,|uT|}+1)≀ρ<2L⁒T2𝛼subscript𝑒𝑇1𝜌2𝐿superscript𝑇2\exp\left(\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+1\right)% \leq\rho<\frac{2}{LT^{2}}roman_exp ( roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + 1 ) ≀ italic_ρ < divide start_ARG 2 end_ARG start_ARG italic_L italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG

and the function f:[0,T]Γ—[0,ρ]→ℝ:𝑓→0𝑇0πœŒβ„f:\left[0,T\right]\times[0,\rho]\rightarrow\mathbb{R}italic_f : [ 0 , italic_T ] Γ— [ 0 , italic_ρ ] β†’ blackboard_R is continuous, f⁒(β‹…,0)≑0𝑓⋅00f\left(\cdot,0\right)\equiv 0italic_f ( β‹… , 0 ) ≑ 0 and satisfies the Lipschitz condition

(2.3) |f⁒(t,v)βˆ’f⁒(t,vΒ―)|≀L⁒|vβˆ’vΒ―|,𝑓𝑑𝑣𝑓𝑑¯𝑣𝐿𝑣¯𝑣\left|f(t,v)-f(t,\overline{v})\right|\leq L|v-\overline{v}|,| italic_f ( italic_t , italic_v ) - italic_f ( italic_t , overΒ― start_ARG italic_v end_ARG ) | ≀ italic_L | italic_v - overΒ― start_ARG italic_v end_ARG | ,

for all t∈[0,T]𝑑0𝑇t\in[0,T]italic_t ∈ [ 0 , italic_T ], v,v¯∈[0,ρ].𝑣¯𝑣0𝜌v,\overline{v}\in[0,\rho].italic_v , overΒ― start_ARG italic_v end_ARG ∈ [ 0 , italic_ρ ] . Then the control problem has a unique solution (xβˆ—,Ξ»βˆ—)superscriptπ‘₯βˆ—superscriptπœ†βˆ—(x^{\ast},\lambda^{\ast})( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) with xβˆ—>0,superscriptπ‘₯βˆ—0x^{\ast}>0,italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT > 0 , β€–xβˆ—β€–βˆžβ‰€Ο,subscriptnormsuperscriptπ‘₯βˆ—πœŒ\left\|x^{\ast}\right\|_{\infty}\leq\rho,βˆ₯ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_ρ , and

(2.4) Ξ»βˆ—=2T2⁒(Ξ±βˆ’ln⁑xT+∫0T∫0Ο„f⁒(s,xβˆ—β’(s))⁒𝑑s⁒𝑑τ).superscriptπœ†βˆ—2superscript𝑇2𝛼subscriptπ‘₯𝑇superscriptsubscript0𝑇superscriptsubscript0πœπ‘“π‘ superscriptπ‘₯βˆ—π‘ differential-d𝑠differential-d𝜏\lambda^{\ast}=\frac{2}{T^{2}}\left(\alpha-\ln x_{T}+\int_{0}^{T}\int_{0}^{% \tau}f(s,x^{\ast}(s))dsd\tau\right).italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT = divide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_Ξ± - roman_ln italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_s ) ) italic_d italic_s italic_d italic_Ο„ ) .
Proof.

We look for positive xπ‘₯xitalic_x of the form x=eu,π‘₯superscript𝑒𝑒x=e^{u},italic_x = italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT , whence u=ln⁑x.𝑒π‘₯u=\ln\ x.italic_u = roman_ln italic_x . The initial conditions give eu⁒(0)=a,superscript𝑒𝑒0π‘Že^{u(0)}=a,italic_e start_POSTSUPERSCRIPT italic_u ( 0 ) end_POSTSUPERSCRIPT = italic_a , whence u⁒(0)=ln⁑a=Ξ±,𝑒0π‘Žπ›Όu(0)=\ln\ a=\alpha,italic_u ( 0 ) = roman_ln italic_a = italic_Ξ± , and u′⁒(0)⁒eu⁒(0)=0,superscript𝑒′0superscript𝑒𝑒00u^{\prime}(0)e^{u(0)}=0,italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) italic_e start_POSTSUPERSCRIPT italic_u ( 0 ) end_POSTSUPERSCRIPT = 0 , hence u′⁒(0)=0superscript𝑒′00u^{\prime}(0)=0italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = 0. Also, the controllability condition yields u⁒(T)=uT.𝑒𝑇subscript𝑒𝑇u\left(T\right)=u_{T}.italic_u ( italic_T ) = italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT . Substituting x=euπ‘₯superscript𝑒𝑒x=e^{u}italic_x = italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT in (2.1) gives the second-order equation uβ€²β€²=f⁒(t,eu⁒(t))βˆ’Ξ».superscript𝑒′′𝑓𝑑superscriptπ‘’π‘’π‘‘πœ†u^{\prime\prime}=f\left(t,e^{u(t)}\right)-\lambda.italic_u start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT = italic_f ( italic_t , italic_e start_POSTSUPERSCRIPT italic_u ( italic_t ) end_POSTSUPERSCRIPT ) - italic_Ξ» . Integrating two times we obtain the following equation

(2.5) u⁒(t)=Ξ±+∫0t∫0Ο„f⁒(s,eu⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ’Ξ»β’t22.𝑒𝑑𝛼superscriptsubscript0𝑑superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-dπœπœ†superscript𝑑22u(t)=\alpha+\int_{0}^{t}\int_{0}^{\tau}f(s,e^{u(s)})dsd\tau-\frac{\lambda t^{2% }}{2}.italic_u ( italic_t ) = italic_Ξ± + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ - divide start_ARG italic_Ξ» italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG .

Using the controllability condition u⁒(T)=uT,𝑒𝑇subscript𝑒𝑇u(T)=u_{T},italic_u ( italic_T ) = italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT , gives the expression of the control parameter in terms of the variable u𝑒uitalic_u, namely

(2.6) Ξ»=2T2⁒(Ξ±βˆ’uT+∫0T∫0Ο„f⁒(s,eu⁒(s))⁒𝑑s⁒𝑑τ).πœ†2superscript𝑇2𝛼subscript𝑒𝑇superscriptsubscript0𝑇superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏\lambda=\frac{2}{T^{2}}\left(\alpha-u_{T}+\int_{0}^{T}\int_{0}^{\tau}f(s,e^{u(% s)})dsd\tau\right).italic_Ξ» = divide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_Ξ± - italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ ) .

Substituting Ξ»πœ†\lambdaitalic_Ξ» into (2.5) we obtain an integral equation of Volterra-Fredholm type

(2.7) u⁒(t)=Ξ±βˆ’Ξ³β’t22+∫0t∫0Ο„f⁒(s,eu⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ’t2T2⁒∫0T∫0Ο„f⁒(s,eu⁒(s))⁒𝑑s⁒𝑑τ.𝑒𝑑𝛼𝛾superscript𝑑22superscriptsubscript0𝑑superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏superscript𝑑2superscript𝑇2superscriptsubscript0𝑇superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏u(t)=\alpha-\frac{\gamma t^{2}}{2}+\int_{0}^{t}\int_{0}^{\tau}f(s,e^{u(s)})dsd% \tau-\frac{t^{2}}{T^{2}}\int_{0}^{T}\int_{0}^{\tau}f(s,e^{u(s)})dsd\tau.italic_u ( italic_t ) = italic_Ξ± - divide start_ARG italic_Ξ³ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ .

Let BRsubscript𝐡𝑅B_{R}italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT be the closed ball of the space C⁒[0,T]𝐢0𝑇C\left[0,T\right]italic_C [ 0 , italic_T ], centered at the origin and of radius R.𝑅R.italic_R .We look for a fixed point u∈BR𝑒subscript𝐡𝑅u\in B_{R}italic_u ∈ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT of the operator A𝐴Aitalic_A given by

A⁒(u)⁒(t)𝐴𝑒𝑑\displaystyle A(u)(t)italic_A ( italic_u ) ( italic_t ) =\displaystyle== Ξ±βˆ’Ξ³β’t22+∫0t∫0Ο„f⁒(s,eu⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ’t2T2⁒∫0T∫0Ο„f⁒(s,eu⁒(s))⁒𝑑s⁒𝑑τ𝛼𝛾superscript𝑑22superscriptsubscript0𝑑superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏superscript𝑑2superscript𝑇2superscriptsubscript0𝑇superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏\displaystyle\alpha-\frac{\gamma t^{2}}{2}+\int_{0}^{t}\int_{0}^{\tau}f(s,e^{u% (s)})dsd\tau-\frac{t^{2}}{T^{2}}\int_{0}^{T}\int_{0}^{\tau}f(s,e^{u(s)})dsd\tauitalic_Ξ± - divide start_ARG italic_Ξ³ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„
=\displaystyle== (1βˆ’t2T2)⁒α+t2T2⁒uT+(1βˆ’t2T2)⁒∫0t∫0Ο„f⁒(s,eu⁒(s))⁒𝑑s⁒𝑑τ1superscript𝑑2superscript𝑇2𝛼superscript𝑑2superscript𝑇2subscript𝑒𝑇1superscript𝑑2superscript𝑇2superscriptsubscript0𝑑superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏\displaystyle\left(1-\frac{t^{2}}{T^{2}}\right)\alpha+\frac{t^{2}}{T^{2}}u_{T}% +\left(1-\frac{t^{2}}{T^{2}}\right)\int_{0}^{t}\int_{0}^{\tau}f(s,e^{u(s)})dsd\tau( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) italic_Ξ± + divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT + ( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„
βˆ’t2T2⁒∫tT∫0Ο„f⁒(s,eu⁒(s))⁒𝑑s⁒𝑑τ.superscript𝑑2superscript𝑇2superscriptsubscript𝑑𝑇superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏\displaystyle-\frac{t^{2}}{T^{2}}\int_{t}^{T}\int_{0}^{\tau}f(s,e^{u(s)})dsd\tau.- divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ .

We apply Banach’s fixed point theorem to the operator A𝐴Aitalic_A on the closed ball BRsubscript𝐡𝑅B_{R}italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT. First we prove that A𝐴Aitalic_A is a contraction. Let u,u¯∈BR.𝑒¯𝑒subscript𝐡𝑅u,\ \overline{u}\in B_{R}.italic_u , overΒ― start_ARG italic_u end_ARG ∈ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT . Using the Lipschitz condition on f𝑓fitalic_f and arguments related to convex combinations, we obtain the following estimate

|A⁒(u)⁒(t)βˆ’A⁒(uΒ―)⁒(t)|𝐴𝑒𝑑𝐴¯𝑒𝑑\displaystyle|A(u)(t)-A(\overline{u})(t)|| italic_A ( italic_u ) ( italic_t ) - italic_A ( overΒ― start_ARG italic_u end_ARG ) ( italic_t ) |
≀\displaystyle\leq≀ (1βˆ’t2T2)⁒∫0t∫0Ο„|f⁒(s,eu⁒(s))βˆ’f⁒(s,eu¯⁒(s))|⁒𝑑s⁒𝑑τ+t2T2⁒∫tT∫0Ο„|f⁒(s,eu⁒(s))βˆ’f⁒(s,eu¯⁒(s))|⁒𝑑s⁒𝑑τ1superscript𝑑2superscript𝑇2superscriptsubscript0𝑑superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠𝑓𝑠superscript𝑒¯𝑒𝑠differential-d𝑠differential-d𝜏superscript𝑑2superscript𝑇2superscriptsubscript𝑑𝑇superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠𝑓𝑠superscript𝑒¯𝑒𝑠differential-d𝑠differential-d𝜏\displaystyle\left(1-\frac{t^{2}}{T^{2}}\right)\int_{0}^{t}\int_{0}^{\tau}|f(s% ,e^{u(s)})-f(s,e^{\overline{u}(s)})|dsd\tau+\frac{t^{2}}{T^{2}}\int_{t}^{T}% \int_{0}^{\tau}|f(s,e^{u(s)})-f(s,e^{\overline{u}(s)})|dsd\tau( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) - italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_u end_ARG ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„ + divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) - italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_u end_ARG ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„
≀\displaystyle\leq≀ ∫0T∫0Ο„|f⁒(s,eu⁒(s))βˆ’f⁒(s,eu¯⁒(s))|⁒𝑑s⁒𝑑τsuperscriptsubscript0𝑇superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠𝑓𝑠superscript𝑒¯𝑒𝑠differential-d𝑠differential-d𝜏\displaystyle\int_{0}^{T}\int_{0}^{\tau}|f(s,e^{u(s)})-f(s,e^{\overline{u}(s)}% )|dsd\tau∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) - italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_u end_ARG ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„
≀\displaystyle\leq≀ L⁒∫0T∫0Ο„|eu⁒(s)βˆ’eu¯⁒(s)|⁒𝑑s⁒𝑑τ.𝐿superscriptsubscript0𝑇superscriptsubscript0𝜏superscript𝑒𝑒𝑠superscript𝑒¯𝑒𝑠differential-d𝑠differential-d𝜏\displaystyle L\int_{0}^{T}\int_{0}^{\tau}|e^{u(s)}-e^{\overline{u}(s)}|dsd\tau.italic_L ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_u end_ARG ( italic_s ) end_POSTSUPERSCRIPT | italic_d italic_s italic_d italic_Ο„ .

Now using Lagrange’s mean value theorem we have |eu⁒(s)βˆ’eu¯⁒(s)|≀ρ⁒|u⁒(s)βˆ’u¯⁒(s)|.superscript𝑒𝑒𝑠superscriptπ‘’Β―π‘’π‘ πœŒπ‘’π‘ Β―π‘’π‘ \left|e^{u(s)}-e^{\overline{u}(s)}\right|\leq\rho\left|u\left(s\right)-% \overline{u}(s)\right|.| italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_u end_ARG ( italic_s ) end_POSTSUPERSCRIPT | ≀ italic_ρ | italic_u ( italic_s ) - overΒ― start_ARG italic_u end_ARG ( italic_s ) | . Then

|A⁒(u)⁒(t)βˆ’A⁒(uΒ―)⁒(t)|≀T22⁒L⁒ρ⁒‖uβˆ’uΒ―β€–βˆž.𝐴𝑒𝑑𝐴¯𝑒𝑑superscript𝑇22𝐿𝜌subscriptnorm𝑒¯𝑒|A(u)(t)-A(\overline{u})(t)|\leq\frac{T^{2}}{2}L\rho||u-\overline{u}||_{\infty}.| italic_A ( italic_u ) ( italic_t ) - italic_A ( overΒ― start_ARG italic_u end_ARG ) ( italic_t ) | ≀ divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_L italic_ρ | | italic_u - overΒ― start_ARG italic_u end_ARG | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT .

Taking the the maximum for t∈[0,T]𝑑0𝑇t\in[0,T]italic_t ∈ [ 0 , italic_T ] gives

β€–A⁒(u)βˆ’A⁒(uΒ―)β€–βˆžβ‰€T22⁒L⁒ρ⁒‖uβˆ’uΒ―β€–βˆž.subscriptnorm𝐴𝑒𝐴¯𝑒superscript𝑇22𝐿𝜌subscriptnorm𝑒¯𝑒||A(u)-A(\overline{u})||_{\infty}\leq\frac{T}{2}^{2}L\rho||u-\overline{u}||_{% \infty}.| | italic_A ( italic_u ) - italic_A ( overΒ― start_ARG italic_u end_ARG ) | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ divide start_ARG italic_T end_ARG start_ARG 2 end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_L italic_ρ | | italic_u - overΒ― start_ARG italic_u end_ARG | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT .

By our assumption one has T22⁒L⁒ρ<1,superscript𝑇22𝐿𝜌1\ \frac{T^{2}}{2}L\rho<1,divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_L italic_ρ < 1 , thus A𝐴Aitalic_A is a contraction on the ball BR.subscript𝐡𝑅B_{R}.italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT . We now prove that the operator A𝐴Aitalic_A maps BRsubscript𝐡𝑅B_{R}italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT into itself, that is

β€–uβ€–βˆžβ‰€Rimpliesβ€–A⁒(u)β€–βˆžβ‰€R.formulae-sequencesubscriptnorm𝑒𝑅impliessubscriptnorm𝐴𝑒𝑅||u||_{\infty}\leq R\ \ \ \text{implies}\ \ \ ||A(u)||_{\infty}\leq R.| | italic_u | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R implies | | italic_A ( italic_u ) | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R .

Using the expression of Ξ³,𝛾\gamma,italic_Ξ³ , the inequality (1βˆ’Οƒ)z1+Οƒz2≀max{z1,z2}(z1,z2βˆˆβ„+,Οƒβˆˆ[0,1]),\left(1-\sigma\right)z_{1}+\sigma z_{2}\leq\max\left\{z_{1},z_{2}\right\}\ \ % \left(z_{1},z_{2}\in\mathbb{R}_{+},\ \sigma\in\left[0,1\right]\right),( 1 - italic_Οƒ ) italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Οƒ italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≀ roman_max { italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT } ( italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_Οƒ ∈ [ 0 , 1 ] ) , and the inequality |f⁒(t,v)|=|f⁒(t,v)βˆ’f⁒(0,v)|≀L⁒|v|,𝑓𝑑𝑣𝑓𝑑𝑣𝑓0𝑣𝐿𝑣\left|f\left(t,v\right)\right|=\left|f\left(t,v\right)-f\left(0,v\right)\right% |\leq L\left|v\right|,| italic_f ( italic_t , italic_v ) | = | italic_f ( italic_t , italic_v ) - italic_f ( 0 , italic_v ) | ≀ italic_L | italic_v | , we find that

|A⁒(u)⁒(t)|𝐴𝑒𝑑\displaystyle|A(u)(t)|| italic_A ( italic_u ) ( italic_t ) |
≀\displaystyle\leq≀ |(1βˆ’t2T2)⁒α+t2T2⁒uT|+(1βˆ’t2T2)⁒∫0t∫0Ο„|f⁒(s,eu⁒(s))|⁒𝑑s⁒𝑑τ1superscript𝑑2superscript𝑇2𝛼superscript𝑑2superscript𝑇2subscript𝑒𝑇1superscript𝑑2superscript𝑇2superscriptsubscript0𝑑superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏\displaystyle\left|\left(1-\frac{t^{2}}{T^{2}}\right)\alpha+\frac{t^{2}}{T^{2}% }u_{T}\right|+\left(1-\frac{t^{2}}{T^{2}}\right)\int_{0}^{t}\int_{0}^{\tau}% \left|f(s,e^{u(s)})\right|dsd\tau| ( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) italic_Ξ± + divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | + ( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„
+t2T2⁒∫tT∫0Ο„|f⁒(s,eu⁒(s))|⁒𝑑s⁒𝑑τsuperscript𝑑2superscript𝑇2superscriptsubscript𝑑𝑇superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏\displaystyle+\frac{t^{2}}{T^{2}}\int_{t}^{T}\int_{0}^{\tau}\left|f(s,e^{u(s)}% )\right|dsd\tau+ divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„
≀\displaystyle\leq≀ max⁑{|Ξ±|,|uT|}+∫0T∫0Ο„|f⁒(s,eu⁒(s))|⁒𝑑s⁒𝑑τ𝛼subscript𝑒𝑇superscriptsubscript0𝑇superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏\displaystyle\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+\int_{0% }^{T}\int_{0}^{\tau}\left|f(s,e^{u(s)})\right|dsd\tauroman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„
≀\displaystyle\leq≀ max⁑{|Ξ±|,|uT|}+L⁒ρ⁒T22𝛼subscriptπ‘’π‘‡πΏπœŒsuperscript𝑇22\displaystyle\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+L\rho% \frac{T^{2}}{2}roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + italic_L italic_ρ divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG
<\displaystyle<< max⁑{|Ξ±|,|uT|}+1.𝛼subscript𝑒𝑇1\displaystyle\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+1.roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + 1 .

By our assumptions, max⁑{|Ξ±|,|uT|}+1≀eρ=R,𝛼subscript𝑒𝑇1superscriptπ‘’πœŒπ‘…\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+1\leq e^{\rho}=R,roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + 1 ≀ italic_e start_POSTSUPERSCRIPT italic_ρ end_POSTSUPERSCRIPT = italic_R , thus |A⁒(u)⁒(t)|≀R𝐴𝑒𝑑𝑅\left|A(u)(t)\right|\leq R| italic_A ( italic_u ) ( italic_t ) | ≀ italic_R for all t∈[0,T],𝑑0𝑇t\in\left[0,T\right],italic_t ∈ [ 0 , italic_T ] , whence β€–A⁒(u)β€–βˆžβ‰€Rsubscriptnorm𝐴𝑒𝑅\left\|A\left(u\right)\right\|_{\infty}\leq Rβˆ₯ italic_A ( italic_u ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R as wished. Therefore the Banach contraction theorem applies and together with (2.6) gives the conclusion.

We note the case L=0𝐿0L=0italic_L = 0 is trivial since then f=0𝑓0f=0italic_f = 0 and using (2.6) and (2.7) we immediately obtain the solution (xβˆ—,Ξ»βˆ—),superscriptπ‘₯βˆ—superscriptπœ†βˆ—\left(x^{\ast},\lambda^{\ast}\right),( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , where

xβˆ—β’(t)=exp⁑(Ξ±βˆ’(tT)2⁒(Ξ±βˆ’uT)),Ξ»βˆ—=2T2⁒(Ξ±βˆ’uT).formulae-sequencesuperscriptπ‘₯βˆ—π‘‘π›Όsuperscript𝑑𝑇2𝛼subscript𝑒𝑇superscriptπœ†βˆ—2superscript𝑇2𝛼subscript𝑒𝑇x^{\ast}\left(t\right)=\exp\left(\alpha-\left(\frac{t}{T}\right)^{2}\left(% \alpha-u_{T}\right)\right),\ \ \ \lambda^{\ast}=\frac{2}{T^{2}}\left(\alpha-u_% {T}\right).italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_t ) = roman_exp ( italic_Ξ± - ( divide start_ARG italic_t end_ARG start_ARG italic_T end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_Ξ± - italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) ) , italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT = divide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_Ξ± - italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) .

∎

Remark 2.1.

If we do not require for the solution to satisfy β€–xβˆ—β€–βˆžβ‰€Ο,subscriptnormsuperscriptπ‘₯βˆ—πœŒ\left\|x^{\ast}\right\|_{\infty}\leq\rho,βˆ₯ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_ρ , that is, the radius ρ𝜌\rhoitalic_ρ is not a priori given, but we assume however that f:[0,T]Γ—[0,+∞)→ℝ:𝑓→0𝑇0ℝf:\left[0,T\right]\times[0,+\infty)\rightarrow\mathbb{R}italic_f : [ 0 , italic_T ] Γ— [ 0 , + ∞ ) β†’ blackboard_R is continuous and satisfies the Lipschitz condition (2.3) for all t∈[0,T]𝑑0𝑇t\in[0,T]italic_t ∈ [ 0 , italic_T ], v,v¯∈[0,+∞)𝑣¯𝑣0v,\overline{v}\in[0,+\infty)italic_v , overΒ― start_ARG italic_v end_ARG ∈ [ 0 , + ∞ ), for some L𝐿Litalic_L with

exp⁑(max⁑{|Ξ±|,|uT|}+1)<2L⁒T2,𝛼subscript𝑒𝑇12𝐿superscript𝑇2\exp\left(\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+1\right)<% \frac{2}{LT^{2}},roman_exp ( roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + 1 ) < divide start_ARG 2 end_ARG start_ARG italic_L italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ,

then we may conclude that the control problem has a unique solution (xβˆ—,Ξ»βˆ—)superscriptπ‘₯βˆ—superscriptπœ†βˆ—\left(x^{\ast},\lambda^{\ast}\right)( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) with xβˆ—>0superscriptπ‘₯βˆ—0x^{\ast}>0italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT > 0 and

β€–xβˆ—β€–βˆž<2L⁒T2.subscriptnormsuperscriptπ‘₯βˆ—2𝐿superscript𝑇2\left\|x^{\ast}\right\|_{\infty}<\frac{2}{LT^{2}}.βˆ₯ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT < divide start_ARG 2 end_ARG start_ARG italic_L italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG .

Indeed, for the existence it suffices to take any number ρ𝜌\rhoitalic_ρ as in (2.2) and apply the previous result. For uniqueness, assume that xβˆ—βˆ—superscriptπ‘₯βˆ—absentβˆ—x^{\ast\ast}italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT comes from an other solution. Then β€–xβˆ—β€–βˆžβ‰€Ο<β€–xβˆ—βˆ—β€–βˆž<2L⁒T2,subscriptnormsuperscriptπ‘₯βˆ—πœŒsubscriptnormsuperscriptπ‘₯βˆ—absentβˆ—2𝐿superscript𝑇2\left\|x^{\ast}\right\|_{\infty}\leq\rho<\left\|x^{\ast\ast}\right\|_{\infty}<% \frac{2}{LT^{2}},βˆ₯ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_ρ < βˆ₯ italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT < divide start_ARG 2 end_ARG start_ARG italic_L italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , which contradicts the conclusion of Theorem 2.1 applied to ρ′=β€–xβˆ—βˆ—β€–βˆžsuperscriptπœŒβ€²subscriptnormsuperscriptπ‘₯βˆ—absentβˆ—\rho^{\prime}=\left\|x^{\ast\ast}\right\|_{\infty}italic_ρ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = βˆ₯ italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT instead of ρ.𝜌\rho.italic_ρ .

Using Schauder’s fixed point theorem, we do not need f𝑓fitalic_f to satisfy a Lipschitz condition. Instead we will assume a logarithmic growth condition.

Theorem 2.2.

Assume that the function f:[0,T]Γ—[0,ρ]→ℝ:𝑓→0𝑇0πœŒβ„f:\left[0,T\right]\times[0,\rho]\rightarrow\mathbb{R}italic_f : [ 0 , italic_T ] Γ— [ 0 , italic_ρ ] β†’ blackboard_R is continuous and satisfies the growth condition

(2.9) |f(t,v))|≀l1|lnv|+l2,\left|f(t,v))\right|\leq l_{1}\left|\ln v\right|+l_{2},| italic_f ( italic_t , italic_v ) ) | ≀ italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | roman_ln italic_v | + italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ,

for all t∈[0,T]𝑑0𝑇t\in[0,T]italic_t ∈ [ 0 , italic_T ], v∈(0,ρ]𝑣0𝜌v\in(0,\rho]italic_v ∈ ( 0 , italic_ρ ] and some constants l1,l2βˆˆβ„+subscript𝑙1subscript𝑙2subscriptℝl_{1},l_{2}\in\mathbb{R}_{+}italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT with l1<2T2.subscript𝑙12superscript𝑇2l_{1}<\frac{2}{T^{2}}.italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < divide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . In addition assume that

(2.10) ρβ‰₯exp⁑(2⁒max⁑{|Ξ±|,|uT|}+T2⁒l22βˆ’T2⁒l1).𝜌2𝛼subscript𝑒𝑇superscript𝑇2subscript𝑙22superscript𝑇2subscript𝑙1\rho\geq\exp\left(\frac{2\max\left\{\left|\alpha\right|,\left|u_{T}\right|% \right\}+T^{2}l_{2}}{2-T^{2}l_{1}}\right).italic_ρ β‰₯ roman_exp ( divide start_ARG 2 roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG 2 - italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) .

Then the control problem has at least one solution (xβˆ—,Ξ»βˆ—)superscriptπ‘₯βˆ—superscriptπœ†βˆ—(x^{\ast},\lambda^{\ast})( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) with xβˆ—>0,superscriptπ‘₯βˆ—0x^{\ast}>0,italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT > 0 , β€–xβˆ—β€–βˆžβ‰€Ο,subscriptnormsuperscriptπ‘₯βˆ—πœŒ\left\|x^{\ast}\right\|_{\infty}\leq\rho,βˆ₯ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_ρ , and Ξ»βˆ—superscriptπœ†βˆ—\lambda^{\ast}italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT given by (2.4).

Proof.

Proceeding analogously as in the proof of the previous theorem, we obtain the fixed point equation u=A⁒(u),𝑒𝐴𝑒u=A(u),italic_u = italic_A ( italic_u ) , u∈BR𝑒subscript𝐡𝑅u\in B_{R}italic_u ∈ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT and the expression of operator A𝐴Aitalic_A given by (2.1). By standard arguments based on the Arzelà–Ascoli theorem, one has that A:BRβ†’C⁒[0,T]:𝐴→subscript𝐡𝑅𝐢0𝑇A:B_{R}\rightarrow C\left[0,T\right]italic_A : italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT β†’ italic_C [ 0 , italic_T ] is completely continuous. We next deal with the invariance of BRsubscript𝐡𝑅B_{R}italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT. For any u∈BR,𝑒subscript𝐡𝑅u\in B_{R},italic_u ∈ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT , we have

|A⁒(u)⁒(t)|𝐴𝑒𝑑\displaystyle|A(u)(t)|| italic_A ( italic_u ) ( italic_t ) |
≀\displaystyle\leq≀ |(1βˆ’t2T2)⁒α+t2T2⁒uT|+(1βˆ’t2T2)⁒∫0t∫0Ο„|f⁒(s,eu⁒(s))|⁒𝑑s⁒𝑑τ1superscript𝑑2superscript𝑇2𝛼superscript𝑑2superscript𝑇2subscript𝑒𝑇1superscript𝑑2superscript𝑇2superscriptsubscript0𝑑superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏\displaystyle\left|\left(1-\frac{t^{2}}{T^{2}}\right)\alpha+\frac{t^{2}}{T^{2}% }u_{T}\right|+\left(1-\frac{t^{2}}{T^{2}}\right)\int_{0}^{t}\int_{0}^{\tau}% \left|f(s,e^{u(s)})\right|dsd\tau| ( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) italic_Ξ± + divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | + ( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„
+t2T2⁒∫tT∫0Ο„|f⁒(s,eu⁒(s))|⁒𝑑s⁒𝑑τsuperscript𝑑2superscript𝑇2superscriptsubscript𝑑𝑇superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏\displaystyle+\frac{t^{2}}{T^{2}}\int_{t}^{T}\int_{0}^{\tau}\left|f(s,e^{u(s)}% )\right|dsd\tau+ divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„
≀\displaystyle\leq≀ max⁑{|Ξ±|,|uT|}+∫0T∫0Ο„|f⁒(s,eu⁒(s))|⁒𝑑s⁒𝑑τ𝛼subscript𝑒𝑇superscriptsubscript0𝑇superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏\displaystyle\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+\int_{0% }^{T}\int_{0}^{\tau}\left|f(s,e^{u(s)})\right|dsd\tauroman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„
≀\displaystyle\leq≀ max⁑{|Ξ±|,|uT|}+∫0T∫0Ο„(l1⁒|u⁒(s)|+l2)⁒𝑑s⁒𝑑τ𝛼subscript𝑒𝑇superscriptsubscript0𝑇superscriptsubscript0𝜏subscript𝑙1𝑒𝑠subscript𝑙2differential-d𝑠differential-d𝜏\displaystyle\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+\int_{0% }^{T}\int_{0}^{\tau}(l_{1}|u(s)|+l_{2})\ dsd\tauroman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT ( italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | italic_u ( italic_s ) | + italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_d italic_s italic_d italic_Ο„
≀\displaystyle\leq≀ max⁑{|Ξ±|,|uT|}+T22⁒(l1⁒R+l2).𝛼subscript𝑒𝑇superscript𝑇22subscript𝑙1𝑅subscript𝑙2\displaystyle\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+\frac{T% ^{2}}{2}\left(l_{1}R+l_{2}\right).roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_R + italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) .

One easily can see that (2.10) yields

max⁑{|Ξ±|,|uT|}+T22⁒(l1⁒R+l2)≀R.𝛼subscript𝑒𝑇superscript𝑇22subscript𝑙1𝑅subscript𝑙2𝑅\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+\frac{T^{2}}{2}\left% (l_{1}R+l_{2}\right)\leq R.roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_R + italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ≀ italic_R .

It follows that β€–A⁒(u)β€–βˆžβ‰€Rsubscriptnorm𝐴𝑒𝑅\left\|A\left(u\right)\right\|_{\infty}\leq Rβˆ₯ italic_A ( italic_u ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R as desired. Thus Schauder’s fixed point theorem applies and gives the conclusion. ∎

Remark 2.2.

Here again, if we do not require for the solution to satisfy β€–xβˆ—β€–βˆžβ‰€Ο,subscriptnormsuperscriptπ‘₯βˆ—πœŒ\left\|x^{\ast}\right\|_{\infty}\leq\rho,βˆ₯ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_ρ , that is, the radius ρ𝜌\rhoitalic_ρ is not a priori given, but we assume however that f:[0,T]Γ—(0,+∞)→ℝ:𝑓→0𝑇0ℝf:\left[0,T\right]\times(0,+\infty)\rightarrow\mathbb{R}italic_f : [ 0 , italic_T ] Γ— ( 0 , + ∞ ) β†’ blackboard_R is continuous and satisfies the growth condition (2.9) for all t∈[0,T]𝑑0𝑇t\in[0,T]italic_t ∈ [ 0 , italic_T ], v∈(0,+∞)𝑣0v\in(0,+\infty)italic_v ∈ ( 0 , + ∞ ) and some constants l1,l2βˆˆβ„+subscript𝑙1subscript𝑙2subscriptℝl_{1},l_{2}\in\mathbb{R}_{+}italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT with l1<2T2,subscript𝑙12superscript𝑇2l_{1}<\frac{2}{T^{2}},italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < divide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , then the control problem has at least one solution. This statement is obvious if we use the above result for any ρβ‰₯ρ0𝜌subscript𝜌0\rho\geq\rho_{0}italic_ρ β‰₯ italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT where

ρ0=exp⁑(2⁒max⁑{|Ξ±|,|uT|}+T2⁒l22βˆ’T2⁒l1).subscript𝜌02𝛼subscript𝑒𝑇superscript𝑇2subscript𝑙22superscript𝑇2subscript𝑙1\rho_{0}=\exp\left(\frac{2\max\left\{\left|\alpha\right|,\left|u_{T}\right|% \right\}+T^{2}l_{2}}{2-T^{2}l_{1}}\right).italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = roman_exp ( divide start_ARG 2 roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG 2 - italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) .

Taking in particular ρ=ρ0,𝜌subscript𝜌0\rho=\rho_{0},italic_ρ = italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , we find a solution with β€–xβˆ—β€–βˆžβ‰€Ο0.subscriptnormsuperscriptπ‘₯βˆ—subscript𝜌0\left\|x^{\ast}\right\|_{\infty}\leq\rho_{0}.βˆ₯ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT .

The next result combines the two previous ones assuming that f𝑓fitalic_f splits as f=f1+f2,𝑓subscript𝑓1subscript𝑓2f=f_{1}+f_{2},italic_f = italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , where f1subscript𝑓1f_{1}italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT satisfies a Lipschitz condition while f2subscript𝑓2f_{2}italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT satisfies a logaritmic growth condition. The result is based on Krasnoselskii’s fixed point theorem for a sum of two operators. Here sign L=1𝐿1L=1italic_L = 1 if L>0𝐿0L>0italic_L > 0 and sign L=0𝐿0L=0italic_L = 0 if L=0.𝐿0L=0.italic_L = 0 .

Theorem 2.3.

Assume that the function f:[0,T]Γ—[0,ρ]→ℝ:𝑓→0𝑇0πœŒβ„f:\left[0,T\right]\times[0,\rho]\rightarrow\mathbb{R}italic_f : [ 0 , italic_T ] Γ— [ 0 , italic_ρ ] β†’ blackboard_R is continuous and splits as f=f1+f2,𝑓subscript𝑓1subscript𝑓2f=f_{1}+f_{2},italic_f = italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , where f1subscript𝑓1f_{1}italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is like in Theorem 2.1 and f2subscript𝑓2f_{2}italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is like in Theorem 2.2. In addition assume that

(2.11) ρβ‰₯exp⁑(2⁒max⁑{|Ξ±|,|uT|}+T2⁒l2+2⁒sign β’L2βˆ’T2⁒l1).𝜌2𝛼subscript𝑒𝑇superscript𝑇2subscript𝑙22sign πΏ2superscript𝑇2subscript𝑙1\rho\geq\exp\left(\frac{2\max\left\{\left|\alpha\right|,\left|u_{T}\right|% \right\}+T^{2}l_{2}+2\text{sign\ }L}{2-T^{2}l_{1}}\right).italic_ρ β‰₯ roman_exp ( divide start_ARG 2 roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 2 sign italic_L end_ARG start_ARG 2 - italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) .

Then the control problem has at least one solution (xβˆ—,Ξ»βˆ—)superscriptπ‘₯βˆ—superscriptπœ†βˆ—(x^{\ast},\lambda^{\ast})( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) with xβˆ—>0,β€–xβˆ—β€–βˆžβ‰€Ο,formulae-sequencesuperscriptπ‘₯βˆ—0subscriptnormsuperscriptπ‘₯βˆ—πœŒx^{\ast}>0,\ \left\|x^{\ast}\right\|_{\infty}\leq\rho,italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT > 0 , βˆ₯ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_ρ , and Ξ»βˆ—superscriptπœ†βˆ—\lambda^{\ast}italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT given by (2.4).

Proof.

Now the operator A𝐴Aitalic_A can be decomposed as A=A1+A2,𝐴subscript𝐴1subscript𝐴2A=A_{1}+A_{2},italic_A = italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , where

A1⁒(u)⁒(t)=Ξ±βˆ’Ξ³β’t22+∫0t∫0Ο„f1⁒(s,eu⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ’t2T2⁒∫0T∫0Ο„f1⁒(s,eu⁒(s))⁒𝑑s⁒𝑑τsubscript𝐴1𝑒𝑑𝛼𝛾superscript𝑑22superscriptsubscript0𝑑superscriptsubscript0𝜏subscript𝑓1𝑠superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏superscript𝑑2superscript𝑇2superscriptsubscript0𝑇superscriptsubscript0𝜏subscript𝑓1𝑠superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏A_{1}\left(u\right)\left(t\right)=\alpha-\frac{\gamma t^{2}}{2}+\int_{0}^{t}% \int_{0}^{\tau}f_{1}(s,e^{u(s)})dsd\tau-\frac{t^{2}}{T^{2}}\int_{0}^{T}\int_{0% }^{\tau}f_{1}(s,e^{u(s)})dsd\tauitalic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_u ) ( italic_t ) = italic_Ξ± - divide start_ARG italic_Ξ³ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„

and

A2⁒(u)⁒(t)=∫0t∫0Ο„f2⁒(s,eu⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ’t2T2⁒∫0T∫0Ο„f2⁒(s,eu⁒(s))⁒𝑑s⁒𝑑τ.subscript𝐴2𝑒𝑑superscriptsubscript0𝑑superscriptsubscript0𝜏subscript𝑓2𝑠superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏superscript𝑑2superscript𝑇2superscriptsubscript0𝑇superscriptsubscript0𝜏subscript𝑓2𝑠superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏A_{2}\left(u\right)\left(t\right)=\int_{0}^{t}\int_{0}^{\tau}f_{2}(s,e^{u(s)})% dsd\tau-\frac{t^{2}}{T^{2}}\int_{0}^{T}\int_{0}^{\tau}f_{2}(s,e^{u(s)})dsd\tau.italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_u ) ( italic_t ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ .

The operator A1subscript𝐴1A_{1}italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is a contraction on BRsubscript𝐡𝑅B_{R}italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT with the contraction constant T22⁒L⁒ρ<1superscript𝑇22𝐿𝜌1\frac{T}{2}^{2}L\rho<1divide start_ARG italic_T end_ARG start_ARG 2 end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_L italic_ρ < 1 and A2subscript𝐴2A_{2}italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is completely continuous. It remains to check Krasnoselskii’s strong invariance condition

A1⁒(u)+A2⁒(v)∈BR⁒ for all β’u,v∈BR.formulae-sequencesubscript𝐴1𝑒subscript𝐴2𝑣subscript𝐡𝑅 for all π‘’𝑣subscript𝐡𝑅A_{1}\left(u\right)+\ A_{2}\left(v\right)\in B_{R}\text{ \ for all \ }u,v\in B% _{R}.italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_u ) + italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_v ) ∈ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT for all italic_u , italic_v ∈ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT .

As above one has

|A1⁒(u)⁒(t)+A2⁒(v)⁒(t)|subscript𝐴1𝑒𝑑subscript𝐴2𝑣𝑑\displaystyle\left|A_{1}\left(u\right)\left(t\right)+\ A_{2}\left(v\right)% \left(t\right)\right|| italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_u ) ( italic_t ) + italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_v ) ( italic_t ) | ≀\displaystyle\leq≀ |A1⁒(u)⁒(t)|+|A2⁒(v)⁒(t)|subscript𝐴1𝑒𝑑subscript𝐴2𝑣𝑑\displaystyle\left|A_{1}\left(u\right)\left(t\right)\right|+\left|A_{2}\left(v% \right)\left(t\right)\right|| italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_u ) ( italic_t ) | + | italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_v ) ( italic_t ) |
≀\displaystyle\leq≀ max⁑{|Ξ±|,|uT|}+L⁒ρ⁒T22+T22⁒(l1⁒R+l2)𝛼subscriptπ‘’π‘‡πΏπœŒsuperscript𝑇22superscript𝑇22subscript𝑙1𝑅subscript𝑙2\displaystyle\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+L\rho% \frac{T^{2}}{2}+\frac{T^{2}}{2}\left(l_{1}R+l_{2}\right)roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + italic_L italic_ρ divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_R + italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT )
≀\displaystyle\leq≀ max⁑{|Ξ±|,|uT|}+sign β’L+T22⁒(l1⁒R+l2)𝛼subscript𝑒𝑇sign πΏsuperscript𝑇22subscript𝑙1𝑅subscript𝑙2\displaystyle\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+\text{% sign\ }L+\frac{T^{2}}{2}\left(l_{1}R+l_{2}\right)roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + sign italic_L + divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_R + italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT )

From (2.11) we easily see that

max⁑{|Ξ±|,|uT|}+sign β’L+T22⁒(l1⁒R+l2)≀R,𝛼subscript𝑒𝑇sign πΏsuperscript𝑇22subscript𝑙1𝑅subscript𝑙2𝑅\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+\text{sign\ }L+\frac% {T^{2}}{2}\left(l_{1}R+l_{2}\right)\leq R,roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + sign italic_L + divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_R + italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ≀ italic_R ,

as desired. ∎

We note that Theorem 2.3 reduces to Theorem 2.1 if L>0𝐿0L>0italic_L > 0 and f2=0subscript𝑓20f_{2}=0italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 (when signL=1𝐿1\ L=1italic_L = 1 and l1=l2=0subscript𝑙1subscript𝑙20l_{1}=l_{2}=0italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0); it reduces to Theorem 2.2 if f1=0subscript𝑓10f_{1}=0italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 (when L=0𝐿0L=0italic_L = 0 and sign L=0𝐿0L=0italic_L = 0).

2.2. Problem with a multiplicative control

We consider the following control problem

(2.12) {(x′⁒(t)x⁒(t))β€²=λ⁒f⁒(t,x⁒(t))x⁒(0)=a,x′⁒(0)=0x>0⁒ on β’[0,T],x⁒(T)=xT,casessuperscriptsuperscriptπ‘₯′𝑑π‘₯π‘‘β€²πœ†π‘“π‘‘π‘₯𝑑otherwiseformulae-sequenceπ‘₯0π‘Žsuperscriptπ‘₯β€²00otherwiseformulae-sequenceπ‘₯0 on 0𝑇π‘₯𝑇subscriptπ‘₯𝑇otherwise\begin{cases}\left(\frac{x^{\prime}(t)}{x(t)}\right)^{\prime}=\lambda f(t,x(t)% )\\ x(0)=a,\ \ \ x^{\prime}(0)=0\\ x>0\text{ on\ }\left[0,T\right],\ \ \ x\left(T\right)=x_{T},\end{cases}{ start_ROW start_CELL ( divide start_ARG italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) end_ARG start_ARG italic_x ( italic_t ) end_ARG ) start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_Ξ» italic_f ( italic_t , italic_x ( italic_t ) ) end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_x ( 0 ) = italic_a , italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = 0 end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_x > 0 on [ 0 , italic_T ] , italic_x ( italic_T ) = italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT , end_CELL start_CELL end_CELL end_ROW

with the multiplicative control parameter Ξ».πœ†\lambda.italic_Ξ» .

We have the following result on the unique controllability of the problem under a given bound of the positive solution of the equation.

Theorem 2.4.

Let ρβ‰₯exp⁑(|Ξ±|+|uTβˆ’Ξ±|)πœŒπ›Όsubscript𝑒𝑇𝛼\rho\geq\exp\left(\left|\alpha\right|+\left|u_{T}-\alpha\right|\right)italic_ρ β‰₯ roman_exp ( | italic_Ξ± | + | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT - italic_Ξ± | ) and f:[0,T]Γ—[0,ρ]β†’(0,+∞):𝑓→0𝑇0𝜌0f:\left[0,T\right]\times[0,\rho]\rightarrow\left(0,+\infty\right)italic_f : [ 0 , italic_T ] Γ— [ 0 , italic_ρ ] β†’ ( 0 , + ∞ ) a continuous function satisfying the Lipschitz condition

|f⁒(t,x)βˆ’f⁒(t,y)|≀L⁒|xβˆ’y|𝑓𝑑π‘₯𝑓𝑑𝑦𝐿π‘₯𝑦\left|f\left(t,x\right)-f\left(t,y\right)\right|\leq L\left|x-y\right|| italic_f ( italic_t , italic_x ) - italic_f ( italic_t , italic_y ) | ≀ italic_L | italic_x - italic_y |

for all t∈[0,T]𝑑0𝑇t\in\left[0,T\right]italic_t ∈ [ 0 , italic_T ] and x,y∈(0,ρ].π‘₯𝑦0𝜌x,y\in(0,\rho].italic_x , italic_y ∈ ( 0 , italic_ρ ] . If

L<fρρ⁒T2⁒|uTβˆ’Ξ±|,𝐿subscriptπ‘“πœŒπœŒsuperscript𝑇2subscript𝑒𝑇𝛼L<\frac{f_{\rho}}{\rho T^{2}\left|u_{T}-\alpha\right|},italic_L < divide start_ARG italic_f start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT - italic_Ξ± | end_ARG ,

where fρ:=∫0T∫0Ο„minx∈[1ρ,ρ]⁑f⁒(s,x)⁒𝑑s⁒𝑑τ.assignsubscriptπ‘“πœŒsuperscriptsubscript0𝑇superscriptsubscript0𝜏subscriptπ‘₯1πœŒπœŒπ‘“π‘ π‘₯differential-d𝑠differential-d𝜏f_{\rho}:=\int_{0}^{T}\int_{0}^{\tau}\min_{x\in\left[\frac{1}{\rho},\rho\right% ]}f(s,x)dsd\tau.italic_f start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT := ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT roman_min start_POSTSUBSCRIPT italic_x ∈ [ divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG , italic_ρ ] end_POSTSUBSCRIPT italic_f ( italic_s , italic_x ) italic_d italic_s italic_d italic_Ο„ . Then there exists a unique solution (xβˆ—,Ξ»βˆ—)superscriptπ‘₯βˆ—superscriptπœ†βˆ—(x^{\ast},\lambda^{\ast})( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) of the control problem (2.12) with xβˆ—>0,superscriptπ‘₯βˆ—0x^{\ast}>0,\ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT > 0 , β€–xβˆ—β€–βˆžβ‰€Ο,subscriptnormsuperscriptπ‘₯βˆ—πœŒ\left\|x^{\ast}\right\|_{\infty}\leq\rho,βˆ₯ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_ρ , and

Ξ»βˆ—=uTβˆ’Ξ±βˆ«0T∫0Ο„f⁒(s,xβˆ—)⁒𝑑s⁒𝑑τ.superscriptπœ†βˆ—subscript𝑒𝑇𝛼superscriptsubscript0𝑇superscriptsubscript0πœπ‘“π‘ superscriptπ‘₯βˆ—differential-d𝑠differential-d𝜏\lambda^{\ast}=\frac{u_{T}-\alpha}{\int_{0}^{T}\int_{0}^{\tau}f(s,x^{\ast})dsd% \tau}.italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT = divide start_ARG italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT - italic_Ξ± end_ARG start_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ end_ARG .
Proof.

As above, we look for a positive solution xπ‘₯xitalic_x in the form x=eu,π‘₯superscript𝑒𝑒x=e^{u},italic_x = italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT , the initial and controllability conditions become u⁒(0)=Ξ±:=ln⁑a𝑒0𝛼assignπ‘Žu(0)=\alpha:=\ln\ aitalic_u ( 0 ) = italic_Ξ± := roman_ln italic_a and u⁒(T)=uT:=ln⁑xT,𝑒𝑇subscript𝑒𝑇assignsubscriptπ‘₯𝑇u(T)=u_{T}:=\ln\ x_{T},italic_u ( italic_T ) = italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT := roman_ln italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT , respectively, while the equation reads as follows

uβ€²β€²=λ⁒f⁒(t,eu⁒(t)).superscriptπ‘’β€²β€²πœ†π‘“π‘‘superscript𝑒𝑒𝑑u^{\prime\prime}=\lambda f\left(t,e^{u(t)}\right).italic_u start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT = italic_Ξ» italic_f ( italic_t , italic_e start_POSTSUPERSCRIPT italic_u ( italic_t ) end_POSTSUPERSCRIPT ) .

Integration leads to

(2.13) u⁒(t)=Ξ±+λ⁒∫0t∫0Ο„f⁒(s,eu⁒(s))⁒𝑑sβ’π‘‘Ο„π‘’π‘‘π›Όπœ†superscriptsubscript0𝑑superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏u(t)=\alpha+\lambda\int_{0}^{t}\int_{0}^{\tau}f(s,e^{u(s)})dsd\tauitalic_u ( italic_t ) = italic_Ξ± + italic_Ξ» ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„

and using the controllability condition we obtain that

Ξ»=uTβˆ’Ξ±βˆ«0T∫0Ο„f⁒(s,eu⁒(s))⁒𝑑s⁒𝑑τ.πœ†subscript𝑒𝑇𝛼superscriptsubscript0𝑇superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏\lambda=\frac{u_{T}-\alpha}{\int_{0}^{T}\int_{0}^{\tau}f(s,e^{u(s)})dsd\tau}.italic_Ξ» = divide start_ARG italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT - italic_Ξ± end_ARG start_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ end_ARG .

Substituting Ξ»πœ†\lambdaitalic_Ξ» into (2.13) we obtain an integral equation of the Volterra-Fredholm type

u⁒(t)=Ξ±+(uTβˆ’Ξ±)⁒∫0t∫0Ο„f⁒(s,eu⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ«0T∫0Ο„f⁒(s,eu⁒(s))⁒𝑑s⁒𝑑τ,𝑒𝑑𝛼subscript𝑒𝑇𝛼superscriptsubscript0𝑑superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏superscriptsubscript0𝑇superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏u(t)=\alpha+(u_{T}-\alpha)\frac{\int_{0}^{t}\int_{0}^{\tau}f(s,e^{u(s)})dsd% \tau}{\int_{0}^{T}\int_{0}^{\tau}f(s,e^{u(s)})dsd\tau},italic_u ( italic_t ) = italic_Ξ± + ( italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT - italic_Ξ± ) divide start_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ end_ARG start_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ end_ARG ,

that is a fixed point equation u=A⁒(u)𝑒𝐴𝑒u=A(u)italic_u = italic_A ( italic_u ) for the operator A𝐴Aitalic_A defined by the right hand site of the equation on the closed ball BRsubscript𝐡𝑅B_{R}italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT of the space C⁒[0,T],𝐢0𝑇C[0,T],italic_C [ 0 , italic_T ] , with center at the origin and radius R.𝑅R.italic_R . We apply Banach’s contraction theorem. Let u,u¯∈BR.𝑒¯𝑒subscript𝐡𝑅u,\ \overline{u}\in B_{R}.italic_u , overΒ― start_ARG italic_u end_ARG ∈ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT . In the following estimates, for simplicity, we make use of the notation

J⁒(t,u):=∫0t∫0Ο„f⁒(s,eu⁒(s))⁒𝑑s⁒𝑑τ.assign𝐽𝑑𝑒superscriptsubscript0𝑑superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏J(t,u):=\int_{0}^{t}\int_{0}^{\tau}f(s,e^{u(s)})dsd\tau.italic_J ( italic_t , italic_u ) := ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ .

We have the following estimate

|A⁒(u)⁒(t)βˆ’A⁒(uΒ―)⁒(t)|≀|uTβˆ’Ξ±|⁒|J⁒(t,u)J⁒(T,u)βˆ’J⁒(t,uΒ―)J⁒(T,uΒ―)|.𝐴𝑒𝑑𝐴¯𝑒𝑑subscript𝑒𝑇𝛼𝐽𝑑𝑒𝐽𝑇𝑒𝐽𝑑¯𝑒𝐽𝑇¯𝑒|A(u)(t)-A(\overline{u})(t)|\leq|u_{T}-\alpha|\left|\frac{J(t,u)}{J(T,u)}-% \frac{J(t,\overline{u})}{J(T,\overline{u})}\right|.| italic_A ( italic_u ) ( italic_t ) - italic_A ( overΒ― start_ARG italic_u end_ARG ) ( italic_t ) | ≀ | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT - italic_Ξ± | | divide start_ARG italic_J ( italic_t , italic_u ) end_ARG start_ARG italic_J ( italic_T , italic_u ) end_ARG - divide start_ARG italic_J ( italic_t , overΒ― start_ARG italic_u end_ARG ) end_ARG start_ARG italic_J ( italic_T , overΒ― start_ARG italic_u end_ARG ) end_ARG | .

Furthermore

|J⁒(t,u)J⁒(T,u)βˆ’J⁒(t,uΒ―)J⁒(T,uΒ―)|𝐽𝑑𝑒𝐽𝑇𝑒𝐽𝑑¯𝑒𝐽𝑇¯𝑒\displaystyle\left|\frac{J(t,u)}{J(T,u)}-\frac{J(t,\overline{u})}{J(T,% \overline{u})}\right|| divide start_ARG italic_J ( italic_t , italic_u ) end_ARG start_ARG italic_J ( italic_T , italic_u ) end_ARG - divide start_ARG italic_J ( italic_t , overΒ― start_ARG italic_u end_ARG ) end_ARG start_ARG italic_J ( italic_T , overΒ― start_ARG italic_u end_ARG ) end_ARG | ≀|J⁒(t,u)J⁒(T,u)βˆ’J⁒(t,uΒ―)J⁒(T,u)|+|J⁒(t,uΒ―)J⁒(T,u)βˆ’J⁒(t,uΒ―)J⁒(T,uΒ―)|absent𝐽𝑑𝑒𝐽𝑇𝑒𝐽𝑑¯𝑒𝐽𝑇𝑒𝐽𝑑¯𝑒𝐽𝑇𝑒𝐽𝑑¯𝑒𝐽𝑇¯𝑒\displaystyle\leq\left|\frac{J(t,u)}{J(T,u)}-\frac{J(t,\overline{u})}{J(T,u)}% \right|+\left|\frac{J(t,\overline{u})}{J(T,u)}-\frac{J(t,\overline{u})}{J(T,% \overline{u})}\right|≀ | divide start_ARG italic_J ( italic_t , italic_u ) end_ARG start_ARG italic_J ( italic_T , italic_u ) end_ARG - divide start_ARG italic_J ( italic_t , overΒ― start_ARG italic_u end_ARG ) end_ARG start_ARG italic_J ( italic_T , italic_u ) end_ARG | + | divide start_ARG italic_J ( italic_t , overΒ― start_ARG italic_u end_ARG ) end_ARG start_ARG italic_J ( italic_T , italic_u ) end_ARG - divide start_ARG italic_J ( italic_t , overΒ― start_ARG italic_u end_ARG ) end_ARG start_ARG italic_J ( italic_T , overΒ― start_ARG italic_u end_ARG ) end_ARG |
=|J⁒(t,u)βˆ’J⁒(t,uΒ―)|J⁒(T,u)+J⁒(t,uΒ―)⁒|J⁒(T,u)βˆ’J⁒(T,uΒ―)|J⁒(T,u)⁒J⁒(T,uΒ―)absent𝐽𝑑𝑒𝐽𝑑¯𝑒𝐽𝑇𝑒𝐽𝑑¯𝑒𝐽𝑇𝑒𝐽𝑇¯𝑒𝐽𝑇𝑒𝐽𝑇¯𝑒\displaystyle=\frac{|J(t,u)-J(t,\overline{u})|}{J(T,u)}+J(t,\overline{u})\frac% {|J(T,u)-J(T,\overline{u})|}{J(T,u)J(T,\overline{u})}= divide start_ARG | italic_J ( italic_t , italic_u ) - italic_J ( italic_t , overΒ― start_ARG italic_u end_ARG ) | end_ARG start_ARG italic_J ( italic_T , italic_u ) end_ARG + italic_J ( italic_t , overΒ― start_ARG italic_u end_ARG ) divide start_ARG | italic_J ( italic_T , italic_u ) - italic_J ( italic_T , overΒ― start_ARG italic_u end_ARG ) | end_ARG start_ARG italic_J ( italic_T , italic_u ) italic_J ( italic_T , overΒ― start_ARG italic_u end_ARG ) end_ARG
≀1J⁒(T,u)⁒(|J⁒(t,u)βˆ’J⁒(t,uΒ―)|+|J⁒(T,u)βˆ’J⁒(T,uΒ―)|).absent1𝐽𝑇𝑒𝐽𝑑𝑒𝐽𝑑¯𝑒𝐽𝑇𝑒𝐽𝑇¯𝑒\displaystyle\leq\frac{1}{J(T,u)}\left(\left|J(t,u)-J(t,\overline{u})\right|+|% J(T,u)-J(T,\overline{u})|\right).≀ divide start_ARG 1 end_ARG start_ARG italic_J ( italic_T , italic_u ) end_ARG ( | italic_J ( italic_t , italic_u ) - italic_J ( italic_t , overΒ― start_ARG italic_u end_ARG ) | + | italic_J ( italic_T , italic_u ) - italic_J ( italic_T , overΒ― start_ARG italic_u end_ARG ) | ) .

Next, from

|J⁒(t,u)βˆ’J⁒(t,uΒ―)|,|J⁒(T,u)βˆ’J⁒(T,uΒ―)|≀L⁒ρ⁒T22⁒‖uβˆ’uΒ―β€–βˆž,π½π‘‘π‘’π½π‘‘Β―π‘’π½π‘‡π‘’π½π‘‡Β―π‘’πΏπœŒsuperscript𝑇22subscriptnorm𝑒¯𝑒\left|J(t,u)-J(t,\overline{u})\right|,\ \ \ \left|J(T,u)-J(T,\overline{u})% \right|\leq L\rho\frac{T^{2}}{2}||u-\overline{u}||_{\infty},| italic_J ( italic_t , italic_u ) - italic_J ( italic_t , overΒ― start_ARG italic_u end_ARG ) | , | italic_J ( italic_T , italic_u ) - italic_J ( italic_T , overΒ― start_ARG italic_u end_ARG ) | ≀ italic_L italic_ρ divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG | | italic_u - overΒ― start_ARG italic_u end_ARG | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ,

and J⁒(T,u)β‰₯fρ,𝐽𝑇𝑒subscriptπ‘“πœŒJ(T,u)\geq f_{\rho},italic_J ( italic_T , italic_u ) β‰₯ italic_f start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT , we derive

|A⁒(u)⁒(t)βˆ’A⁒(uΒ―)⁒(t)|≀L⁒ρ⁒T2fρ⁒|uTβˆ’Ξ±|⁒‖uβˆ’uΒ―β€–βˆž.π΄π‘’π‘‘π΄Β―π‘’π‘‘πΏπœŒsuperscript𝑇2subscriptπ‘“πœŒsubscript𝑒𝑇𝛼subscriptnorm𝑒¯𝑒\left|A(u)(t)-A(\overline{u})(t)\right|\leq\frac{L\rho T^{2}}{f_{\rho}}\left|u% _{T}-\alpha\right|\left\|u-\overline{u}\right\|_{\infty}.| italic_A ( italic_u ) ( italic_t ) - italic_A ( overΒ― start_ARG italic_u end_ARG ) ( italic_t ) | ≀ divide start_ARG italic_L italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_f start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT end_ARG | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT - italic_Ξ± | βˆ₯ italic_u - overΒ― start_ARG italic_u end_ARG βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT .

It follows that

β€–A⁒(u)βˆ’A⁒(uΒ―)β€–βˆžβ‰€L⁒ρ⁒T2fρ⁒|uTβˆ’Ξ±|⁒‖uβˆ’uΒ―β€–βˆž,subscriptnormπ΄π‘’π΄Β―π‘’πΏπœŒsuperscript𝑇2subscriptπ‘“πœŒsubscript𝑒𝑇𝛼subscriptnorm𝑒¯𝑒||A(u)-A(\overline{u})||_{\infty}\leq\frac{L\rho T^{2}}{f_{\rho}}\left|u_{T}-% \alpha\right|\left\|u-\overline{u}\right\|_{\infty},| | italic_A ( italic_u ) - italic_A ( overΒ― start_ARG italic_u end_ARG ) | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ divide start_ARG italic_L italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_f start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT end_ARG | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT - italic_Ξ± | βˆ₯ italic_u - overΒ― start_ARG italic_u end_ARG βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ,

which in view of our assumption shows that A𝐴Aitalic_A is a contraction on BR.subscript𝐡𝑅B_{R}.italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT . Next we show that A⁒(BR)βŠ‚BR.𝐴subscript𝐡𝑅subscript𝐡𝑅A\left(B_{R}\right)\subset B_{R}.italic_A ( italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ) βŠ‚ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT . Indeed, for any u∈BR𝑒subscript𝐡𝑅u\in B_{R}italic_u ∈ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT one has

|A⁒(u)⁒(t)|≀|Ξ±|+|uTβˆ’Ξ±|⁒∫0t∫0Ο„f⁒(s,eu⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ«0T∫0Ο„f⁒(s,eu⁒(s))⁒𝑑s⁒𝑑τ𝐴𝑒𝑑𝛼subscript𝑒𝑇𝛼superscriptsubscript0𝑑superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏superscriptsubscript0𝑇superscriptsubscript0πœπ‘“π‘ superscript𝑒𝑒𝑠differential-d𝑠differential-d𝜏\displaystyle\left|A(u)(t)\right|\leq\left|\alpha\right|+\left|u_{T}-\alpha% \right|\frac{\int_{0}^{t}\int_{0}^{\tau}f(s,e^{u(s)})dsd\tau}{\int_{0}^{T}\int% _{0}^{\tau}f(s,e^{u(s)})dsd\tau}| italic_A ( italic_u ) ( italic_t ) | ≀ | italic_Ξ± | + | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT - italic_Ξ± | divide start_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ end_ARG start_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_s , italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ end_ARG
≀\displaystyle\leq≀ |Ξ±|+|uTβˆ’Ξ±|≀R𝛼subscript𝑒𝑇𝛼𝑅\displaystyle\left|\alpha\right|+\left|u_{T}-\alpha\right|\leq R| italic_Ξ± | + | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT - italic_Ξ± | ≀ italic_R

since ρβ‰₯exp⁑(|Ξ±|+|uTβˆ’Ξ±|).πœŒπ›Όsubscript𝑒𝑇𝛼\rho\geq\exp\left(\left|\alpha\right|+\left|u_{T}-\alpha\right|\right).italic_ρ β‰₯ roman_exp ( | italic_Ξ± | + | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT - italic_Ξ± | ) . Hence β€–A⁒(u)β€–βˆžβ‰€Rsubscriptnorm𝐴𝑒𝑅\left\|A\left(u\right)\right\|_{\infty}\leq Rβˆ₯ italic_A ( italic_u ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R as desired. The conclusion follows now from Banach’s fixed point theorem. ∎

3. Control of second order Kolmogorov systems

We consider the following control second-order Kolmogorov system

(3.1) {(x′⁒(t)x⁒(t))β€²=f⁒(x⁒(t),y⁒(t))βˆ’Ξ»(y′⁒(t)y⁒(t))β€²=g⁒(x⁒(t),y⁒(t))βˆ’ΞΌx⁒(0)=a,x′⁒(0)=0,y⁒(0)=b,y′⁒(0)=0x,y>0on β’[0,T],x⁒(T)=xT,y⁒(T)=yT,casessuperscriptsuperscriptπ‘₯′𝑑π‘₯𝑑′𝑓π‘₯π‘‘π‘¦π‘‘πœ†otherwisesuperscriptsuperscript𝑦′𝑑𝑦𝑑′𝑔π‘₯π‘‘π‘¦π‘‘πœ‡otherwiseformulae-sequenceπ‘₯0π‘Žformulae-sequencesuperscriptπ‘₯β€²00formulae-sequence𝑦0𝑏superscript𝑦′00otherwiseformulae-sequenceπ‘₯𝑦0on 0𝑇π‘₯𝑇subscriptπ‘₯𝑇𝑦𝑇subscript𝑦𝑇otherwise\begin{cases}\left(\frac{x^{\prime}(t)}{x(t)}\right)^{\prime}=f(x(t),y(t))-% \lambda\\ \left(\frac{y^{\prime}(t)}{y(t)}\right)^{\prime}=g(x(t),y(t))-\mu\\ x(0)=a,\ x^{\prime}(0)=0,\ \ y(0)=b,\ y^{\prime}(0)=0\\ x,\ y>0\ \ \text{on\ }\left[0,T\right],\ \ \ x\left(T\right)=x_{T},\ y\left(T% \right)=y_{T},\end{cases}{ start_ROW start_CELL ( divide start_ARG italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) end_ARG start_ARG italic_x ( italic_t ) end_ARG ) start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_f ( italic_x ( italic_t ) , italic_y ( italic_t ) ) - italic_Ξ» end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ( divide start_ARG italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_t ) end_ARG start_ARG italic_y ( italic_t ) end_ARG ) start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_g ( italic_x ( italic_t ) , italic_y ( italic_t ) ) - italic_ΞΌ end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_x ( 0 ) = italic_a , italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = 0 , italic_y ( 0 ) = italic_b , italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = 0 end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_x , italic_y > 0 on [ 0 , italic_T ] , italic_x ( italic_T ) = italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT , italic_y ( italic_T ) = italic_y start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT , end_CELL start_CELL end_CELL end_ROW

where a,b,xT,yT>0π‘Žπ‘subscriptπ‘₯𝑇subscript𝑦𝑇0a,b,\ x_{T},\ y_{T}>0italic_a , italic_b , italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT > 0 and the controls Ξ»πœ†\lambdaitalic_Ξ» and ΞΌπœ‡\muitalic_ΞΌ are constant.

Denote

R𝑅\displaystyle Ritalic_R ::\displaystyle:: =ln⁑ρ,uT=ln⁑xT,vT=ln⁑yT,Ξ±=ln⁑a,Ξ²=ln⁑b,formulae-sequenceabsent𝜌formulae-sequencesubscript𝑒𝑇subscriptπ‘₯𝑇formulae-sequencesubscript𝑣𝑇subscript𝑦𝑇formulae-sequenceπ›Όπ‘Žπ›½π‘\displaystyle=\ln\rho,\ \ \ u_{T}=\ln x_{T},\ \ \ v_{T}=\ln y_{T},\ \ \ \alpha% =\ln a,\ \ \ \beta=\ln b,= roman_ln italic_ρ , italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT = roman_ln italic_x start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT = roman_ln italic_y start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT , italic_Ξ± = roman_ln italic_a , italic_Ξ² = roman_ln italic_b ,
γ𝛾\displaystyle\gammaitalic_Ξ³ =\displaystyle== 2T2⁒(Ξ±βˆ’uT),ΞΈ=2T2⁒(Ξ²βˆ’vT).2superscript𝑇2𝛼subscriptπ‘’π‘‡πœƒ2superscript𝑇2𝛽subscript𝑣𝑇\displaystyle\frac{2}{T^{2}}\left(\alpha-u_{T}\right),\ \ \ \theta=\frac{2}{T^% {2}}\left(\beta-v_{T}\right).divide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_Ξ± - italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) , italic_ΞΈ = divide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_Ξ² - italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) .

The next theorem guarantees the unique controllability of the system in a given ball.

Theorem 3.1.

Let

(3.2) ρβ‰₯exp⁑(1+max⁑{|Ξ±|,|uT|,|Ξ²|,|vT|})𝜌1𝛼subscript𝑒𝑇𝛽subscript𝑣𝑇\rho\geq\exp\left(1+\max\left\{\left|\alpha\right|,\left|u_{T}\right|,\left|% \beta\right|,\left|v_{T}\right|\right\}\right)italic_ρ β‰₯ roman_exp ( 1 + roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | , | italic_Ξ² | , | italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } )

and assume that the functions f,g:[0,ρ]2→ℝ:𝑓𝑔→superscript0𝜌2ℝf,g:\left[0,\rho\right]^{2}\rightarrow\mathbb{R}italic_f , italic_g : [ 0 , italic_ρ ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β†’ blackboard_R satisfy f⁒(0,β‹…)≑0,g⁒(β‹…,0)≑0formulae-sequence𝑓0β‹…0𝑔⋅00f\left(0,\cdot\right)\equiv 0,\ g\left(\cdot,0\right)\equiv 0italic_f ( 0 , β‹… ) ≑ 0 , italic_g ( β‹… , 0 ) ≑ 0 and the Lipschitz conditions

|f⁒(x,y)βˆ’f⁒(xΒ―,yΒ―)|𝑓π‘₯𝑦𝑓¯π‘₯¯𝑦\displaystyle\left|f(x,y)-f(\overline{x},\overline{y})\right|| italic_f ( italic_x , italic_y ) - italic_f ( overΒ― start_ARG italic_x end_ARG , overΒ― start_ARG italic_y end_ARG ) | ≀\displaystyle\leq≀ a11⁒|xβˆ’xΒ―|+a12⁒|yβˆ’yΒ―|,subscriptπ‘Ž11π‘₯Β―π‘₯subscriptπ‘Ž12𝑦¯𝑦\displaystyle a_{11}|x-\overline{x}|+a_{12}|y-\overline{y}|,italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT | italic_x - overΒ― start_ARG italic_x end_ARG | + italic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT | italic_y - overΒ― start_ARG italic_y end_ARG | ,
|g⁒(x,y)βˆ’g⁒(xΒ―,yΒ―)|𝑔π‘₯𝑦𝑔¯π‘₯¯𝑦\displaystyle\left|g(x,y)-g(\overline{x},\overline{y})\right|| italic_g ( italic_x , italic_y ) - italic_g ( overΒ― start_ARG italic_x end_ARG , overΒ― start_ARG italic_y end_ARG ) | ≀\displaystyle\leq≀ a21⁒|xβˆ’xΒ―|+a22⁒|yβˆ’yΒ―|,subscriptπ‘Ž21π‘₯Β―π‘₯subscriptπ‘Ž22𝑦¯𝑦\displaystyle a_{21}|x-\overline{x}|+a_{22}|y-\overline{y}|,italic_a start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT | italic_x - overΒ― start_ARG italic_x end_ARG | + italic_a start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT | italic_y - overΒ― start_ARG italic_y end_ARG | ,

for all x,y,xΒ―,y¯∈[0,ρ]π‘₯𝑦¯π‘₯¯𝑦0𝜌x,y,\overline{x},\overline{y}\in[0,\rho]italic_x , italic_y , overΒ― start_ARG italic_x end_ARG , overΒ― start_ARG italic_y end_ARG ∈ [ 0 , italic_ρ ] and some nonnegative constants ai⁒j(i,j=1,2),a_{ij}\ \left(i,j=1,2\right),italic_a start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_i , italic_j = 1 , 2 ) , and that the matrix

M=ρ⁒T22⁒[a11a12a21a22]π‘€πœŒsuperscript𝑇22matrixsubscriptπ‘Ž11subscriptπ‘Ž12subscriptπ‘Ž21subscriptπ‘Ž22M=\frac{\rho T^{2}}{2}\begin{bmatrix}a_{11}&a_{12}\\ a_{21}&a_{22}\end{bmatrix}italic_M = divide start_ARG italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG [ start_ARG start_ROW start_CELL italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT end_CELL start_CELL italic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_a start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT end_CELL start_CELL italic_a start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ]

is convergent to zero. Then the control problem has a unique solution (xβˆ—,yβˆ—,Ξ»βˆ—,ΞΌβˆ—)superscriptπ‘₯βˆ—superscriptπ‘¦βˆ—superscriptπœ†βˆ—superscriptπœ‡βˆ—\left(x^{\ast},y^{\ast},\lambda^{\ast},\mu^{\ast}\right)( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_ΞΌ start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) with xβˆ—,yβˆ—>0superscriptπ‘₯βˆ—superscriptπ‘¦βˆ—0x^{\ast},y^{\ast}>0italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT > 0 and β€–xβˆ—β€–βˆž,β€–yβˆ—β€–βˆžβ‰€Ο.subscriptnormsuperscriptπ‘₯βˆ—subscriptnormsuperscriptπ‘¦βˆ—πœŒ\left\|x^{\ast}\right\|_{\infty},\ \left\|y^{\ast}\right\|_{\infty}\leq\rho.βˆ₯ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT , βˆ₯ italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_ρ .

Proof.

Making the change of variables x=euπ‘₯superscript𝑒𝑒x=e^{u}italic_x = italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT and y=ev𝑦superscript𝑒𝑣y=e^{v}italic_y = italic_e start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT leads to the system

{uβ€²β€²=f⁒(eu⁒(t),ev⁒(t))βˆ’Ξ»vβ€²β€²=g⁒(eu⁒(t),ev⁒(t))βˆ’ΞΌ,casessuperscript𝑒′′𝑓superscript𝑒𝑒𝑑superscriptπ‘’π‘£π‘‘πœ†otherwisesuperscript𝑣′′𝑔superscript𝑒𝑒𝑑superscriptπ‘’π‘£π‘‘πœ‡otherwise\begin{cases}u^{\prime\prime}=f\left(e^{u(t)},e^{v(t)}\right)-\lambda\\ v^{\prime\prime}=g\left(e^{u(t)},e^{v(t)}\right)-\mu,\end{cases}{ start_ROW start_CELL italic_u start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT = italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_t ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_t ) end_POSTSUPERSCRIPT ) - italic_Ξ» end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_v start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT = italic_g ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_t ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_t ) end_POSTSUPERSCRIPT ) - italic_ΞΌ , end_CELL start_CELL end_CELL end_ROW

the initial conditions become u⁒(0)=Ξ±,u′⁒(0)=0,v⁒(0)=Ξ²formulae-sequence𝑒0𝛼formulae-sequencesuperscript𝑒′00𝑣0𝛽u\left(0\right)=\alpha,\ u^{\prime}\left(0\right)=0,\ v\left(0\right)=\betaitalic_u ( 0 ) = italic_Ξ± , italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = 0 , italic_v ( 0 ) = italic_Ξ² and v⁒(0)=0.𝑣00v\left(0\right)=0.italic_v ( 0 ) = 0 . Also the controllability conditions read as u⁒(T)=uT𝑒𝑇subscript𝑒𝑇u\left(T\right)=u_{T}italic_u ( italic_T ) = italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT and v⁒(T)=vT.𝑣𝑇subscript𝑣𝑇v\left(T\right)=v_{T}.italic_v ( italic_T ) = italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT .

Successive integrations lead to the integral system

(3.3) {u⁒(t)=Ξ±+∫0t∫0Ο„f⁒(eu⁒(s),ev⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ’Ξ»β’t22v⁒(t)=Ξ²+∫0t∫0Ο„g⁒(eu⁒(s),ev⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ’ΞΌβ’t22.cases𝑒𝑑𝛼superscriptsubscript0𝑑superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-dπœπœ†superscript𝑑22otherwise𝑣𝑑𝛽superscriptsubscript0𝑑superscriptsubscript0πœπ‘”superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-dπœπœ‡superscript𝑑22otherwise\begin{cases}u(t)=\alpha+\int_{0}^{t}\int_{0}^{\tau}f(e^{u(s)},e^{v(s)})dsd% \tau-\frac{\lambda t^{2}}{2}\\ v(t)=\beta+\int_{0}^{t}\int_{0}^{\tau}g(e^{u(s)},e^{v(s)})dsd\tau-\frac{\mu t^% {2}}{2}.\end{cases}{ start_ROW start_CELL italic_u ( italic_t ) = italic_Ξ± + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ - divide start_ARG italic_Ξ» italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_v ( italic_t ) = italic_Ξ² + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_g ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ - divide start_ARG italic_ΞΌ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG . end_CELL start_CELL end_CELL end_ROW

Using the controllability conditions u⁒(T)=uT,𝑒𝑇subscript𝑒𝑇u(T)=u_{T},italic_u ( italic_T ) = italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT , v⁒(T)=vT𝑣𝑇subscript𝑣𝑇v(T)=v_{T}italic_v ( italic_T ) = italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT gives the expression of the control parameters in terms of the state variables u,v,𝑒𝑣u,v,italic_u , italic_v , namely

Ξ»πœ†\displaystyle\lambdaitalic_Ξ» =\displaystyle== 2T2⁒(Ξ±βˆ’uT)+2T2⁒∫0T∫0Ο„f⁒(eu⁒(s),ev⁒(s))⁒𝑑s⁒𝑑τ2superscript𝑇2𝛼subscript𝑒𝑇2superscript𝑇2superscriptsubscript0𝑇superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏\displaystyle\frac{2}{T^{2}}\left(\alpha-u_{T}\right)+\frac{2}{T^{2}}\int_{0}^% {T}\int_{0}^{\tau}f(e^{u(s)},e^{v(s)})dsd\taudivide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_Ξ± - italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) + divide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„
=\displaystyle== Ξ³+2T2⁒∫0T∫0Ο„f⁒(eu⁒(s),ev⁒(s))⁒𝑑s⁒𝑑τ,𝛾2superscript𝑇2superscriptsubscript0𝑇superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏\displaystyle\gamma+\frac{2}{T^{2}}\int_{0}^{T}\int_{0}^{\tau}f(e^{u(s)},e^{v(% s)})dsd\tau,italic_Ξ³ + divide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ ,
ΞΌπœ‡\displaystyle\muitalic_ΞΌ =\displaystyle== 2T2⁒(Ξ²βˆ’vT)+2T2⁒∫0T∫0Ο„g⁒(eu⁒(s),ev⁒(s))⁒𝑑s⁒𝑑τ2superscript𝑇2𝛽subscript𝑣𝑇2superscript𝑇2superscriptsubscript0𝑇superscriptsubscript0πœπ‘”superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏\displaystyle\frac{2}{T^{2}}\left(\beta-v_{T}\right)+\frac{2}{T^{2}}\int_{0}^{% T}\int_{0}^{\tau}g(e^{u(s)},e^{v(s)})dsd\taudivide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_Ξ² - italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) + divide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_g ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„
=\displaystyle== ΞΈ+2T2⁒∫0T∫0Ο„g⁒(eu⁒(s),ev⁒(s))⁒𝑑s⁒𝑑τ.πœƒ2superscript𝑇2superscriptsubscript0𝑇superscriptsubscript0πœπ‘”superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏\displaystyle\theta+\frac{2}{T^{2}}\int_{0}^{T}\int_{0}^{\tau}g(e^{u(s)},e^{v(% s)})dsd\tau.italic_ΞΈ + divide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_g ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ .

Replacing in (3.3) we arrive to the Volterra-Fredholm integral system

{u⁒(t)=Ξ±βˆ’Ξ³β’t22+∫0t∫0Ο„f⁒(eu⁒(s),ev⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ’t2T2⁒∫0T∫0Ο„f⁒(eu⁒(s),ev⁒(s))⁒𝑑s⁒𝑑τu⁒(t)=Ξ²βˆ’ΞΈβ’t22+∫0t∫0Ο„g⁒(eu⁒(s),ev⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ’t2T2⁒∫0T∫0Ο„g⁒(eu⁒(s),ev⁒(s))⁒𝑑s⁒𝑑τ,cases𝑒𝑑𝛼𝛾superscript𝑑22superscriptsubscript0𝑑superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏superscript𝑑2superscript𝑇2superscriptsubscript0𝑇superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏otherwiseπ‘’π‘‘π›½πœƒsuperscript𝑑22superscriptsubscript0𝑑superscriptsubscript0πœπ‘”superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏superscript𝑑2superscript𝑇2superscriptsubscript0𝑇superscriptsubscript0πœπ‘”superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏otherwise\begin{cases}u(t)=\alpha-\frac{\gamma t^{2}}{2}+\int_{0}^{t}\int_{0}^{\tau}f(e% ^{u(s)},e^{v(s)})dsd\tau-\frac{t^{2}}{T^{2}}\int_{0}^{T}\int_{0}^{\tau}f(e^{u(% s)},e^{v(s)})dsd\tau\\ u(t)=\beta-\frac{\theta t^{2}}{2}+\int_{0}^{t}\int_{0}^{\tau}g(e^{u(s)},e^{v(s% )})dsd\tau-\frac{t^{2}}{T^{2}}\int_{0}^{T}\int_{0}^{\tau}g(e^{u(s)},e^{v(s)})% dsd\tau,\end{cases}{ start_ROW start_CELL italic_u ( italic_t ) = italic_Ξ± - divide start_ARG italic_Ξ³ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_u ( italic_t ) = italic_Ξ² - divide start_ARG italic_ΞΈ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_g ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_g ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ , end_CELL start_CELL end_CELL end_ROW

which can be seen as a fixed point equation for the operator N=(A,B),𝑁𝐴𝐡N=(A,B),italic_N = ( italic_A , italic_B ) , where

A⁒(u,v)⁒(t)𝐴𝑒𝑣𝑑\displaystyle A\left(u,v\right)\left(t\right)italic_A ( italic_u , italic_v ) ( italic_t ) =\displaystyle== Ξ±βˆ’Ξ³β’t22+∫0t∫0Ο„f⁒(eu⁒(s),ev⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ’t2T2⁒∫0T∫0Ο„f⁒(eu⁒(s),ev⁒(s))⁒𝑑s⁒𝑑τ𝛼𝛾superscript𝑑22superscriptsubscript0𝑑superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏superscript𝑑2superscript𝑇2superscriptsubscript0𝑇superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏\displaystyle\alpha-\frac{\gamma t^{2}}{2}+\int_{0}^{t}\int_{0}^{\tau}f(e^{u(s% )},e^{v(s)})dsd\tau-\frac{t^{2}}{T^{2}}\int_{0}^{T}\int_{0}^{\tau}f(e^{u(s)},e% ^{v(s)})dsd\tauitalic_Ξ± - divide start_ARG italic_Ξ³ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„
=\displaystyle== Ξ±βˆ’Ξ³β’t22+(1βˆ’t2T2)⁒∫0t∫0Ο„f⁒(eu⁒(s),ev⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ’t2T2⁒∫tT∫0Ο„f⁒(eu⁒(s),ev⁒(s))⁒𝑑s⁒𝑑τ,𝛼𝛾superscript𝑑221superscript𝑑2superscript𝑇2superscriptsubscript0𝑑superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏superscript𝑑2superscript𝑇2superscriptsubscript𝑑𝑇superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏\displaystyle\alpha-\frac{\gamma t^{2}}{2}+\left(1-\frac{t^{2}}{T^{2}}\right)% \int_{0}^{t}\int_{0}^{\tau}f(e^{u(s)},e^{v(s)})dsd\tau-\frac{t^{2}}{T^{2}}\int% _{t}^{T}\int_{0}^{\tau}f(e^{u(s)},e^{v(s)})dsd\tau,italic_Ξ± - divide start_ARG italic_Ξ³ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + ( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ ,
B⁒(u,v)⁒(t)𝐡𝑒𝑣𝑑\displaystyle B\left(u,v\right)\left(t\right)italic_B ( italic_u , italic_v ) ( italic_t ) =\displaystyle== Ξ²βˆ’ΞΈβ’t22+∫0t∫0Ο„g⁒(eu⁒(s),ev⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ’t2T2⁒∫0T∫0Ο„g⁒(eu⁒(s),ev⁒(s))⁒𝑑sβ’π‘‘Ο„π›½πœƒsuperscript𝑑22superscriptsubscript0𝑑superscriptsubscript0πœπ‘”superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏superscript𝑑2superscript𝑇2superscriptsubscript0𝑇superscriptsubscript0πœπ‘”superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏\displaystyle\beta-\frac{\theta t^{2}}{2}+\int_{0}^{t}\int_{0}^{\tau}g(e^{u(s)% },e^{v(s)})dsd\tau-\frac{t^{2}}{T^{2}}\int_{0}^{T}\int_{0}^{\tau}g(e^{u(s)},e^% {v(s)})dsd\tauitalic_Ξ² - divide start_ARG italic_ΞΈ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_g ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_g ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„
=\displaystyle== Ξ²βˆ’ΞΈβ’t22+(1βˆ’t2T2)⁒∫0t∫0Ο„g⁒(eu⁒(s),ev⁒(s))⁒𝑑sβ’π‘‘Ο„βˆ’t2T2⁒∫tT∫0Ο„g⁒(eu⁒(s),ev⁒(s))⁒𝑑s⁒𝑑τ.π›½πœƒsuperscript𝑑221superscript𝑑2superscript𝑇2superscriptsubscript0𝑑superscriptsubscript0πœπ‘”superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏superscript𝑑2superscript𝑇2superscriptsubscript𝑑𝑇superscriptsubscript0πœπ‘”superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏\displaystyle\beta-\frac{\theta t^{2}}{2}+\left(1-\frac{t^{2}}{T^{2}}\right)% \int_{0}^{t}\int_{0}^{\tau}g(e^{u(s)},e^{v(s)})dsd\tau-\frac{t^{2}}{T^{2}}\int% _{t}^{T}\int_{0}^{\tau}g(e^{u(s)},e^{v(s)})dsd\tau.italic_Ξ² - divide start_ARG italic_ΞΈ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + ( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_g ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT italic_g ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) italic_d italic_s italic_d italic_Ο„ .

We shall apply Perov’s fixed point theorem in the set

DR:={(u,v)∈C⁒([0,T];ℝ2):β€–uβ€–βˆžβ‰€R,β€–vβ€–βˆžβ‰€R}.assignsubscript𝐷𝑅conditional-set𝑒𝑣𝐢0𝑇superscriptℝ2formulae-sequencesubscriptnorm𝑒𝑅subscriptnorm𝑣𝑅D_{R}:=\{(u,v)\in C([0,T];\mathbb{R}^{2}):\ ||u||_{\infty}\leq R,\ ||v||_{% \infty}\leq R\}.italic_D start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT := { ( italic_u , italic_v ) ∈ italic_C ( [ 0 , italic_T ] ; blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) : | | italic_u | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R , | | italic_v | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R } .

First we show that N𝑁Nitalic_N is a Perov contraction. Let (u,v),(uΒ―,vΒ―)∈DR.𝑒𝑣¯𝑒¯𝑣subscript𝐷𝑅(u,v),(\overline{u},\overline{v})\in D_{R}.( italic_u , italic_v ) , ( overΒ― start_ARG italic_u end_ARG , overΒ― start_ARG italic_v end_ARG ) ∈ italic_D start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT . Using the Lipschitz conditions and arguments related to convex combinations,  we have

|A⁒(u,v)⁒(t)βˆ’A⁒(uΒ―,vΒ―)⁒(t)|𝐴𝑒𝑣𝑑𝐴¯𝑒¯𝑣𝑑\displaystyle|A(u,v)(t)-A(\overline{u},\overline{v})(t)|| italic_A ( italic_u , italic_v ) ( italic_t ) - italic_A ( overΒ― start_ARG italic_u end_ARG , overΒ― start_ARG italic_v end_ARG ) ( italic_t ) |
≀\displaystyle\leq≀ (1βˆ’t2T2)⁒∫0t∫0Ο„|f⁒(eu,ev)βˆ’f⁒(euΒ―,evΒ―)|⁒𝑑s⁒𝑑τ+t2T2⁒∫tT∫0Ο„|f⁒(eu,ev)βˆ’f⁒(euΒ―,evΒ―)|⁒𝑑s⁒𝑑τ1superscript𝑑2superscript𝑇2superscriptsubscript0𝑑superscriptsubscript0πœπ‘“superscript𝑒𝑒superscript𝑒𝑣𝑓superscript𝑒¯𝑒superscript𝑒¯𝑣differential-d𝑠differential-d𝜏superscript𝑑2superscript𝑇2superscriptsubscript𝑑𝑇superscriptsubscript0πœπ‘“superscript𝑒𝑒superscript𝑒𝑣𝑓superscript𝑒¯𝑒superscript𝑒¯𝑣differential-d𝑠differential-d𝜏\displaystyle\left(1-\frac{t^{2}}{T^{2}}\right)\int_{0}^{t}\int_{0}^{\tau}|f(e% ^{u},e^{v})-f(e^{\overline{u}},e^{\overline{v}})|dsd\tau+\frac{t^{2}}{T^{2}}% \int_{t}^{T}\int_{0}^{\tau}|f(e^{u},e^{v})-f(e^{\overline{u}},e^{\overline{v}}% )|dsd\tau( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT ) - italic_f ( italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_u end_ARG end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_v end_ARG end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„ + divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT ) - italic_f ( italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_u end_ARG end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_v end_ARG end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„
≀\displaystyle\leq≀ ∫0T∫0Ο„(a11⁒|euβˆ’euΒ―|+a12⁒|evβˆ’evΒ―|)⁒𝑑s⁒𝑑τ.superscriptsubscript0𝑇superscriptsubscript0𝜏subscriptπ‘Ž11superscript𝑒𝑒superscript𝑒¯𝑒subscriptπ‘Ž12superscript𝑒𝑣superscript𝑒¯𝑣differential-d𝑠differential-d𝜏\displaystyle\int_{0}^{T}\int_{0}^{\tau}(a_{11}|e^{u}-e^{\overline{u}}|+a_{12}% |e^{v}-e^{\overline{v}}|)dsd\tau.∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT ( italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT | italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_u end_ARG end_POSTSUPERSCRIPT | + italic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT | italic_e start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_v end_ARG end_POSTSUPERSCRIPT | ) italic_d italic_s italic_d italic_Ο„ .

Furthermore, using Lagrange’s mean theorem one has |euβˆ’euΒ―|≀ρ⁒|uβˆ’uΒ―|superscript𝑒𝑒superscriptπ‘’Β―π‘’πœŒπ‘’Β―π‘’\left|e^{u}-e^{\overline{u}}\right|\leq\rho\left|u-\overline{u}\right|| italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_u end_ARG end_POSTSUPERSCRIPT | ≀ italic_ρ | italic_u - overΒ― start_ARG italic_u end_ARG | and |evβˆ’evΒ―|≀ρ⁒|vβˆ’vΒ―|superscript𝑒𝑣superscriptπ‘’Β―π‘£πœŒπ‘£Β―π‘£\left|e^{v}-e^{\overline{v}}\right|\leq\rho\left|v-\overline{v}\right|| italic_e start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_v end_ARG end_POSTSUPERSCRIPT | ≀ italic_ρ | italic_v - overΒ― start_ARG italic_v end_ARG | and then

∫0T∫0Ο„(a11⁒|euβˆ’euΒ―|+a12⁒|evβˆ’evΒ―|)⁒𝑑s⁒𝑑τsuperscriptsubscript0𝑇superscriptsubscript0𝜏subscriptπ‘Ž11superscript𝑒𝑒superscript𝑒¯𝑒subscriptπ‘Ž12superscript𝑒𝑣superscript𝑒¯𝑣differential-d𝑠differential-d𝜏\displaystyle\int_{0}^{T}\int_{0}^{\tau}(a_{11}|e^{u}-e^{\overline{u}}|+a_{12}% |e^{v}-e^{\overline{v}}|)dsd\tau∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT ( italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT | italic_e start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_u end_ARG end_POSTSUPERSCRIPT | + italic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT | italic_e start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT overΒ― start_ARG italic_v end_ARG end_POSTSUPERSCRIPT | ) italic_d italic_s italic_d italic_Ο„
≀\displaystyle\leq≀ ρ⁒T22⁒(a11⁒‖uβˆ’uΒ―β€–βˆž+a12⁒‖vβˆ’vΒ―β€–βˆž).𝜌superscript𝑇22subscriptπ‘Ž11subscriptnorm𝑒¯𝑒subscriptπ‘Ž12subscriptnorm𝑣¯𝑣\displaystyle\frac{\rho T^{2}}{2}\left(a_{11}\left\|u-\overline{u}\right\|_{% \infty}+a_{12}\left\|v-\overline{v}\right\|_{\infty}\right).divide start_ARG italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT βˆ₯ italic_u - overΒ― start_ARG italic_u end_ARG βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT βˆ₯ italic_v - overΒ― start_ARG italic_v end_ARG βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) .

It follows that

β€–A⁒(u,v)βˆ’A⁒(uΒ―,vΒ―)β€–βˆžβ‰€Οβ’T22⁒(a11⁒‖uβˆ’uΒ―β€–βˆž+a12⁒‖vβˆ’vΒ―β€–βˆž).subscriptnormπ΄π‘’π‘£π΄Β―π‘’Β―π‘£πœŒsuperscript𝑇22subscriptπ‘Ž11subscriptnorm𝑒¯𝑒subscriptπ‘Ž12subscriptnorm𝑣¯𝑣\left\|A(u,v)-A(\overline{u},\overline{v})\right\|_{\infty}\leq\frac{\rho T^{2% }}{2}\left(a_{11}\left\|u-\overline{u}\right\|_{\infty}+a_{12}\left\|v-% \overline{v}\right\|_{\infty}\right).βˆ₯ italic_A ( italic_u , italic_v ) - italic_A ( overΒ― start_ARG italic_u end_ARG , overΒ― start_ARG italic_v end_ARG ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ divide start_ARG italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT βˆ₯ italic_u - overΒ― start_ARG italic_u end_ARG βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT βˆ₯ italic_v - overΒ― start_ARG italic_v end_ARG βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) .

Similarly

β€–B⁒(u,v)βˆ’B⁒(uΒ―,vΒ―)β€–βˆžβ‰€Οβ’T22⁒(a21⁒‖uβˆ’uΒ―β€–βˆž+a22⁒‖vβˆ’vΒ―β€–βˆž).subscriptnormπ΅π‘’π‘£π΅Β―π‘’Β―π‘£πœŒsuperscript𝑇22subscriptπ‘Ž21subscriptnorm𝑒¯𝑒subscriptπ‘Ž22subscriptnorm𝑣¯𝑣\left\|B(u,v)-B(\overline{u},\overline{v})\right\|_{\infty}\leq\frac{\rho T^{2% }}{2}\left(a_{21}\left\|u-\overline{u}\right\|_{\infty}+a_{22}\left\|v-% \overline{v}\right\|_{\infty}\right).βˆ₯ italic_B ( italic_u , italic_v ) - italic_B ( overΒ― start_ARG italic_u end_ARG , overΒ― start_ARG italic_v end_ARG ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ divide start_ARG italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( italic_a start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT βˆ₯ italic_u - overΒ― start_ARG italic_u end_ARG βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT βˆ₯ italic_v - overΒ― start_ARG italic_v end_ARG βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) .

These two inequalities can be written in the vector form

[β€–A⁒(u,v)βˆ’A⁒(uΒ―,vΒ―)β€–βˆžβ€–B⁒(u,v)βˆ’B⁒(uΒ―,vΒ―)β€–βˆž]≀M⁒[β€–uβˆ’uΒ―β€–βˆžβ€–vβˆ’vΒ―β€–βˆž].delimited-[]subscriptnorm𝐴𝑒𝑣𝐴¯𝑒¯𝑣subscriptnorm𝐡𝑒𝑣𝐡¯𝑒¯𝑣𝑀delimited-[]subscriptnorm𝑒¯𝑒subscriptnorm𝑣¯𝑣\left[\begin{array}[]{c}||A(u,v)-A(\bar{u},\overline{v})||_{\infty}\\ ||B(u,v)-B(\bar{u},\overline{v})||_{\infty}\end{array}\right]\leq M\left[% \begin{array}[]{c}||u-\bar{u}||_{\infty}\\ ||v-\overline{v}||_{\infty}\end{array}\right].[ start_ARRAY start_ROW start_CELL | | italic_A ( italic_u , italic_v ) - italic_A ( overΒ― start_ARG italic_u end_ARG , overΒ― start_ARG italic_v end_ARG ) | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL | | italic_B ( italic_u , italic_v ) - italic_B ( overΒ― start_ARG italic_u end_ARG , overΒ― start_ARG italic_v end_ARG ) | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] ≀ italic_M [ start_ARRAY start_ROW start_CELL | | italic_u - overΒ― start_ARG italic_u end_ARG | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL | | italic_v - overΒ― start_ARG italic_v end_ARG | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] .

Since the matrix M𝑀Mitalic_M is assumed to be convergent to zero, the operator N=(A,B)𝑁𝐴𝐡N=\left(A,B\right)italic_N = ( italic_A , italic_B ) is a Perov contraction on DR.subscript𝐷𝑅D_{R}.\ italic_D start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT .It remains to prove the invariance of the set DRsubscript𝐷𝑅D_{R}italic_D start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT, that is,

β€–uβ€–βˆžβ‰€R,β€–vβ€–βˆžβ‰€Rimplyβ€–A⁒(u,v)β€–βˆžβ‰€R,β€–B⁒(u,v)β€–βˆžβ‰€R.formulae-sequencesubscriptnorm𝑒𝑅formulae-sequencesubscriptnorm𝑣𝑅implyformulae-sequencesubscriptnorm𝐴𝑒𝑣𝑅subscriptnorm𝐡𝑒𝑣𝑅||u||_{\infty}\leq R,\ ||v||_{\infty}\leq R\ \ \ \text{imply}\ \ ||A(u,v)||_{% \infty}\leq R,\ ||B(u,v)||_{\infty}\leq R.| | italic_u | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R , | | italic_v | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R imply | | italic_A ( italic_u , italic_v ) | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R , | | italic_B ( italic_u , italic_v ) | | start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R .

Since Ξ±βˆ’Ξ³β’t22=(1βˆ’t2T2)⁒α+t2T2⁒uT𝛼𝛾superscript𝑑221superscript𝑑2superscript𝑇2𝛼superscript𝑑2superscript𝑇2subscript𝑒𝑇\alpha-\frac{\gamma t^{2}}{2}=\left(1-\frac{t^{2}}{T^{2}}\right)\alpha+\frac{t% ^{2}}{T^{2}}u_{T}italic_Ξ± - divide start_ARG italic_Ξ³ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG = ( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) italic_Ξ± + divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT and

|f⁒(eu⁒(s),ev⁒(s))|=|f⁒(eu⁒(s),ev⁒(s))βˆ’f⁒(0,ev⁒(s))|≀a11⁒eu⁒(s)≀ρ⁒a11,𝑓superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠𝑓superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠𝑓0superscript𝑒𝑣𝑠subscriptπ‘Ž11superscriptπ‘’π‘’π‘ πœŒsubscriptπ‘Ž11\left|f\left(e^{u(s)},e^{v(s)}\right)\right|=\left|f\left(e^{u(s)},e^{v(s)}% \right)-f\left(0,e^{v\left(s\right)}\right)\right|\leq a_{11}e^{u\left(s\right% )}\leq\rho a_{11},| italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) | = | italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) - italic_f ( 0 , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) | ≀ italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ≀ italic_ρ italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ,

we have

|A⁒(u,v)⁒(t)|𝐴𝑒𝑣𝑑\displaystyle|A(u,v)(t)|| italic_A ( italic_u , italic_v ) ( italic_t ) |
≀\displaystyle\leq≀ max⁑{|Ξ±|,|uT|}+(1βˆ’t2T2)⁒∫0t∫0Ο„|f⁒(eu⁒(s),ev⁒(s))|⁒𝑑s⁒𝑑τ+t2T2⁒∫tT∫0Ο„|f⁒(eu⁒(s),ev⁒(s))|⁒𝑑s⁒𝑑τ𝛼subscript𝑒𝑇1superscript𝑑2superscript𝑇2superscriptsubscript0𝑑superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏superscript𝑑2superscript𝑇2superscriptsubscript𝑑𝑇superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏\displaystyle\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+\left(1% -\frac{t^{2}}{T^{2}}\right)\int_{0}^{t}\int_{0}^{\tau}\left|f(e^{u(s)},e^{v(s)% })\right|dsd\tau+\frac{t^{2}}{T^{2}}\int_{t}^{T}\int_{0}^{\tau}\left|f(e^{u(s)% },e^{v(s)})\right|dsd\tauroman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + ( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„ + divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„
≀\displaystyle\leq≀ max⁑{|Ξ±|,|uT|}+∫0T∫0Ο„|f⁒(eu⁒(s),ev⁒(s))|⁒𝑑s⁒𝑑τ.𝛼subscript𝑒𝑇superscriptsubscript0𝑇superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏\displaystyle\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+\int_{0% }^{T}\int_{0}^{\tau}\left|f(e^{u(s)},e^{v(s)})\right|dsd\tau.roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„ .

Since f⁒(0,β‹…)≑0,𝑓0β‹…0f\left(0,\cdot\right)\equiv 0,italic_f ( 0 , β‹… ) ≑ 0 , one has

|f⁒(eu⁒(s),ev⁒(s))|=|f⁒(eu⁒(s),ev⁒(s))βˆ’f⁒(0,ev⁒(s))|≀a11⁒eu⁒(s)≀ρ⁒a11.𝑓superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠𝑓superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠𝑓0superscript𝑒𝑣𝑠subscriptπ‘Ž11superscriptπ‘’π‘’π‘ πœŒsubscriptπ‘Ž11\left|f\left(e^{u(s)},e^{v(s)}\right)\right|=\left|f\left(e^{u(s)},e^{v(s)}% \right)-f\left(0,e^{v\left(s\right)}\right)\right|\leq a_{11}e^{u\left(s\right% )}\leq\rho a_{11}.| italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) | = | italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) - italic_f ( 0 , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) | ≀ italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT ≀ italic_ρ italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT .

Then

|A⁒(u,v)⁒(t)|≀max⁑{|Ξ±|,|uT|}+ρ⁒T22⁒a11.𝐴𝑒𝑣𝑑𝛼subscriptπ‘’π‘‡πœŒsuperscript𝑇22subscriptπ‘Ž11|A(u,v)(t)|\leq\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+\frac% {\rho T^{2}}{2}a_{11}.| italic_A ( italic_u , italic_v ) ( italic_t ) | ≀ roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + divide start_ARG italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT .

Similarly

|B⁒(u,v)⁒(t)|≀max⁑{|Ξ²|,|vT|}+ρ⁒T22⁒a22.𝐡𝑒𝑣𝑑𝛽subscriptπ‘£π‘‡πœŒsuperscript𝑇22subscriptπ‘Ž22\left|B\left(u,v\right)\left(t\right)\right|\leq\max\left\{\left|\beta\right|,% \left|v_{T}\right|\right\}+\frac{\rho T^{2}}{2}a_{22}.| italic_B ( italic_u , italic_v ) ( italic_t ) | ≀ roman_max { | italic_Ξ² | , | italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + divide start_ARG italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_a start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT .

Since the elements from the diagonal of a convergent to zero matrix are less than one, we have

ρ⁒T22⁒a11<1and β’ρ⁒T22⁒a22<1.formulae-sequence𝜌superscript𝑇22subscriptπ‘Ž111and πœŒsuperscript𝑇22subscriptπ‘Ž221\frac{\rho T^{2}}{2}a_{11}<1\ \ \text{and\ \ }\frac{\rho T^{2}}{2}a_{22}<1.divide start_ARG italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT < 1 and divide start_ARG italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_a start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT < 1 .

Then according to (3.2) we deduce

β€–A⁒(u,v)β€–βˆž,β€–B⁒(u,v)β€–βˆžβ‰€1+max⁑{|Ξ±|,|uT|,|Ξ²|,|vT|}≀R.subscriptnorm𝐴𝑒𝑣subscriptnorm𝐡𝑒𝑣1𝛼subscript𝑒𝑇𝛽subscript𝑣𝑇𝑅\left\|A\left(u,v\right)\right\|_{\infty},\ \ \left\|B\left(u,v\right)\right\|% _{\infty}\leq 1+\max\left\{\left|\alpha\right|,\left|u_{T}\right|,\left|\beta% \right|,\left|v_{T}\right|\right\}\leq R.βˆ₯ italic_A ( italic_u , italic_v ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT , βˆ₯ italic_B ( italic_u , italic_v ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ 1 + roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | , | italic_Ξ² | , | italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } ≀ italic_R .

Therefore, the operator N=(A,B)𝑁𝐴𝐡N=(A,B)italic_N = ( italic_A , italic_B ) maps DRsubscript𝐷𝑅D_{R}italic_D start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT into itself and thus Perov’s fixed point theorem applies and guarantees the existence of a unique fixed point (uβˆ—,vβˆ—)∈DR.superscriptπ‘’βˆ—superscriptπ‘£βˆ—subscript𝐷𝑅(u^{\ast},v^{\ast})\in D_{R}.( italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_v start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ∈ italic_D start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT . Finally, xβˆ—=euβˆ—,superscriptπ‘₯βˆ—superscript𝑒superscriptπ‘’βˆ—x^{\ast}=e^{u^{\ast}},italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT = italic_e start_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT , yβˆ—=evβˆ—superscriptπ‘¦βˆ—superscript𝑒superscriptπ‘£βˆ—y^{\ast}=e^{v^{\ast}}italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT = italic_e start_POSTSUPERSCRIPT italic_v start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT and Ξ»βˆ—,superscriptπœ†βˆ—\lambda^{\ast},italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , ΞΌβˆ—superscriptπœ‡βˆ—\mu^{\ast}italic_ΞΌ start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT calculated according to (3) give the desired solution of control problem (3.1). ∎

Here again, if instead of the Lipschitz conditions, f𝑓fitalic_f and g𝑔gitalic_g only have a logarithmic growth, then one can prove the existence of a least one solution of the control problem.

Theorem 3.2.

Let f,g:ℝ+2→ℝ:𝑓𝑔→superscriptsubscriptℝ2ℝf,g:\mathbb{R}_{+}^{2}\rightarrow\mathbb{R}italic_f , italic_g : blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β†’ blackboard_R be continuous and satisfy the logarithmic growth conditions

(3.5) |f⁒(x,y)|𝑓π‘₯𝑦\displaystyle\left|f(x,y)\right|| italic_f ( italic_x , italic_y ) | ≀\displaystyle\leq≀ a11⁒|ln⁑x|+a12⁒|ln⁑y|+b1,subscriptπ‘Ž11π‘₯subscriptπ‘Ž12𝑦subscript𝑏1\displaystyle a_{11}\left|\ln x\right|+a_{12}\left|\ln y\right|+b_{1},italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT | roman_ln italic_x | + italic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT | roman_ln italic_y | + italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ,
|g⁒(x,y)|𝑔π‘₯𝑦\displaystyle\left|g(x,y)\right|| italic_g ( italic_x , italic_y ) | ≀\displaystyle\leq≀ a21⁒|ln⁑x|+a22⁒|ln⁑y|+b2,subscriptπ‘Ž21π‘₯subscriptπ‘Ž22𝑦subscript𝑏2\displaystyle a_{21}\left|\ln x\right|+a_{22}\left|\ln y\right|+b_{2},\ italic_a start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT | roman_ln italic_x | + italic_a start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT | roman_ln italic_y | + italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ,

for all x,y∈(0,∞)π‘₯𝑦0x,y\in\left(0,\infty\right)italic_x , italic_y ∈ ( 0 , ∞ ) and some constants ai⁒j,biβˆˆβ„+(i,j=1,2).a_{ij},\ b_{i}\in\mathbb{R}_{+}\ \left(i,j=1,2\right).italic_a start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ( italic_i , italic_j = 1 , 2 ) . Then for each T>0𝑇0T>0italic_T > 0 for which the matrix

M=T22⁒[ai⁒j]1≀i,j≀2𝑀superscript𝑇22subscriptdelimited-[]subscriptπ‘Žπ‘–π‘—formulae-sequence1𝑖𝑗2M=\frac{T^{2}}{2}\left[a_{ij}\right]_{1\leq i,j\leq 2}italic_M = divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG [ italic_a start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ] start_POSTSUBSCRIPT 1 ≀ italic_i , italic_j ≀ 2 end_POSTSUBSCRIPT

converges to zero, the control problem (3.1) has at least one solution (xβˆ—,yβˆ—,Ξ»βˆ—,ΞΌβˆ—)superscriptπ‘₯βˆ—superscriptπ‘¦βˆ—superscriptπœ†βˆ—superscriptπœ‡βˆ—(x^{\ast},y^{\ast},\lambda^{\ast},\mu^{\ast})( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_ΞΌ start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) with xβˆ—>0superscriptπ‘₯βˆ—0x^{\ast}>0italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT > 0 and yβˆ—>0.superscriptπ‘¦βˆ—0y^{\ast}>0.italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT > 0 .

Proof.

We shall apply Schauder’s fixed point theorem to the operator (A,B)𝐴𝐡\left(A,B\right)( italic_A , italic_B ) in a bounded closed convex set D𝐷Ditalic_D of the form

D=BR1Γ—BR2,𝐷subscript𝐡subscript𝑅1subscript𝐡subscript𝑅2D=B_{R_{1}}\times B_{R_{2}},italic_D = italic_B start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT Γ— italic_B start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ,

where

BRi={w∈C⁒[0,T]:β€–wβ€–βˆžβ‰€Ri}⁒(i=1,2).subscript𝐡subscript𝑅𝑖conditional-set𝑀𝐢0𝑇subscriptnorm𝑀subscript𝑅𝑖𝑖12B_{R_{i}}=\left\{w\in C\left[0,T\right]:\ \left\|w\right\|_{\infty}\leq R_{i}% \right\}\ \left(i=1,2\right).italic_B start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT = { italic_w ∈ italic_C [ 0 , italic_T ] : βˆ₯ italic_w βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } ( italic_i = 1 , 2 ) .

We need to prove that one can find two positive numbers R1subscript𝑅1R_{1}italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and R2subscript𝑅2R_{2}italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT such that the following invariance condition is satisfied:

β€–uβ€–βˆžβ‰€R1,β€–vβ€–βˆžβ‰€R2imply β’β€–A⁒(u,v)β€–βˆžβ‰€R1,β€–B⁒(u,v)β€–βˆžβ‰€R2.formulae-sequencesubscriptnorm𝑒subscript𝑅1formulae-sequencesubscriptnorm𝑣subscript𝑅2formulae-sequenceimply subscriptnorm𝐴𝑒𝑣subscript𝑅1subscriptnorm𝐡𝑒𝑣subscript𝑅2\left\|u\right\|_{\infty}\leq R_{1},\ \left\|v\right\|_{\infty}\leq R_{2}\ \ % \ \text{imply\ \ }\left\|A\left(u,v\right)\right\|_{\infty}\leq R_{1},\ \ % \left\|B\left(u,v\right)\right\|_{\infty}\leq R_{2}.βˆ₯ italic_u βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , βˆ₯ italic_v βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT imply βˆ₯ italic_A ( italic_u , italic_v ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , βˆ₯ italic_B ( italic_u , italic_v ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT .

Using (3.5) we have

|A⁒(u,v)⁒(t)|𝐴𝑒𝑣𝑑\displaystyle|A(u,v)(t)|| italic_A ( italic_u , italic_v ) ( italic_t ) | ≀\displaystyle\leq≀ |(1βˆ’t2T2)⁒α+t2T2⁒uT|+(1βˆ’t2T2)⁒∫0t∫0Ο„|f⁒(eu⁒(s),ev⁒(s))|⁒𝑑s⁒𝑑τ1superscript𝑑2superscript𝑇2𝛼superscript𝑑2superscript𝑇2subscript𝑒𝑇1superscript𝑑2superscript𝑇2superscriptsubscript0𝑑superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏\displaystyle\left|\left(1-\frac{t^{2}}{T^{2}}\right)\alpha+\frac{t^{2}}{T^{2}% }u_{T}\right|+\left(1-\frac{t^{2}}{T^{2}}\right)\int_{0}^{t}\int_{0}^{\tau}% \left|f(e^{u(s)},e^{v(s)})\right|dsd\tau| ( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) italic_Ξ± + divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | + ( 1 - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„
+t2T2⁒∫tT∫0Ο„|f⁒(eu⁒(s),ev⁒(s))|⁒𝑑s⁒𝑑τsuperscript𝑑2superscript𝑇2superscriptsubscript𝑑𝑇superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏\displaystyle+\frac{t^{2}}{T^{2}}\int_{t}^{T}\int_{0}^{\tau}\left|f(e^{u(s)},e% ^{v(s)})\right|dsd\tau+ divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„
≀\displaystyle\leq≀ max⁑{|Ξ±|,|uT|}+∫0T∫0Ο„|f⁒(eu⁒(s),ev⁒(s))|⁒𝑑s⁒𝑑τ𝛼subscript𝑒𝑇superscriptsubscript0𝑇superscriptsubscript0πœπ‘“superscript𝑒𝑒𝑠superscript𝑒𝑣𝑠differential-d𝑠differential-d𝜏\displaystyle\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+\int_{0% }^{T}\int_{0}^{\tau}\left|f(e^{u(s)},e^{v(s)})\right|dsd\tauroman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ο„ end_POSTSUPERSCRIPT | italic_f ( italic_e start_POSTSUPERSCRIPT italic_u ( italic_s ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_v ( italic_s ) end_POSTSUPERSCRIPT ) | italic_d italic_s italic_d italic_Ο„
≀\displaystyle\leq≀ max⁑{|Ξ±|,|uT|}+T22⁒(a11⁒R1+a12⁒R2+b1)𝛼subscript𝑒𝑇superscript𝑇22subscriptπ‘Ž11subscript𝑅1subscriptπ‘Ž12subscript𝑅2subscript𝑏1\displaystyle\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+\frac{T% ^{2}}{2}\left(a_{11}R_{1}+a_{12}R_{2}+b_{1}\right)roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT )

A similar estimate holds for B.𝐡B.\ italic_B .Hence,

β€–A⁒(u,v)β€–βˆžsubscriptnorm𝐴𝑒𝑣\displaystyle\left\|A(u,v)\right\|_{\infty}βˆ₯ italic_A ( italic_u , italic_v ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀\displaystyle\leq≀ T22⁒(a11⁒R1+a12⁒R2)+Ξ·1,superscript𝑇22subscriptπ‘Ž11subscript𝑅1subscriptπ‘Ž12subscript𝑅2subscriptπœ‚1\displaystyle\frac{T^{2}}{2}(a_{11}R_{1}+a_{12}R_{2})+\eta_{1},divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( italic_a start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_Ξ· start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ,
β€–B⁒(u,v)β€–βˆžsubscriptnorm𝐡𝑒𝑣\displaystyle\left\|B(u,v)\right\|_{\infty}βˆ₯ italic_B ( italic_u , italic_v ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀\displaystyle\leq≀ T22⁒(a21⁒R1+a22⁒R2)+Ξ·2,superscript𝑇22subscriptπ‘Ž21subscript𝑅1subscriptπ‘Ž22subscript𝑅2subscriptπœ‚2\displaystyle\frac{T^{2}}{2}(a_{21}R_{1}+a_{22}R_{2})+\eta_{2},divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( italic_a start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_Ξ· start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ,

where

Ξ·1=max⁑{|Ξ±|,|uT|}+T22⁒b1,Ξ·2=max⁑{|Ξ²|,|vT|}+T22⁒b2.formulae-sequencesubscriptπœ‚1𝛼subscript𝑒𝑇superscript𝑇22subscript𝑏1subscriptπœ‚2𝛽subscript𝑣𝑇superscript𝑇22subscript𝑏2\eta_{1}=\max\left\{\left|\alpha\right|,\left|u_{T}\right|\right\}+\frac{T^{2}% }{2}b_{1},\ \ \ \eta_{2}=\max\left\{\left|\beta\right|,\left|v_{T}\right|% \right\}+\frac{T^{2}}{2}b_{2}.italic_Ξ· start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_Ξ· start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = roman_max { | italic_Ξ² | , | italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT .

We write the two inequalities in the vector form

[β€–A⁒(u,v)β€–βˆžβ€–B⁒(u,v)β€–βˆž]≀M⁒[R1R2]+[Ξ·1Ξ·2].delimited-[]subscriptnorm𝐴𝑒𝑣subscriptnorm𝐡𝑒𝑣𝑀delimited-[]subscript𝑅1subscript𝑅2delimited-[]subscriptπœ‚1subscriptπœ‚2\left[\begin{array}[]{c}\left\|A(u,v)\right\|_{\infty}\\ \left\|B(u,v)\right\|_{\infty}\end{array}\right]\leq M\left[\begin{array}[]{c}% R_{1}\\ R_{2}\end{array}\right]+\left[\begin{array}[]{c}\eta_{1}\\ \eta_{2}\end{array}\right].[ start_ARRAY start_ROW start_CELL βˆ₯ italic_A ( italic_u , italic_v ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL βˆ₯ italic_B ( italic_u , italic_v ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] ≀ italic_M [ start_ARRAY start_ROW start_CELL italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] + [ start_ARRAY start_ROW start_CELL italic_Ξ· start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_Ξ· start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] .

Thus, for the desired invariance property, we would like to have

M⁒[R1R2]+[Ξ·1Ξ·2]≀[R1R2],𝑀delimited-[]subscript𝑅1subscript𝑅2delimited-[]subscriptπœ‚1subscriptπœ‚2delimited-[]subscript𝑅1subscript𝑅2M\left[\begin{array}[]{c}R_{1}\\ R_{2}\end{array}\right]+\left[\begin{array}[]{c}\eta_{1}\\ \eta_{2}\end{array}\right]\leq\left[\begin{array}[]{c}R_{1}\\ R_{2}\end{array}\right],italic_M [ start_ARRAY start_ROW start_CELL italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] + [ start_ARRAY start_ROW start_CELL italic_Ξ· start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_Ξ· start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] ≀ [ start_ARRAY start_ROW start_CELL italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] ,

equivalently

[Ξ·1Ξ·2]≀(Iβˆ’M)⁒[R1R2].delimited-[]subscriptπœ‚1subscriptπœ‚2𝐼𝑀delimited-[]subscript𝑅1subscript𝑅2\left[\begin{array}[]{c}\eta_{1}\\ \eta_{2}\end{array}\right]\leq(I-M)\left[\begin{array}[]{c}R_{1}\\ R_{2}\end{array}\right].[ start_ARRAY start_ROW start_CELL italic_Ξ· start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_Ξ· start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] ≀ ( italic_I - italic_M ) [ start_ARRAY start_ROW start_CELL italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] .

Since the matrix M𝑀Mitalic_M converges to zero, one has (Iβˆ’M)βˆ’1βˆˆβ„³2Γ—2⁒(ℝ+)superscript𝐼𝑀1subscriptβ„³22subscriptℝ(I-M)^{-1}\in\mathcal{M}_{2\times 2}\left(\mathbb{R}_{+}\right)( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∈ caligraphic_M start_POSTSUBSCRIPT 2 Γ— 2 end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) and thus we can multiply by (Iβˆ’M)βˆ’1superscript𝐼𝑀1(I-M)^{-1}( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT without changing the inequality. It turns out that

(Iβˆ’M)βˆ’1⁒[Ξ·1Ξ·2]≀[R1R2].superscript𝐼𝑀1delimited-[]subscriptπœ‚1subscriptπœ‚2delimited-[]subscript𝑅1subscript𝑅2(I-M)^{-1}\left[\begin{array}[]{c}\eta_{1}\\ \eta_{2}\end{array}\right]\leq\left[\begin{array}[]{c}R_{1}\\ R_{2}\end{array}\right].( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [ start_ARRAY start_ROW start_CELL italic_Ξ· start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_Ξ· start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] ≀ [ start_ARRAY start_ROW start_CELL italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] .

This inequality allows the choice of the radii R1,R2>0subscript𝑅1subscript𝑅20R_{1},R_{2}>0italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT > 0 to guarantee the invariance property. Thus Schauder’s fixed point theorem can be applied to N=(A,B)𝑁𝐴𝐡N=\left(A,B\right)italic_N = ( italic_A , italic_B ) in BR1Γ—BR2subscript𝐡subscript𝑅1subscript𝐡subscript𝑅2B_{R_{1}}\times B_{R_{2}}italic_B start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT Γ— italic_B start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. ∎

Our last result is an application of Avramescu’s fixed point theorem to control problem (3.1) when f𝑓fitalic_f satisfies a Lipschitz condition with respect to the first variable only, and g𝑔gitalic_g has a logarithmic growth in the last variable.

Theorem 3.3.

Let ρ𝜌\rhoitalic_ρ be such that

(3.6) ρβ‰₯max⁑{exp⁑(1+max⁑{|Ξ±|,|uT|}),exp⁑2⁒max⁑{|Ξ²|,|vT|}+T2⁒c2βˆ’T2⁒b}𝜌1𝛼subscript𝑒𝑇2𝛽subscript𝑣𝑇superscript𝑇2𝑐2superscript𝑇2𝑏\rho\geq\max\left\{\exp\left(1+\max\left\{\left|\alpha\right|,\left|u_{T}% \right|\right\}\right),\ \exp\frac{2\max\left\{\left|\beta\right|,\left|v_{T}% \right|\right\}+T^{2}c}{2-T^{2}b}\right\}italic_ρ β‰₯ roman_max { roman_exp ( 1 + roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } ) , roman_exp divide start_ARG 2 roman_max { | italic_Ξ² | , | italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c end_ARG start_ARG 2 - italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_b end_ARG }

and f,g:[0,ρ]2→ℝ:𝑓𝑔→superscript0𝜌2ℝf,g:\left[0,\rho\right]^{2}\rightarrow\mathbb{R}italic_f , italic_g : [ 0 , italic_ρ ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β†’ blackboard_R be continuous and f⁒(0,β‹…)≑0.𝑓0β‹…0f\left(0,\cdot\right)\equiv 0.italic_f ( 0 , β‹… ) ≑ 0 . Assume that

|f⁒(x,y)βˆ’f⁒(xΒ―,y)|𝑓π‘₯𝑦𝑓¯π‘₯𝑦\displaystyle\left|f\left(x,y\right)-f\left(\overline{x},y\right)\right|| italic_f ( italic_x , italic_y ) - italic_f ( overΒ― start_ARG italic_x end_ARG , italic_y ) | ≀\displaystyle\leq≀ a⁒|xβˆ’xΒ―|for all β’x,xΒ―,y∈[0,ρ],π‘Žπ‘₯Β―π‘₯for all π‘₯Β―π‘₯𝑦0𝜌\displaystyle a\left|x-\overline{x}\right|\ \ \ \text{for all }x,\overline{x},% y\in\left[0,\rho\right],italic_a | italic_x - overΒ― start_ARG italic_x end_ARG | for all italic_x , overΒ― start_ARG italic_x end_ARG , italic_y ∈ [ 0 , italic_ρ ] ,
|g⁒(x,y)|𝑔π‘₯𝑦\displaystyle\left|g\left(x,y\right)\right|| italic_g ( italic_x , italic_y ) | ≀\displaystyle\leq≀ b⁒|ln⁑y|+cfor all β’x∈[0,ρ],y∈(0,ρ],formulae-sequence𝑏𝑦𝑐for all π‘₯0πœŒπ‘¦0𝜌\displaystyle b\left|\ln y\right|+c\ \ \ \text{for all }x\in\left[0,\rho\right% ],\ y\in(0,\rho],italic_b | roman_ln italic_y | + italic_c for all italic_x ∈ [ 0 , italic_ρ ] , italic_y ∈ ( 0 , italic_ρ ] ,

where a<2ρ⁒T2π‘Ž2𝜌superscript𝑇2a<\frac{2}{\rho T^{2}}italic_a < divide start_ARG 2 end_ARG start_ARG italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG and b<2T2.𝑏2superscript𝑇2b<\frac{2}{T^{2}}.italic_b < divide start_ARG 2 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . Then problem (3.1) has at least one solution (xβˆ—,yβˆ—,Ξ»βˆ—,ΞΌβˆ—)superscriptπ‘₯βˆ—superscriptπ‘¦βˆ—superscriptπœ†βˆ—superscriptπœ‡βˆ—\left(x^{\ast},y^{\ast},\lambda^{\ast},\mu^{\ast}\right)( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_Ξ» start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_ΞΌ start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) with xβˆ—,yβˆ—>0superscriptπ‘₯βˆ—superscriptπ‘¦βˆ—0x^{\ast},y^{\ast}>0italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT > 0 and β€–xβˆ—β€–βˆž,β€–yβˆ—β€–βˆžβ‰€Ο.subscriptnormsuperscriptπ‘₯βˆ—subscriptnormsuperscriptπ‘¦βˆ—πœŒ\left\|x^{\ast}\right\|_{\infty},\left\|y^{\ast}\right\|_{\infty}\leq\rho.βˆ₯ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT , βˆ₯ italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ italic_ρ .

Proof.

As in the proof of Theorem 3.1, one has

β€–A⁒(u,v)βˆ’A⁒(uΒ―,v)β€–βˆžβ‰€Οβ’T22⁒a⁒‖uβˆ’uΒ―β€–βˆž.subscriptnormπ΄π‘’π‘£π΄Β―π‘’π‘£πœŒsuperscript𝑇22π‘Žsubscriptnorm𝑒¯𝑒\left\|A(u,v)-A(\overline{u},v)\right\|_{\infty}\leq\frac{\rho T^{2}}{2}a\left% \|u-\overline{u}\right\|_{\infty}.βˆ₯ italic_A ( italic_u , italic_v ) - italic_A ( overΒ― start_ARG italic_u end_ARG , italic_v ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ divide start_ARG italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_a βˆ₯ italic_u - overΒ― start_ARG italic_u end_ARG βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT .

Since ρ⁒T22⁒a<1,𝜌superscript𝑇22π‘Ž1\frac{\rho T^{2}}{2}a<1,divide start_ARG italic_ρ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_a < 1 , the operator A⁒(β‹…,v)𝐴⋅𝑣A\left(\cdot,v\right)italic_A ( β‹… , italic_v ) is a contraction in BRsubscript𝐡𝑅B_{R}italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT with a Lipschitz constant independent of v.𝑣v.italic_v . By standard arguments, one has that B𝐡Bitalic_B is completely continuous on BRΓ—BR.subscript𝐡𝑅subscript𝐡𝑅B_{R}\times B_{R}.italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT Γ— italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT . In order to apply Avramescu’s fixed point theorem, it remains to prove that A⁒(BRΓ—BR),B⁒(BRΓ—BR)βŠ‚BR.𝐴subscript𝐡𝑅subscript𝐡𝑅𝐡subscript𝐡𝑅subscript𝐡𝑅subscript𝐡𝑅A\left(B_{R}\times B_{R}\right),\ B\left(B_{R}\times B_{R}\right)\subset B_{R}.italic_A ( italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT Γ— italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ) , italic_B ( italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT Γ— italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ) βŠ‚ italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT .

As in the proof of Theorem 3.1, based on (3.6), we have

β€–A⁒(u,v)β€–βˆžβ‰€1+max⁑{|Ξ±|,|uT|}≀R,subscriptnorm𝐴𝑒𝑣1𝛼subscript𝑒𝑇𝑅\left\|A\left(u,v\right)\right\|_{\infty}\leq 1+\max\left\{\left|\alpha\right|% ,\left|u_{T}\right|\right\}\leq R,βˆ₯ italic_A ( italic_u , italic_v ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ 1 + roman_max { | italic_Ξ± | , | italic_u start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } ≀ italic_R ,

while from the proof of Theorem 3.2, one has

β€–B⁒(u,v)β€–βˆžβ‰€max⁑{|Ξ²|,|vT|}+T22⁒(b⁒R+c)≀R.subscriptnorm𝐡𝑒𝑣𝛽subscript𝑣𝑇superscript𝑇22𝑏𝑅𝑐𝑅\left\|B(u,v)\right\|_{\infty}\leq\max\left\{\left|\beta\right|,\left|v_{T}% \right|\right\}+\frac{T^{2}}{2}\left(bR+c\right)\leq R.βˆ₯ italic_B ( italic_u , italic_v ) βˆ₯ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≀ roman_max { | italic_Ξ² | , | italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT | } + divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( italic_b italic_R + italic_c ) ≀ italic_R .

Thus Avramescu’s theorem applies and gives the result. ∎

Acknowledgements

The authors are very thankful to reviewers for their valuable comments and remarks that led to an improved version of the paper.

References

  • [1] L. J. S. Allen, An Introduction to Mathematical Biology, Pearson Education, 2006.
  • [2] C. Avramescu, On a fixed point theorem (in Romanian), Studii şi CercetΔƒri Matematice 22 (1970), no. 2, 215–221.
  • [3] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, Berlin, 2012.
  • [4] J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, Vol. 136, Amer. Math. Soc., Providence, 2007.
  • [5] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003.
  • [6] I. Ş. Haplea, L. G. Parajdi and R. Precup, On the controllability of a system modeling cell dynamics related to leukemia, Symmetry 13 (2021) 1867.
  • [7] X. He, Z. Zhu, J. Chen and F. Chen, Dynamical analysis of a Lotka Volterra commensalism model with additive Allee effect, Open Mathematics 20 (2022) 646–665.
  • [8] A. Hofman, An algorithm for solving a control problem for Kolmogorov systems, Studia. Universitatis Babeş-Bolyai Mathematica 68 (2023) 331–340.
  • [9] A. Hofman and R. Precup, On some control problems for Kolmogorov type systems, Mathematical Modelling and Control 2 (2022) 90–99.
  • [10] A. Hofman and R. Precup, Vector fixed point approach to control of Kolmogorov differential systems, Contemporary Mathematics 5 (2024), no. 2, 1968–1981.
  • [11] A. N. Kolmogorov, Sulla teoria di Volterra della lotta per l’esistenza, Giornale dell Istituto Italiano degli Attuari 7 (1936) 74–80.
  • [12] M. A. Krasnoselskii, Some problems of nonlinear analysis, American Mathematical Society Translations: Series 2 10 (1958), 345–409.
  • [13] X. Li, Z. H. Liu and S. MigΓ³rski, Approximate controllability for second-order nonlinear evolution hemivariational inequalities, Electronic Journal of Qualitative Theory of Differential Equations 2015 (2015) 100.
  • [14] J. Li, Control Schemes to reduce risk of extinction in the Lotka-Volterra predator-prey model, Journal of Applied Mathematics and Physics 2 (2014), no.7, 644–652.
  • [15] J. Li, A. Zhao and J. Yan, The permanence and global attractivity of a Kolmogorov system with feedback controls, Nonlinear Analysis: Real World Applications 10 (2009), 506–518.
  • [16] J. Llibre and T. Salhi, On the dynamics of a class of Kolmogorov systems, Applied Mathematics and Computation 225 (2013), 242–245.
  • [17] C. Lois-Prados and R. Precup, Positive periodic solutions for Lotka-Volterra systems with a general attack rate, Nonlinear Analysis: Real World Applications 52 (2020), 103024.
  • [18] N. I. Mahmudov, R. Udhayakumar and V. Vijayakumar, On the approximate controllability of second-order evolution hemivariational inequalities, Results in Mathematics 75 (2020) 160.
  • [19] J. D. Murray, An Introduction to Mathematical Biology, Vol. 1, Springer, New York, 2011.
  • [20] L. G. Parajdi, F. PΔƒtrulescu, R. Precup and I. Ş. Haplea, Two numerical methods for solving a nonlinear system of integral equations of mixed Volterra-Fredholm type arising from a control problem related to leukemia, Journal of Applied Analysis and Computation 13 (2023) 1797–1812.
  • [21] A.I. Perov, On the Cauchy problem for a system of ordinary differential equations (Russian), Pviblizhen. Met. Reshen. Differ. Uvavn. 2 (1964), 115–134.
  • [22] R. Precup, Methods in Nonlinear Integral Equations, Springer, Dordrecht, 2002.
  • [23] R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Mathematical and Computer Modelling 49 (2009) 703–708.
  • [24] R. Precup, On some applications of the controllability principle for fixed point equations, Results in Applied Mathematics 13 (2022) 100236.
  • [25] M. D. Quinn and N. Carmichael, An approach to non-linear control problems using fixed-point methods, degree theory and pseudo-inverses, Numerical Functional Analysis and Optimization 7 (1985) 197–219.
  • [26] S. Reich, Fixed points of condensing functions, J. Math. Anal. Appl. 41 (1973), 460–467.
  • [27] K. Sigmund, Kolmogorov and population dynamics, In: Γ‰. Charpentier, A. Lesne, N. K. Nikolski (eds.) Kolmogorov’s heritage in mathematics, Springer, Berlin, 2007.
  • [28] G. Tigan, C. Lazureanu, F. Munteanu, C. Sterbeti, A. Florea, Analysis of a class of Kolmogorov systems, Nonlinear Analysis: Real World Applications 57 (2021), 103202.
2025

Related Posts