Fixed Point Results and the Ekeland Variational Principle in Vector B-Metric Spaces

Abstract

In this paper, we extend the concept of b-metric spaces to the vectorial case, where the distance is vector valued, and the constant in the triangle in equality axiom is replaced by a matrix. For such spaces, we establish results analogous to those in the b-metric setting: fixed-point theorems, stability results, and a variant of Ekeland’s variational principle. As a consequence, we also derive a variant of Caristi’s fixed-point theorem.

Authors

Radu Precup
Faculty of Mathematics and Computer Science and Institute of Advanced Studies in Science and Technology, Babes-Bolyai, University, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania

Andrei Stan
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

tiangle inequality axiom; b-metric space; variational principle; fixed point

Paper coordinates

R. Precup, A. Stan, Fixed Point Results and the Ekeland Variational Principle in Vector B-Metric Spaces, Preprints.org., 10.20944/preprints202502.0815.v1

About this paper

Print ISSN
Online ISSN

google scholar link

[1] Wilson, W. A. On Quasi-Metric Spaces. Amer. J. Math. 1931, 675–684.
[2] Bourbaki, N. Topologie Generale; Herman: Paris, France, 1974.
[3] Bakhtin, I.A. Contracting mapping principle in an almost metric space. Funktsionalnyi Analiz 1989, 30, 26–37.
[4] Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11.
[5] Coifman, R.R.; de Guzman, M. Singular integrals and multipliers on homogeneous spaces. Rev. Un. Mat. Argentina 1970/71, 25, 137–143.
[6] Hyers, D.H. A note on linear topological spaces. Bull. Amer. Math. Soc. 1938, 44, 76–80.
[7] Bourgin, D.G. Linear topological spaces. Amer. J. Math. 1943, 65, 637–659.
[8] Berinde, V.; P˘acurar, M. The early developments in fixed point theory on b-metric spaces: A brief survey and some important related aspects. Carpathian J. Math. 2022, 38, 523–538.
[9] An, T.V.; Van Dung, N.; Kadelburg, Z.; RadenoviΒ΄c, S. Various generalizations of metric spaces and fixed point theorems. RACSAM 2015, 109(1), 175–198. Generalized distances and their associate metrics: Impact on fixed point theory. Creat. Math. Inform. 2013, 22(1), 23–32.
[10] MitroviΒ΄c, Z.D. Fixed point results in b-metric spaces. Fixed Point Theory 2019, 20, 559–566, https://doi.org/10.24193/fpt-ro.2019.2.36.
[11] Boriceanu, M.; PetruΒΈsel, A.; Rus, I.A. Fixed point theorems for some multivalued generalized contractions in b-metric spaces. Int. J. Math. Stat. 2010, 6, 65–76.
[12] Aydi, H.; Czerwik, S. Modern Discrete Mathematics and Analysis. Springer: Cham, Switzerland, 2018.
[13] Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces. Springer: Cham, Switzerland, 2014.
[14] Reich, S.; Zaslavski, A.J. Well-posedness of fixed point problems. Far East J. Math. Sci. 2001, Special Volume (Functional Analysis and its Applications), Part III, 393–401.
[15] Berinde, V. Generalized contractions in quasimetric spaces. Seminar on Fixed Point Theory, Preprint no. 3, 1993, 3–9.
[16] Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163.
[17] Suzuki, T. Basic inequality on a b-metric space and its applications. J. Inequal. Appl. 2017, 2017, 256.
[18] Bota, M.-F.; Micula, S. Ulam–Hyers stability via fixed point results for special contractions in b-metric spaces. Symmetry 2022, 14, 2461.
[19] Petrus, el, A.; Petrus, el, G. Graphical contractions and common fixed points in b-metric spaces. Arab. J. Math. 2023, 12, 423–430. https://doi.org/10.1007/s40065-022-00396-8.
[20] Bota, M.; Molnar, A.; Varga, C. On Ekeland’s variational principle in b-metric spaces. Fixed Point Theory 2011, 12, 21–28.
[21] Farkas, C; MolnΓ‘r, A.; Nagy, S. A generalized variational principle in b-metric spaces. Le Matematiche 2014, 69(2), 205–221.
[22] Boriceanu, M. Fixed point theory on spaces with vector-valued b-metrics. Demonstr. Math. 2009, 42, 831–841.
[23] Precup, R. The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comput. Model. 2009, 49(3), 703–708.
[24] Berman, A.; Plemmons, R.J. Nonnegative matrices in the mathematical sciences. Academic Press: New York, USA, 1997.
[25] Collatz, L. Aufgaben monotoner Art. Arch. Math. (Basel) 1952, 3, 366–376.
[26] Cobzas, S,.; Czerwik, S. The completion of generalized b-metric spaces and fixed points. Fixed Point Theory 2020, 21(1), 133–150.
[27] Perov, A.I. On the Cauchy problem for a system of ordinary differential equations (Russian). Priblizhen. Metody Reshen. Differ. Uravn. 1964, 2, 115–134.
[28] Perov, A.I. Generalized principle of contraction mappings (Russian). Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2005, 1, 196–207.
[29] Ortega, J.M.; Rheinboldt, W.C. Iterative Solutions of Nonlinear Equations in Several Variables. Academic Press: New York, USA, 1970.
[30] Avramescu, C. Asupra unei teoreme de punct fix. St. Cerc. Mat. 1970, 22, 215–221.
[31] Ekeland, I. On the variational principle. J. Math. Anal. Appl. 1974, 47(2), 324–353.
[32] Mawhin, J.; Willem, M. Critical Point Theory And Hamiltonian Systems. Applied Mathematical Sciences: Springer, New York, USA, 1989.
[33] De Figueiredo, D.G. Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research: Bombay, India, 1989.
[34] Meghea, I. Ekeland Variational Principle with Generalizations and Variants. Old City Publishing: Philadelphia, USA, 2009.
[35] Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 1976, 215, 241–251.

Paper (preprint) in HTML form

Fixed point results and the Ekeland variational principle in vector B𝐡Bitalic_B-metric spaces

Radu Precup Faculty of Mathematics and Computer Science and Institute of Advanced Studies in Science and Technology, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O. Box 68-1, 400110 Cluj-Napoca, Romania r.precup@ictp.acad.ro  and  Andrei Stan Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania andrei.stan@ubbcluj.ro
Abstract.

In this paper, we extend the concept of b𝑏bitalic_b-metric spaces to the vectorial case, where the distance is vector-valued, and the constant in the triangle inequality axiom is replaced by a matrix. For such spaces, we establish results analogous to those in the b𝑏bitalic_b-metric setting: fixed-point theorems, stability results, and a variant of Ekeland’s variational principle. As a consequence, we also derive a variant of Caristi’s fixed-point theorem.

Key words and phrases:
triangle inequality axiom, b𝑏bitalic_b-metric space, variational principle, fixed point
2010 Mathematics Subject Classification:
47J35, 34K35, 47H10

1. Introduction

The concept of a b𝑏bitalic_b-metric space arises as a natural generalization of a metric space, where the triangle inequality axiom is relaxed by introducing a constant bβ‰₯1𝑏1b\geq 1italic_b β‰₯ 1 on its right-hand side. Early ideas in this direction can be traced back to the notion of ”quasimetric” spaces, as discussed in [1]. However, the formal definition and terminology of b𝑏bitalic_b-metric spaces are widely attributed to Bakhtin [2] and Czerwik [3]. Notably, one of the earliest works to introduce a mapping satisfying the properties of a b𝑏bitalic_b-metric dates back to 1970 in [4], where such a mapping was referred to as a ”distance”. A concept related to that of a b𝑏bitalic_b-metric is the notion of a quasi-norm, which can be traced back to Hyers [5] and Bourgin [6], who originally used the term ”quasi-norm.” For a survey on b𝑏bitalic_b-metric spaces we send the reader to [7, 8].

Various results from the classical theory of metric spaces have been extended to b𝑏bitalic_b-metric spaces, including fixed-point theorems (see, e.g., [9, 10, 11, 13, 12, 14]), estimations (see, e.g.,[15, 16]), stability results (see, e.g, [17, 18]), and variational principles (see, e.g., [19, 20]). In [21], the metric was allowed to take vector values, and results analogous to those for b𝑏bitalic_b-metric spaces were established, with matrices converging to zero replacing the contraction constants, but not the constant b𝑏bitalic_b from the triangle inequality axiom.

In this paper, we introduce the concept of a vector B𝐡Bitalic_B-metric space, where the scalar constant b𝑏bitalic_b in the triangle inequality is replaced by a matrix B𝐡Bitalic_B. This generalization introduces new challenges in establishing results analogous to those for classical b𝑏bitalic_b-metric spaces. To the best of our knowledge, this concept, along with the corresponding results presented here, is novel. Notably, some of the results appear to be new even in the scalar particular case where the matrix B𝐡Bitalic_B is reduced to a constant.

Throughout this paper, we consider ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT-valued vector metrics (nβ‰₯1𝑛1n\geq 1italic_n β‰₯ 1) on a set X𝑋Xitalic_X, i.e., mappings d:XΓ—X→ℝ+n:𝑑→𝑋𝑋superscriptsubscriptℝ𝑛d:X\times X\to\mathbb{R}_{+}^{n}italic_d : italic_X Γ— italic_X β†’ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. In the scalar case (n=1𝑛1n=1italic_n = 1), we use the special notation ρ𝜌\rhoitalic_ρ to denote a standard metric or a b𝑏bitalic_b-metric.

The classical definition of a b𝑏bitalic_b-metric reads as follows:

Definition 1.1.

Let X𝑋Xitalic_X be a set and let bβ‰₯1𝑏1b\geq 1italic_b β‰₯ 1 be a given real number. A mapping ρ:XΓ—X→ℝ+:πœŒβ†’π‘‹π‘‹subscriptℝ\rho:X\times X\to\mathbb{R}_{+}italic_ρ : italic_X Γ— italic_X β†’ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT is said to be a b-metric if for all x,y,z∈Xπ‘₯𝑦𝑧𝑋x,y,z\in Xitalic_x , italic_y , italic_z ∈ italic_X the following conditions are satisfied: ρ⁒(x,y)β‰₯0𝜌π‘₯𝑦0\rho(x,y)\geq 0italic_ρ ( italic_x , italic_y ) β‰₯ 0, ρ⁒(x,y)=0𝜌π‘₯𝑦0\rho(x,y)=0italic_ρ ( italic_x , italic_y ) = 0 if and only if x=yπ‘₯𝑦x=yitalic_x = italic_y, ρ⁒(x,y)=ρ⁒(y,x)𝜌π‘₯π‘¦πœŒπ‘¦π‘₯\rho(x,y)=\rho(y,x)italic_ρ ( italic_x , italic_y ) = italic_ρ ( italic_y , italic_x ) and ρ⁒(x,z)≀b⁒(ρ⁒(x,y)+ρ⁒(y,z))𝜌π‘₯π‘§π‘πœŒπ‘₯π‘¦πœŒπ‘¦π‘§\rho(x,z)\leq b\left(\rho(x,y)+\rho(y,z)\right)italic_ρ ( italic_x , italic_z ) ≀ italic_b ( italic_ρ ( italic_x , italic_y ) + italic_ρ ( italic_y , italic_z ) ). The pair (X,ρ)π‘‹πœŒ(X,\rho)( italic_X , italic_ρ ) is called a b𝑏bitalic_b-metric space.

In case the mapping ρ𝜌\rhoitalic_ρ is allowed to be vector-valued and one replaces the constant b𝑏bitalic_b by a matrix B𝐡Bitalic_B, we obtain our definition of a vector B𝐡Bitalic_B-metric space.

Definition 1.2.

Let X𝑋Xitalic_X be a set, nβ‰₯1𝑛1n\geq 1italic_n β‰₯ 1 and let Bβˆˆβ„³nΓ—n⁒(ℝ)𝐡subscriptℳ𝑛𝑛ℝB\in\mathcal{M}_{n\times n}(\mathbb{R})italic_B ∈ caligraphic_M start_POSTSUBSCRIPT italic_n Γ— italic_n end_POSTSUBSCRIPT ( blackboard_R ) be an arbitrary matrix. A mapping d=(d1,d2,…,dn):XΓ—X→ℝ+n:𝑑subscript𝑑1subscript𝑑2…subscript𝑑𝑛→𝑋𝑋subscriptsuperscriptℝ𝑛d=(d_{1},d_{2},\ldots,d_{n})\colon X\times X\to\mathbb{R}^{n}_{+}italic_d = ( italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) : italic_X Γ— italic_X β†’ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT is called a vector B𝐡Bitalic_B-metric if for all u,v,w∈X,𝑒𝑣𝑀𝑋u,v,w\in X,italic_u , italic_v , italic_w ∈ italic_X , one has

  1. (positivity): d⁒(u,v)β‰₯0𝑑𝑒𝑣0d(u,v)\geq 0italic_d ( italic_u , italic_v ) β‰₯ 0 and d⁒(u,v)=0𝑑𝑒𝑣0d(u,v)=0italic_d ( italic_u , italic_v ) = 0 if and only if u=v𝑒𝑣u=vitalic_u = italic_v;

  2. (symmetry): d⁒(u,v)=d⁒(v,u)𝑑𝑒𝑣𝑑𝑣𝑒d(u,v)=d(v,u)italic_d ( italic_u , italic_v ) = italic_d ( italic_v , italic_u );

  3. (triangle inequality): d⁒(u,w)≀B⁒(d⁒(u,v)+d⁒(v,w))𝑑𝑒𝑀𝐡𝑑𝑒𝑣𝑑𝑣𝑀d(u,w)\leq B\left(d(u,v)+d(v,w)\right)italic_d ( italic_u , italic_w ) ≀ italic_B ( italic_d ( italic_u , italic_v ) + italic_d ( italic_v , italic_w ) ).

The pair (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) is called a vector B𝐡Bitalic_B-metric space.

2. Preliminaries

In this paper, the vectors in ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT are looked as column matrices and ordering between them and, more generally, between matrices of the same size is understood by components. Likewise, the convergence of a sequence of vectors or matrices is understood componentwise.

The spaces of square matrices of size n𝑛nitalic_n with real number entries and nonnegative entries are denoted by β„³nΓ—n⁒(ℝ)subscriptℳ𝑛𝑛ℝ\mathcal{M}_{n\times n}\left(\mathbb{R}\right)caligraphic_M start_POSTSUBSCRIPT italic_n Γ— italic_n end_POSTSUBSCRIPT ( blackboard_R ) and β„³nΓ—n⁒(ℝ+),subscriptℳ𝑛𝑛subscriptℝ\mathcal{M}_{n\times n}\left(\mathbb{R}_{+}\right),caligraphic_M start_POSTSUBSCRIPT italic_n Γ— italic_n end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) , respectively. An element of β„³nΓ—n⁒(ℝ+)subscriptℳ𝑛𝑛subscriptℝ\mathcal{M}_{n\times n}\left(\mathbb{R}_{+}\right)caligraphic_M start_POSTSUBSCRIPT italic_n Γ— italic_n end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) is refereed as a positive matrix, while a matrix Mβˆˆβ„³nΓ—n⁒(ℝ)𝑀subscriptℳ𝑛𝑛ℝM\in\mathcal{M}_{n\times n}\left(\mathbb{R}\right)italic_M ∈ caligraphic_M start_POSTSUBSCRIPT italic_n Γ— italic_n end_POSTSUBSCRIPT ( blackboard_R ) is called inverse-positive if it is invertible and its inverse Mβˆ’1superscript𝑀1M^{-1}italic_M start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is positive.

A positive matrix M𝑀Mitalic_M is said to be convergent to zero if its power Mksuperscriptπ‘€π‘˜M^{k}italic_M start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT tends to the zero matrix 0nsubscript0𝑛0_{n}0 start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT as kβ†’βˆž.β†’π‘˜k\rightarrow\infty.italic_k β†’ ∞ .

One has the following characterizations of matrices which are convergent to zero (see, e.g., [22, 23]).

Proposition 2.1.

Let Mβˆˆβ„³nΓ—n⁒(ℝ+)𝑀subscriptℳ𝑛𝑛subscriptℝM\in\mathcal{M}_{n\times n}\left(\mathbb{R}_{+}\right)italic_M ∈ caligraphic_M start_POSTSUBSCRIPT italic_n Γ— italic_n end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) and let I𝐼Iitalic_I be the identity matrix of size n.𝑛n.italic_n . The following statements are equivalent:

(a):

M𝑀Mitalic_M is convergent to zero.

(b):

The spectral radius r⁒(M)π‘Ÿπ‘€r\left(M\right)italic_r ( italic_M ) of matrix M𝑀Mitalic_M is less than 1,11,1 , i.e., r⁒(M)<1.π‘Ÿπ‘€1r\left(M\right)<1.italic_r ( italic_M ) < 1 .

(c):

Iβˆ’M𝐼𝑀I-Mitalic_I - italic_M is invertible and (Iβˆ’M)βˆ’1=I+M+M2+….superscript𝐼𝑀1𝐼𝑀superscript𝑀2…\left(I-M\right)^{-1}=I+M+M^{2}+\ ....( italic_I - italic_M ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_I + italic_M + italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + … .

(d):

Iβˆ’M𝐼𝑀I-Mitalic_I - italic_M is inverse-positive.

The following proposition collects the various properties equivalent to the notion of an inverse-positive matrix (see, e.g., [23, 24]).

Proposition 2.2.

Let Mβˆˆβ„³nΓ—n⁒(ℝ).𝑀subscriptℳ𝑛𝑛ℝM\in\mathcal{M}_{n\times n}\left(\mathbb{R}\right).italic_M ∈ caligraphic_M start_POSTSUBSCRIPT italic_n Γ— italic_n end_POSTSUBSCRIPT ( blackboard_R ) . The following statements are equivalent:

(a):

M𝑀Mitalic_M is inverse-positive.

(b):

M𝑀Mitalic_M is monotone, i.e., M⁒xβ‰₯0𝑀π‘₯0Mx\geq 0italic_M italic_x β‰₯ 0 (xβˆˆβ„n)π‘₯superscriptℝ𝑛\left(x\in\mathbb{R}^{n}\right)( italic_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) implies xβ‰₯0.π‘₯0x\geq 0.italic_x β‰₯ 0 .

(c):

There exists a positive matrix M¯¯𝑀\overline{M}overΒ― start_ARG italic_M end_ARG and a real number s>r⁒(MΒ―)π‘ π‘ŸΒ―π‘€s>r\left(\overline{M}\right)italic_s > italic_r ( overΒ― start_ARG italic_M end_ARG ) such that the following representation holds: M=s⁒Iβˆ’MΒ―.𝑀𝑠𝐼¯𝑀M=sI-\overline{M}.italic_M = italic_s italic_I - overΒ― start_ARG italic_M end_ARG .

Clearly, if M𝑀Mitalic_M is inverse-positive, from the representation M=s⁒Iβˆ’MΒ―,𝑀𝑠𝐼¯𝑀M=sI-\overline{M},italic_M = italic_s italic_I - overΒ― start_ARG italic_M end_ARG , we immediately see that all its entries except those from the diagonal are ≀0;absent0\leq 0;≀ 0 ; also the matrix 1s⁒MΒ―1𝑠¯𝑀\frac{1}{s}\overline{M}divide start_ARG 1 end_ARG start_ARG italic_s end_ARG overΒ― start_ARG italic_M end_ARG is convergent to zero. If a matrix M𝑀Mitalic_M is both positive and inverse-positive, using the representation M=s⁒Iβˆ’M¯𝑀𝑠𝐼¯𝑀M=sI-\overline{M}italic_M = italic_s italic_I - overΒ― start_ARG italic_M end_ARG we deduce that M𝑀Mitalic_M must be a diagonal matrix with strictly positive diagonal entries.

A mapping N:Xβ†’X:𝑁→𝑋𝑋N:X\rightarrow Xitalic_N : italic_X β†’ italic_X defined on a vector B𝐡Bitalic_B-metric space (X,d)𝑋𝑑\left(X,d\right)( italic_X , italic_d ) is said to be a Perov contraction mapping if there exists a matrix A𝐴Aitalic_A convergent to zero such that

(2.1) d⁒(N⁒(x),N⁒(y))≀A⁒d⁒(x,y)𝑑𝑁π‘₯𝑁𝑦𝐴𝑑π‘₯𝑦d\left(N\left(x\right),N\left(y\right)\right)\leq Ad\left(x,y\right)italic_d ( italic_N ( italic_x ) , italic_N ( italic_y ) ) ≀ italic_A italic_d ( italic_x , italic_y )

for all x,y∈X.π‘₯𝑦𝑋x,y\in X.italic_x , italic_y ∈ italic_X .

The next proposition is about the relationship between vector B𝐡Bitalic_B-metrics and both vector and scalar b𝑏bitalic_b-metrics.

Proposition 2.3.

(10) Any vector-valued b𝑏bitalic_b-metric d𝑑ditalic_d can be identified with a vector Bbsubscript𝐡𝑏B_{b}italic_B start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT-metric, where Bbsubscript𝐡𝑏B_{b}italic_B start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT is the diagonal matrix whose diagonal entries are all equal to b.𝑏b.italic_b .

(20) If d𝑑ditalic_d is a vector B𝐡Bitalic_B-metric with an inverse-positive matrix B,𝐡B,italic_B , then d𝑑ditalic_d is also a vector B¯¯𝐡\underline{B}underΒ― start_ARG italic_B end_ARG-metric with respect to the diagonal matrix B¯¯𝐡\underline{B}underΒ― start_ARG italic_B end_ARG that preserves the diagonal of B,𝐡B,italic_B , as well as a vector-valued b~~𝑏\tilde{b}over~ start_ARG italic_b end_ARG-metric with b~=max⁑{bi⁒i: 1≀i≀n}.~𝑏:subscript𝑏𝑖𝑖1𝑖𝑛\tilde{b}=\max\left\{b_{ii}:\ 1\leq i\leq n\right\}.over~ start_ARG italic_b end_ARG = roman_max { italic_b start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT : 1 ≀ italic_i ≀ italic_n } . Here B=(bi⁒j)1≀i,j≀n.𝐡subscriptsubscript𝑏𝑖𝑗formulae-sequence1𝑖𝑗𝑛B=\left(b_{ij}\right)_{1\leq i,j\leq n}.italic_B = ( italic_b start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 1 ≀ italic_i , italic_j ≀ italic_n end_POSTSUBSCRIPT .

(30) If d𝑑ditalic_d is a vector B𝐡Bitalic_B-metric with a positive matrix B,𝐡B,italic_B , then to each norm in ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT one can associate a scalar b𝑏bitalic_b-metric, for example:

ρ1⁒(x,y)subscript𝜌1π‘₯𝑦\displaystyle\rho_{1}(x,y)italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) :=βˆ‘i=1ndi⁒(x,y),assignabsentsuperscriptsubscript𝑖1𝑛subscript𝑑𝑖π‘₯𝑦\displaystyle:=\sum\limits_{i=1}^{n}d_{i}(x,y),:= βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_y ) , is a β’b1⁒-metric,is a subscript𝑏1-metric,\displaystyle\text{is a }b_{1}\text{-metric,}is a italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT -metric, b1:=βˆ‘i=1nmax1≀j≀n⁑bi⁒j,assignsubscript𝑏1superscriptsubscript𝑖1𝑛subscript1𝑗𝑛subscript𝑏𝑖𝑗\displaystyle\quad b_{1}:=\sum\limits_{i=1}^{n}\max_{1\leq j\leq n}b_{ij},italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT := βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT roman_max start_POSTSUBSCRIPT 1 ≀ italic_j ≀ italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ,
ρ∞⁒(x,y)subscript𝜌π‘₯𝑦\displaystyle\rho_{\infty}(x,y)italic_ρ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_x , italic_y ) :=max1≀i≀n⁑di⁒(x,y),assignabsentsubscript1𝑖𝑛subscript𝑑𝑖π‘₯𝑦\displaystyle:=\max_{1\leq i\leq n}d_{i}(x,y),:= roman_max start_POSTSUBSCRIPT 1 ≀ italic_i ≀ italic_n end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_y ) , is a β’b∞⁒-metric,is a subscript𝑏-metric,\displaystyle\text{is a }b_{\infty}\text{-metric,}is a italic_b start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT -metric, b∞:=max1≀i≀nβ’βˆ‘j=1nbi⁒j,assignsubscript𝑏subscript1𝑖𝑛superscriptsubscript𝑗1𝑛subscript𝑏𝑖𝑗\displaystyle\quad b_{\infty}:=\max_{1\leq i\leq n}\sum\limits_{j=1}^{n}b_{ij},italic_b start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT := roman_max start_POSTSUBSCRIPT 1 ≀ italic_i ≀ italic_n end_POSTSUBSCRIPT βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ,
ρ2⁒(x,y)subscript𝜌2π‘₯𝑦\displaystyle\rho_{2}(x,y)italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) :=(βˆ‘i=1ndi⁒(x,y)2)12,assignabsentsuperscriptsuperscriptsubscript𝑖1𝑛subscript𝑑𝑖superscriptπ‘₯𝑦212\displaystyle:=\left(\sum\limits_{i=1}^{n}d_{i}(x,y)^{2}\right)^{\frac{1}{2}},:= ( βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT , is a β’b2⁒-metric,is a subscript𝑏2-metric,\displaystyle\text{is a }b_{2}\text{-metric,}is a italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -metric, b2:=(βˆ‘i,j=1nbi⁒j2)12.assignsubscript𝑏2superscriptsuperscriptsubscript𝑖𝑗1𝑛superscriptsubscript𝑏𝑖𝑗212\displaystyle\quad b_{2}:=\left(\sum\limits_{i,j=1}^{n}b_{ij}^{2}\right)^{% \frac{1}{2}}.italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT := ( βˆ‘ start_POSTSUBSCRIPT italic_i , italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT .

Thus, to any vector B𝐡Bitalic_B-metric, one can associate different (scalar) b𝑏bitalic_b-metrics, depending on the chosen metric on ℝn.superscriptℝ𝑛\mathbb{R}^{n}.blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT . However, as shown in [22], working in a vector setting with matrices instead of numbers is more accurate especially when a connection with other matrices is necessary. It will also be the case of this work where some conditions or conclusions will connect the matrix B𝐡Bitalic_B with the matrix A𝐴Aitalic_A involved in (2.1).

If Yπ‘ŒYitalic_Y is a nonempty subset of a vector B𝐡Bitalic_B-metric space (X,d),𝑋𝑑\left(X,d\right),( italic_X , italic_d ) , we define the diameter of the set Yπ‘ŒYitalic_Y by

diamd⁒(Y):=sup{ρ1⁒(x,y):x,y∈Y}=sup{βˆ‘i=1ndi⁒(x,y):x,y∈Y}.assignsubscriptdiamπ‘‘π‘Œsupremumconditional-setsubscript𝜌1π‘₯𝑦π‘₯π‘¦π‘Œsupremumconditional-setsuperscriptsubscript𝑖1𝑛subscript𝑑𝑖π‘₯𝑦π‘₯π‘¦π‘Œ\mathrm{diam}_{d}(Y):=\sup\{\rho_{1}\left(x,y\right)\,:\ x,y\in Y\}=\sup\left% \{\sum\limits_{i=1}^{n}d_{i}\left(x,y\right)\,:\ x,y\in Y\ \right\}.roman_diam start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_Y ) := roman_sup { italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) : italic_x , italic_y ∈ italic_Y } = roman_sup { βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_y ) : italic_x , italic_y ∈ italic_Y } .

From this definition, it follows immediately that if diamd⁒(Y)=a,subscriptdiamπ‘‘π‘Œπ‘Ž\ \mathrm{diam}_{d}\left(Y\right)=a,roman_diam start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_Y ) = italic_a , then d⁒(x,y)≀a⁒e𝑑π‘₯π‘¦π‘Žπ‘’d\left(x,y\right)\leq aeitalic_d ( italic_x , italic_y ) ≀ italic_a italic_e   for all x,y∈Y,π‘₯π‘¦π‘Œx,y\in Y,italic_x , italic_y ∈ italic_Y , where e=(1,1,…,1)βˆˆβ„n𝑒11…1superscriptℝ𝑛e=(1,1,\ldots,1)\in\mathbb{R}^{n}italic_e = ( 1 , 1 , … , 1 ) ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Conversely, if d⁒(x,y)≀a⁒e𝑑π‘₯π‘¦π‘Žπ‘’d\left(x,y\right)\leq aeitalic_d ( italic_x , italic_y ) ≀ italic_a italic_e for all x,y∈Y,π‘₯π‘¦π‘Œx,y\in Y,italic_x , italic_y ∈ italic_Y , then diamd⁒(Y)≀n⁒a.subscriptdiamπ‘‘π‘Œπ‘›π‘Ž\mathrm{diam}_{d}(Y)\leq na.roman_diam start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_Y ) ≀ italic_n italic_a .

Although a b𝑏bitalic_b-metric does not generate a topology (see, e.g., [25]), several topological properties can still be defined in terms of sequences (e.g., closed sets, continuous operators, or lower semicontinuous functionals).

We conclude this section by two examples of vector B𝐡Bitalic_B-metrics.

Example 2.4.

Let d:ℝ2×ℝ2→ℝ+2:𝑑→superscriptℝ2superscriptℝ2superscriptsubscriptℝ2\ d\colon\mathbb{R}^{2}\times\mathbb{R}^{2}\rightarrow\mathbb{R}_{+}^{2}italic_d : blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Γ— blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β†’ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT  be given by

d⁒(x,y)=(|x1βˆ’y1|2+|x2βˆ’y2||x2βˆ’y2|,),𝑑π‘₯𝑦matrixsuperscriptsubscriptπ‘₯1subscript𝑦12subscriptπ‘₯2subscript𝑦2subscriptπ‘₯2subscript𝑦2d(x,y)=\begin{pmatrix}|x_{1}-y_{1}|^{2}+|x_{2}-y_{2}|\\ |x_{2}-y_{2}|,\end{pmatrix},italic_d ( italic_x , italic_y ) = ( start_ARG start_ROW start_CELL | italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | end_CELL end_ROW start_ROW start_CELL | italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | , end_CELL end_ROW end_ARG ) ,

for x=(x1,x2),y=(y1,y2)βˆˆβ„2.formulae-sequenceπ‘₯subscriptπ‘₯1subscriptπ‘₯2𝑦subscript𝑦1subscript𝑦2superscriptℝ2x=(x_{1},x_{2}),\ y=(y_{1},y_{2})\in\mathbb{R}^{2}.italic_x = ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) , italic_y = ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ∈ blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . Then, (ℝ2,d)superscriptℝ2𝑑\left(\mathbb{R}^{2},d\right)( blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_d ) is a vector B𝐡Bitalic_B-metric space, where

B=(2βˆ’101).𝐡matrix2101B=\begin{pmatrix}2&-1\\ 0&1\end{pmatrix}.italic_B = ( start_ARG start_ROW start_CELL 2 end_CELL start_CELL - 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARG ) .

Here, the matrix B𝐡Bitalic_B is inverse-positive, but not positive.

Example 2.5.

We present an example of a vector-valued mapping d𝑑ditalic_d which is a vector B𝐡Bitalic_B-metric with respect to a positive matrix, but for which no inverse-positive matrix exists such that d𝑑ditalic_d remains a vector B𝐡Bitalic_B-metric. Let

S={(t,t):tβˆˆβ„}βŠ‚β„2,𝑆conditional-set𝑑𝑑𝑑ℝsuperscriptℝ2S=\left\{(t,t)\,:\ \,t\in\mathbb{R}\right\}\subset\mathbb{R}^{2},italic_S = { ( italic_t , italic_t ) : italic_t ∈ blackboard_R } βŠ‚ blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,

and let d:ℝ2×ℝ2→ℝ+2:𝑑→superscriptℝ2superscriptℝ2superscriptsubscriptℝ2\ d\colon\mathbb{R}^{2}\times\mathbb{R}^{2}\rightarrow\mathbb{R}_{+}^{2}italic_d : blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Γ— blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β†’ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT  be given by

d⁒(x,y)={(0,0)if β’x=y,(|xβˆ’y|2,|xβˆ’y|)if β’x,y∈S,(|xβˆ’y|,|xβˆ’y|2)otherwise,𝑑π‘₯𝑦cases00if π‘₯𝑦superscriptπ‘₯𝑦2π‘₯𝑦if π‘₯𝑦𝑆π‘₯𝑦superscriptπ‘₯𝑦2otherwised(x,y)=\begin{cases}(0,0)&\text{if }x=y,\\ \left(|x-y|^{2},|x-y|\right)&\text{if }x,y\in S,\\ \left(|x-y|,|x-y|^{2}\right)&\text{otherwise},\end{cases}italic_d ( italic_x , italic_y ) = { start_ROW start_CELL ( 0 , 0 ) end_CELL start_CELL if italic_x = italic_y , end_CELL end_ROW start_ROW start_CELL ( | italic_x - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , | italic_x - italic_y | ) end_CELL start_CELL if italic_x , italic_y ∈ italic_S , end_CELL end_ROW start_ROW start_CELL ( | italic_x - italic_y | , | italic_x - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_CELL start_CELL otherwise , end_CELL end_ROW

where |z|=|(z1,z2)|=|z1|+|z2|𝑧subscript𝑧1subscript𝑧2subscript𝑧1subscript𝑧2\left|z\right|=|(z_{1},z_{2})|=|z_{1}|+|z_{2}|| italic_z | = | ( italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) | = | italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | + | italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | is a norm on ℝ2superscriptℝ2\mathbb{R}^{2}blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Note that d𝑑ditalic_d is a vector B0subscript𝐡0B_{0}italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-metric, where

B0=(2211).subscript𝐡0matrix2211B_{0}=\begin{pmatrix}2&2\\ 1&1\end{pmatrix}.italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( start_ARG start_ROW start_CELL 2 end_CELL start_CELL 2 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW end_ARG ) .

Let us show that B0subscript𝐡0B_{0}italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the smallest matrix for which the triangle inequality holds for d𝑑ditalic_d. To this aim, let B=(bi⁒j)1≀i,j≀n𝐡subscriptsubscript𝑏𝑖𝑗formulae-sequence1𝑖𝑗𝑛B=(b_{ij})_{1\leq i,j\leq n}italic_B = ( italic_b start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 1 ≀ italic_i , italic_j ≀ italic_n end_POSTSUBSCRIPT be any matrix for which the triangle inequality is satisfied. Then, for x,y∈Sπ‘₯𝑦𝑆x,y\in Sitalic_x , italic_y ∈ italic_S and zβˆ‰S𝑧𝑆z\notin Sitalic_z βˆ‰ italic_S, we have

(2.2) (|xβˆ’y|2|xβˆ’y|)≀(b11⁒(|xβˆ’z|+|zβˆ’y|)+b12⁒(|xβˆ’z|2+|zβˆ’y|2)b21⁒(|xβˆ’z|+|zβˆ’y|)+b22⁒(|xβˆ’z|2+|zβˆ’y|2)).matrixsuperscriptπ‘₯𝑦2π‘₯𝑦matrixsubscript𝑏11π‘₯𝑧𝑧𝑦subscript𝑏12superscriptπ‘₯𝑧2superscript𝑧𝑦2subscript𝑏21π‘₯𝑧𝑧𝑦subscript𝑏22superscriptπ‘₯𝑧2superscript𝑧𝑦2\begin{pmatrix}|x-y|^{2}\\ |x-y|\end{pmatrix}\leq\begin{pmatrix}b_{11}\left(|x-z|+|z-y|\right)+b_{12}% \left(|x-z|^{2}+|z-y|^{2}\right)\\ b_{21}\left(|x-z|+|z-y|\right)+b_{22}\left(|x-z|^{2}+|z-y|^{2}\right)\end{% pmatrix}.( start_ARG start_ROW start_CELL | italic_x - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL | italic_x - italic_y | end_CELL end_ROW end_ARG ) ≀ ( start_ARG start_ROW start_CELL italic_b start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ( | italic_x - italic_z | + | italic_z - italic_y | ) + italic_b start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( | italic_x - italic_z | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_z - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_CELL end_ROW start_ROW start_CELL italic_b start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT ( | italic_x - italic_z | + | italic_z - italic_y | ) + italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT ( | italic_x - italic_z | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_z - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_CELL end_ROW end_ARG ) .

Let t,Ξ±βˆˆβ„βˆ–{0}𝑑𝛼ℝ0t,\alpha\in\mathbb{R}\setminus\left\{0\right\}italic_t , italic_Ξ± ∈ blackboard_R βˆ– { 0 }, and set x=(t,t)∈S,π‘₯𝑑𝑑𝑆x=(t,t)\in S,italic_x = ( italic_t , italic_t ) ∈ italic_S , y=(0,0)∈S𝑦00𝑆y=(0,0)\in Sitalic_y = ( 0 , 0 ) ∈ italic_S and z=(Ξ±,0)βˆ‰S𝑧𝛼0𝑆z=(\alpha,0)\notin Sitalic_z = ( italic_Ξ± , 0 ) βˆ‰ italic_S. The first inequality in (2.2) yields,

4⁒t2≀b11⁒(|tβˆ’Ξ±|+|t|+|Ξ±|)+b12⁒((|tβˆ’Ξ±|+|t|)2+Ξ±2).4superscript𝑑2subscript𝑏11𝑑𝛼𝑑𝛼subscript𝑏12superscript𝑑𝛼𝑑2superscript𝛼24t^{2}\leq b_{11}\left(|t-\alpha|+|t|+\left|\alpha\right|\right)+b_{12}\left((% |t-\alpha|+|t|)^{2}+\alpha^{2}\right).4 italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≀ italic_b start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ( | italic_t - italic_Ξ± | + | italic_t | + | italic_Ξ± | ) + italic_b start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( ( | italic_t - italic_Ξ± | + | italic_t | ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_Ξ± start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) .

Clearly, taking Ξ±=t𝛼𝑑\alpha=titalic_Ξ± = italic_t and the limit as tβ†’βˆžβ†’π‘‘t\rightarrow\inftyitalic_t β†’ ∞, this inequality holds only if b12β‰₯2subscript𝑏122b_{12}\geq 2italic_b start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT β‰₯ 2. Similarly, from the second inequality, we obtain

2⁒|t|≀b21⁒(|tβˆ’Ξ±|+|t|+|Ξ±|)+b22⁒((|tβˆ’Ξ±|+|t|)2+Ξ±2).2𝑑subscript𝑏21𝑑𝛼𝑑𝛼subscript𝑏22superscript𝑑𝛼𝑑2superscript𝛼22\left|t\right|\leq b_{21}\left(|t-\alpha|+|t|+\left|\alpha\right|\right)+b_{2% 2}\left((|t-\alpha|+|t|)^{2}+\alpha^{2}\right).2 | italic_t | ≀ italic_b start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT ( | italic_t - italic_Ξ± | + | italic_t | + | italic_Ξ± | ) + italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT ( ( | italic_t - italic_Ξ± | + | italic_t | ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_Ξ± start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) .

Setting Ξ±=t2𝛼𝑑2\alpha=\frac{t}{2}italic_Ξ± = divide start_ARG italic_t end_ARG start_ARG 2 end_ARG, we find that

2⁒|t|≀2⁒b21⁒|t|+5⁒b22⁒t22,or equivalently,5⁒b22⁒t22+2⁒|t|⁒(b21βˆ’1)β‰₯0.formulae-sequence2𝑑2subscript𝑏21𝑑5subscript𝑏22superscript𝑑22or equivalently,5subscript𝑏22superscript𝑑222𝑑subscript𝑏21102\left|t\right|\leq 2b_{21}\left|t\right|+5b_{22}\frac{t^{2}}{2},\quad\text{or% equivalently,}\quad 5b_{22}\frac{t^{2}}{2}+2\left|t\right|(b_{21}-1)\geq 0.2 | italic_t | ≀ 2 italic_b start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT | italic_t | + 5 italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG , or equivalently, 5 italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + 2 | italic_t | ( italic_b start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT - 1 ) β‰₯ 0 .

Clearly, this inequality required for all t𝑑titalic_t implies b21β‰₯1subscript𝑏211b_{21}\geq 1italic_b start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT β‰₯ 1. To determine the values of b11subscript𝑏11b_{11}italic_b start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT and b22subscript𝑏22b_{22}italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT, we apply the triangle inequality with x,y,z∈S⁒(xβ‰ yβ‰ zβ‰ x)π‘₯𝑦𝑧𝑆π‘₯𝑦𝑧π‘₯x,y,z\in S\ \,(x\neq y\neq z\neq x)italic_x , italic_y , italic_z ∈ italic_S ( italic_x β‰  italic_y β‰  italic_z β‰  italic_x ), which gives

(|xβˆ’y|2|xβˆ’y|)≀(b11⁒(|xβˆ’z|2+|zβˆ’y|2)+b12⁒(|xβˆ’z|+|zβˆ’y|)b21⁒(|xβˆ’z|2+|zβˆ’y|2)+b22⁒(|xβˆ’z|+|zβˆ’y|)).matrixsuperscriptπ‘₯𝑦2π‘₯𝑦matrixsubscript𝑏11superscriptπ‘₯𝑧2superscript𝑧𝑦2subscript𝑏12π‘₯𝑧𝑧𝑦subscript𝑏21superscriptπ‘₯𝑧2superscript𝑧𝑦2subscript𝑏22π‘₯𝑧𝑧𝑦\begin{pmatrix}|x-y|^{2}\\ |x-y|\end{pmatrix}\leq\begin{pmatrix}b_{11}\left(|x-z|^{2}+|z-y|^{2}\right)+b_% {12}\left(|x-z|+|z-y|\right)\\ b_{21}\left(|x-z|^{2}+|z-y|^{2}\right)+b_{22}\left(|x-z|+|z-y|\right)\end{% pmatrix}.( start_ARG start_ROW start_CELL | italic_x - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL | italic_x - italic_y | end_CELL end_ROW end_ARG ) ≀ ( start_ARG start_ROW start_CELL italic_b start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ( | italic_x - italic_z | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_z - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_b start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( | italic_x - italic_z | + | italic_z - italic_y | ) end_CELL end_ROW start_ROW start_CELL italic_b start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT ( | italic_x - italic_z | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_z - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT ( | italic_x - italic_z | + | italic_z - italic_y | ) end_CELL end_ROW end_ARG ) .

Similar arguments as above imply that b11β‰₯2subscript𝑏112b_{11}\geq 2italic_b start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT β‰₯ 2 and b22β‰₯1.subscript𝑏221b_{22}\geq 1.italic_b start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT β‰₯ 1 . Thus, Bβ‰₯B0𝐡subscript𝐡0B\geq B_{0}italic_B β‰₯ italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT as claimed.

3. Fixed point theorems in vector B𝐡Bitalic_B-metric spaces

In this section we establish some fixed point results in vector B𝐡Bitalic_B-metric spaces, analogous to the well-known classical results.

3.1. Perov type fixed point theorem

Our first result is a version of Perov’s fixed point theorem (see, [26, 27]) for such spaces.

Theorem 3.1.

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a complete vector B𝐡Bitalic_B-metric space, where B𝐡Bitalic_B is either a positive or an inverse-positive matrix, and let N:Xβ†’X:𝑁→𝑋𝑋N\colon X\rightarrow Xitalic_N : italic_X β†’ italic_X be an operator. Assume that there exists a convergent to zero matrix Aβˆˆβ„³nΓ—n⁒(ℝ+)𝐴subscriptℳ𝑛𝑛subscriptℝA\in\mathcal{M}_{n\times n}(\mathbb{R}_{+})italic_A ∈ caligraphic_M start_POSTSUBSCRIPT italic_n Γ— italic_n end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) such that

(3.1) d⁒(N⁒(x),N⁒(y))≀A⁒d⁒(x,y),for all β’x,y∈X,formulae-sequence𝑑𝑁π‘₯𝑁𝑦𝐴𝑑π‘₯𝑦for all π‘₯𝑦𝑋d(N(x),N(y))\leq Ad(x,y),\quad\text{for all }x,y\in X,italic_d ( italic_N ( italic_x ) , italic_N ( italic_y ) ) ≀ italic_A italic_d ( italic_x , italic_y ) , for all italic_x , italic_y ∈ italic_X ,

i.e., N𝑁Nitalic_N is a Perov contraction mapping. Then, N𝑁Nitalic_N has a unique fixed point.

Proof.

Let x0∈Xsubscriptπ‘₯0𝑋x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X, and recursively define

xk=N⁒(xkβˆ’1),for β’kβ‰₯1.formulae-sequencesubscriptπ‘₯π‘˜π‘subscriptπ‘₯π‘˜1for π‘˜1x_{k}=N(x_{k-1}),\ \ \ \text{for\ \ }k\geq 1.italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_N ( italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) , for italic_k β‰₯ 1 .

Since the matrix A𝐴Aitalic_A is convergent to zero, for each Ξ±>0𝛼0\alpha>0italic_Ξ± > 0, there exists k0=k0⁒(Ξ±)subscriptπ‘˜0subscriptπ‘˜0𝛼k_{0}=k_{0}\left(\alpha\right)italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_Ξ± ) such that

Ak0≀Λ,superscript𝐴subscriptπ‘˜0Ξ›A^{k_{0}}\leq\Lambda,italic_A start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ≀ roman_Ξ› ,

where ΛΛ\Lambdaroman_Ξ› is the square matrix of size n𝑛nitalic_n whose entries are all equal to Ξ±.𝛼\alpha.italic_Ξ± . Let k,pβ‰₯0π‘˜π‘0k,p\geq 0italic_k , italic_p β‰₯ 0 and k0subscriptπ‘˜0k_{0}italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT be such that Ak0≀Λsuperscript𝐴subscriptπ‘˜0Ξ›A^{k_{0}}\leq\Lambdaitalic_A start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ≀ roman_Ξ›, for some Ξ±>0𝛼0\alpha>0italic_Ξ± > 0 to be specified later.

Case (a): B𝐡Bitalic_B is inverse-positive. The triangle inequality yields

Bβˆ’2⁒d⁒(xk,xp)superscript𝐡2𝑑subscriptπ‘₯π‘˜subscriptπ‘₯𝑝\displaystyle B^{-2}d(x_{k},x_{p})italic_B start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≀Bβˆ’1⁒d⁒(xk,xk+k0)+Bβˆ’1⁒d⁒(xp,xk+k0)absentsuperscript𝐡1𝑑subscriptπ‘₯π‘˜subscriptπ‘₯π‘˜subscriptπ‘˜0superscript𝐡1𝑑subscriptπ‘₯𝑝subscriptπ‘₯π‘˜subscriptπ‘˜0\displaystyle\leq B^{-1}d(x_{k},x_{k+k_{0}})+B^{-1}d(x_{p},x_{k+k_{0}})≀ italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT )
≀Bβˆ’1⁒Ak⁒d⁒(x0,xk0)+d⁒(xp,xp+k0)+d⁒(xp+k0,xk+k0)absentsuperscript𝐡1superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0𝑑subscriptπ‘₯𝑝subscriptπ‘₯𝑝subscriptπ‘˜0𝑑subscriptπ‘₯𝑝subscriptπ‘˜0subscriptπ‘₯π‘˜subscriptπ‘˜0\displaystyle\leq B^{-1}A^{k}d(x_{0},x_{k_{0}})+d(x_{p},x_{p+k_{0}})+d(x_{p+k_% {0}},x_{k+k_{0}})≀ italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_d ( italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_d ( italic_x start_POSTSUBSCRIPT italic_p + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT )
≀Bβˆ’1⁒Ak⁒d⁒(x0,xk0)+Ap⁒d⁒(x0,xk0)+Ak0⁒d⁒(xk,xp)absentsuperscript𝐡1superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscript𝐴𝑝𝑑subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscript𝐴subscriptπ‘˜0𝑑subscriptπ‘₯π‘˜subscriptπ‘₯𝑝\displaystyle\leq B^{-1}A^{k}d(x_{0},x_{k_{0}})+A^{p}d(x_{0},x_{k_{0}})+A^{k_{% 0}}d(x_{k},x_{p})≀ italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_A start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT )
≀Bβˆ’1⁒Ak⁒d⁒(x0,xk0)+Ap⁒d⁒(x0,xk0)+Λ⁒d⁒(xk,xp),absentsuperscript𝐡1superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscript𝐴𝑝𝑑subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0Λ𝑑subscriptπ‘₯π‘˜subscriptπ‘₯𝑝\displaystyle\leq B^{-1}A^{k}d(x_{0},x_{k_{0}})+A^{p}d(x_{0},x_{k_{0}})+% \Lambda d(x_{k},x_{p}),≀ italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + roman_Ξ› italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ,

which gives

(3.2) (Bβˆ’2βˆ’Ξ›)⁒d⁒(xk,xp)≀Bβˆ’1⁒Ak⁒d⁒(x0,xk0)+Ap⁒d⁒(x0,xk0).superscript𝐡2Λ𝑑subscriptπ‘₯π‘˜subscriptπ‘₯𝑝superscript𝐡1superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscript𝐴𝑝𝑑subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0(B^{-2}-\Lambda)d(x_{k},x_{p})\leq B^{-1}A^{k}d(x_{0},x_{k_{0}})+A^{p}d(x_{0},% x_{k_{0}}).( italic_B start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT - roman_Ξ› ) italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≀ italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) .

Given that the right-hand side of (3.2) is a vector that converges to zero as k,pβ†’βˆžβ†’π‘˜π‘k,p\rightarrow\inftyitalic_k , italic_p β†’ ∞, our goal is to show that a linear combination of the components of the vector d⁒(xk,xp)𝑑subscriptπ‘₯π‘˜subscriptπ‘₯𝑝d(x_{k},x_{p})italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) is bounded above by the corresponding components of the right-hand side of (3.2). To this aim, we make the following notations

Bβˆ’2=(Ξ³i⁒j)1≀i,j≀n,superscript𝐡2subscriptsubscript𝛾𝑖𝑗formulae-sequence1𝑖𝑗𝑛\displaystyle B^{-2}=(\gamma_{ij})_{1\leq i,j\leq n},\,\ italic_B start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT = ( italic_Ξ³ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 1 ≀ italic_i , italic_j ≀ italic_n end_POSTSUBSCRIPT ,
Bβˆ’1⁒Ak⁒d⁒(x0,xk0)+Ap⁒d⁒(x0,xk0)=Ο†k,p=(Ο†k,pi)1≀i≀n.superscript𝐡1superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscript𝐴𝑝𝑑subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0subscriptπœ‘π‘˜π‘subscriptsuperscriptsubscriptπœ‘π‘˜π‘π‘–1𝑖𝑛\displaystyle B^{-1}A^{k}d(x_{0},x_{k_{0}})+A^{p}d(x_{0},x_{k_{0}})=\varphi_{k% ,p}=(\varphi_{k,p}^{i})_{1\leq i\leq n}.italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = italic_Ο† start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT = ( italic_Ο† start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT 1 ≀ italic_i ≀ italic_n end_POSTSUBSCRIPT .

Hence

(3.3) βˆ‘i=1nΟ†k,piβ†’0as β’k,pβ†’βˆž.formulae-sequenceβ†’superscriptsubscript𝑖1𝑛superscriptsubscriptπœ‘π‘˜π‘π‘–0as π‘˜β†’𝑝\sum_{i=1}^{n}\varphi_{k,p}^{i}\rightarrow 0\ \ \ \text{as\ \ }k,p\rightarrow\infty.βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_Ο† start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT β†’ 0 as italic_k , italic_p β†’ ∞ .

Under these notations, relation (3.2) gives

(3.4) βˆ‘j=1n(Ξ³i⁒jβˆ’Ξ±)⁒dj⁒(xk,xp)≀φk,pi,i=1,2,…,n.formulae-sequencesuperscriptsubscript𝑗1𝑛subscript𝛾𝑖𝑗𝛼subscript𝑑𝑗subscriptπ‘₯π‘˜subscriptπ‘₯𝑝superscriptsubscriptπœ‘π‘˜π‘π‘–π‘–12…𝑛\sum_{j=1}^{n}(\gamma_{ij}-\alpha)d_{j}\left(x_{k},x_{p}\right)\leq\varphi_{k,% p}^{i}\,,\,\,i=1,2,\ldots,n.βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_Ξ³ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT - italic_Ξ± ) italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≀ italic_Ο† start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT , italic_i = 1 , 2 , … , italic_n .

Summing in (3.4) over all i∈{1,2,…,n}𝑖12…𝑛i\in\left\{1,2,\ldots,n\right\}italic_i ∈ { 1 , 2 , … , italic_n }, we obtain

(3.5) βˆ‘i,j=1n(Ξ³i⁒jβˆ’Ξ±)⁒dj⁒(xk,xp)β‰€βˆ‘i=1nΟ†k,pi.superscriptsubscript𝑖𝑗1𝑛subscript𝛾𝑖𝑗𝛼subscript𝑑𝑗subscriptπ‘₯π‘˜subscriptπ‘₯𝑝superscriptsubscript𝑖1𝑛superscriptsubscriptπœ‘π‘˜π‘π‘–\sum_{i,j=1}^{n}(\gamma_{ij}-\alpha)d_{j}(x_{k},x_{p})\leq\sum_{i=1}^{n}% \varphi_{k,p}^{i}.βˆ‘ start_POSTSUBSCRIPT italic_i , italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_Ξ³ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT - italic_Ξ± ) italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≀ βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_Ο† start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT .

Since Bβˆ’2superscript𝐡2B^{-2}italic_B start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT is invertible and positive, the sum of its elements in each column must be positive, i.e.,

βˆ‘i=1nΞ³i⁒j>0, β’j=1,2,…,n.formulae-sequencesuperscriptsubscript𝑖1𝑛subscript𝛾𝑖𝑗0 π‘—12…𝑛\sum_{i=1}^{n}\gamma_{ij}>0,\text{ \ \ }j=1,2,\ldots,n.βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_Ξ³ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT > 0 , italic_j = 1 , 2 , … , italic_n .

If we denote

Ξ³=min⁑{βˆ‘i=1nΞ³i⁒j:j=1,2,…,n},𝛾:superscriptsubscript𝑖1𝑛subscript𝛾𝑖𝑗𝑗12…𝑛\gamma=\min\left\{\sum_{i=1}^{n}\gamma_{ij}\,:\ \,j=1,2,\ldots,n\right\},italic_Ξ³ = roman_min { βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_Ξ³ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT : italic_j = 1 , 2 , … , italic_n } ,

relation (3.5) implies that

βˆ‘i=1nΟ†k,pisuperscriptsubscript𝑖1𝑛superscriptsubscriptπœ‘π‘˜π‘π‘–\displaystyle\sum_{i=1}^{n}\varphi_{k,p}^{i}βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_Ο† start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT β‰₯\displaystyle\geqβ‰₯ βˆ‘i,j=1nΞ³i⁒j⁒dj⁒(xk,xp)βˆ’nβ’Ξ±β’βˆ‘j=1ndj⁒(xk,xp)superscriptsubscript𝑖𝑗1𝑛subscript𝛾𝑖𝑗subscript𝑑𝑗subscriptπ‘₯π‘˜subscriptπ‘₯𝑝𝑛𝛼superscriptsubscript𝑗1𝑛subscript𝑑𝑗subscriptπ‘₯π‘˜subscriptπ‘₯𝑝\displaystyle\sum_{i,j=1}^{n}\gamma_{ij}d_{j}(x_{k},x_{p})-n\alpha\sum_{j=1}^{% n}d_{j}(x_{k},x_{p})βˆ‘ start_POSTSUBSCRIPT italic_i , italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_Ξ³ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) - italic_n italic_Ξ± βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT )
=\displaystyle== βˆ‘j=1n(βˆ‘i=1nΞ³i⁒j)⁒dj⁒(xk,xp)βˆ’nβ’Ξ±β’βˆ‘j=1ndj⁒(xk,xp)superscriptsubscript𝑗1𝑛superscriptsubscript𝑖1𝑛subscript𝛾𝑖𝑗subscript𝑑𝑗subscriptπ‘₯π‘˜subscriptπ‘₯𝑝𝑛𝛼superscriptsubscript𝑗1𝑛subscript𝑑𝑗subscriptπ‘₯π‘˜subscriptπ‘₯𝑝\displaystyle\sum_{j=1}^{n}\left(\sum_{i=1}^{n}\gamma_{ij}\right)d_{j}(x_{k},x% _{p})-n\alpha\sum_{j=1}^{n}d_{j}(x_{k},x_{p})βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_Ξ³ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) - italic_n italic_Ξ± βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT )
β‰₯\displaystyle\geqβ‰₯ (Ξ³βˆ’n⁒α)β’βˆ‘j=1ndj⁒(xk,xp).𝛾𝑛𝛼superscriptsubscript𝑗1𝑛subscript𝑑𝑗subscriptπ‘₯π‘˜subscriptπ‘₯𝑝\displaystyle(\gamma-n\alpha)\sum_{j=1}^{n}d_{j}(x_{k},x_{p}).( italic_Ξ³ - italic_n italic_Ξ± ) βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) .

Choosing Ξ±<Ξ³/n𝛼𝛾𝑛\alpha<\gamma/nitalic_Ξ± < italic_Ξ³ / italic_n, one has

(3.6) βˆ‘j=1ndj⁒(xk,xp)≀1Ξ³βˆ’nβ’Ξ±β’βˆ‘i=1nΟ†k,pi.superscriptsubscript𝑗1𝑛subscript𝑑𝑗subscriptπ‘₯π‘˜subscriptπ‘₯𝑝1𝛾𝑛𝛼superscriptsubscript𝑖1𝑛superscriptsubscriptπœ‘π‘˜π‘π‘–\sum_{j=1}^{n}d_{j}(x_{k},x_{p})\leq\frac{1}{\gamma-n\alpha}\sum_{i=1}^{n}% \varphi_{k,p}^{i}.βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≀ divide start_ARG 1 end_ARG start_ARG italic_Ξ³ - italic_n italic_Ξ± end_ARG βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_Ο† start_POSTSUBSCRIPT italic_k , italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT .

In (3.6), we observe that the factor 1Ξ³βˆ’n⁒α1𝛾𝑛𝛼\frac{1}{\gamma-n\alpha}divide start_ARG 1 end_ARG start_ARG italic_Ξ³ - italic_n italic_Ξ± end_ARG depends only on n𝑛nitalic_n and B𝐡Bitalic_B, whence (3.3) yields

βˆ‘j=1ndj⁒(xk,xp)β†’0as β’k,pβ†’βˆž,formulae-sequenceβ†’superscriptsubscript𝑗1𝑛subscript𝑑𝑗subscriptπ‘₯π‘˜subscriptπ‘₯𝑝0as π‘˜β†’𝑝\sum_{j=1}^{n}d_{j}(x_{k},x_{p})\rightarrow 0\ \ \ \text{as\ \ }k,p\rightarrow\infty,βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) β†’ 0 as italic_k , italic_p β†’ ∞ ,

so the sequence (xk)subscriptπ‘₯π‘˜\left(x_{k}\right)( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is Cauchy.

Case (b): B𝐡Bitalic_B is positive. One has

d⁒(xk,xp)𝑑subscriptπ‘₯π‘˜subscriptπ‘₯𝑝\displaystyle d(x_{k},x_{p})italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≀B⁒d⁒(xk,xk+k0)+B⁒d⁒(xp,xk+k0)absent𝐡𝑑subscriptπ‘₯π‘˜subscriptπ‘₯π‘˜subscriptπ‘˜0𝐡𝑑subscriptπ‘₯𝑝subscriptπ‘₯π‘˜subscriptπ‘˜0\displaystyle\leq Bd(x_{k},x_{k+k_{0}})+Bd(x_{p},x_{k+k_{0}})≀ italic_B italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B italic_d ( italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT )
≀B⁒Ak⁒d⁒(x0,xk0)+B2⁒d⁒(xp,xp+k0)+B2⁒d⁒(xp+k0,xk+k0)absent𝐡superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscript𝐡2𝑑subscriptπ‘₯𝑝subscriptπ‘₯𝑝subscriptπ‘˜0superscript𝐡2𝑑subscriptπ‘₯𝑝subscriptπ‘˜0subscriptπ‘₯π‘˜subscriptπ‘˜0\displaystyle\leq BA^{k}d(x_{0},x_{k_{0}})+B^{2}d(x_{p},x_{p+k_{0}})+B^{2}d(x_% {p+k_{0}},x_{k+k_{0}})≀ italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_p + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT )
≀B⁒Ak⁒d⁒(x0,xk0)+B2⁒Ap⁒d⁒(x0,xk0)+B2⁒Ak0⁒d⁒(xk,xp)absent𝐡superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscript𝐡2superscript𝐴𝑝𝑑subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscript𝐡2superscript𝐴subscriptπ‘˜0𝑑subscriptπ‘₯π‘˜subscriptπ‘₯𝑝\displaystyle\leq BA^{k}d(x_{0},x_{k_{0}})+B^{2}A^{p}d(x_{0},x_{k_{0}})+B^{2}A% ^{k_{0}}d(x_{k},x_{p})≀ italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT )
≀B⁒Ak⁒d⁒(x0,xk0)+B2⁒Ap⁒d⁒(x0,xk0)+B2⁒Λ⁒d⁒(xk,xp),absent𝐡superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscript𝐡2superscript𝐴𝑝𝑑subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscript𝐡2Λ𝑑subscriptπ‘₯π‘˜subscriptπ‘₯𝑝\displaystyle\leq BA^{k}d(x_{0},x_{k_{0}})+B^{2}A^{p}d(x_{0},x_{k_{0}})+B^{2}% \Lambda d(x_{k},x_{p}),≀ italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Ξ› italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ,

which gives

(3.7) (Iβˆ’B2⁒Λ)⁒d⁒(xk,xp)≀B⁒Ak⁒d⁒(x0,xk0)+B2⁒Ap⁒d⁒(x0,xk0).𝐼superscript𝐡2Λ𝑑subscriptπ‘₯π‘˜subscriptπ‘₯𝑝𝐡superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscript𝐡2superscript𝐴𝑝𝑑subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0(I-B^{2}\Lambda)d(x_{k},x_{p})\leq BA^{k}d(x_{0},x_{k_{0}})+B^{2}A^{p}d(x_{0},% x_{k_{0}}).( italic_I - italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Ξ› ) italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≀ italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) .

Note that since Ξ›k=(n⁒α)kβˆ’1⁒ΛsuperscriptΞ›π‘˜superscriptπ‘›π›Όπ‘˜1Ξ›\Lambda^{k}=(n\alpha)^{k-1}\Lambdaroman_Ξ› start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT = ( italic_n italic_Ξ± ) start_POSTSUPERSCRIPT italic_k - 1 end_POSTSUPERSCRIPT roman_Ξ›, if α𝛼\alphaitalic_Ξ± is chosen to be smaller than one divided by the greatest element of B2superscript𝐡2B^{2}italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT multiplied with n𝑛nitalic_n, the matrix B2⁒Λsuperscript𝐡2Ξ›B^{2}\Lambdaitalic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Ξ› is convergent to zero. Consequently, Iβˆ’B2⁒Λ𝐼superscript𝐡2Ξ›I-B^{2}\Lambdaitalic_I - italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Ξ› is invertible and (Iβˆ’B2⁒Λ)βˆ’1βˆˆβ„³nΓ—n⁒(ℝ+).superscript𝐼superscript𝐡2Ξ›1subscriptℳ𝑛𝑛subscriptℝ\left(I-B^{2}\Lambda\right)^{-1}\in\mathcal{M}_{n\times n}\left(\mathbb{R}_{+}% \right).( italic_I - italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Ξ› ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∈ caligraphic_M start_POSTSUBSCRIPT italic_n Γ— italic_n end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) . Hence, (3.7) is equivalent to

(3.8) d⁒(xk,xp)≀(Iβˆ’B2⁒Λ)βˆ’1⁒(B⁒Ak⁒d⁒(x0,xk0)+B2⁒Ap⁒d⁒(x0,xk0)).𝑑subscriptπ‘₯π‘˜subscriptπ‘₯𝑝superscript𝐼superscript𝐡2Ξ›1𝐡superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscript𝐡2superscript𝐴𝑝𝑑subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0d(x_{k},x_{p})\leq\left(I-B^{2}\Lambda\right)^{-1}\left(BA^{k}d(x_{0},x_{k_{0}% })+B^{2}A^{p}d(x_{0},x_{k_{0}})\right).italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≀ ( italic_I - italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Ξ› ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ) .

As the right-hand side of (3.8) converges to zero when k,pβ†’βˆž,β†’π‘˜π‘k,p\rightarrow\infty,italic_k , italic_p β†’ ∞ , we conclude that (xk)subscriptπ‘₯π‘˜\left(x_{k}\right)( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is Cauchy.

Therefore, in both cases, the sequence (xk)subscriptπ‘₯π‘˜\left(x_{k}\right)( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is Cauchy and since X𝑋Xitalic_X is complete, it has a limit xβˆ—,superscriptπ‘₯βˆ—x^{\ast},italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , that is, d⁒(xk,xβˆ—)β†’0→𝑑subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—0d\left(x_{k},x^{\ast}\right)\rightarrow 0italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) β†’ 0 as kβ†’βˆž.β†’π‘˜k\rightarrow\infty.italic_k β†’ ∞ . Then, from

d⁒(N⁒(xk),N⁒(xβˆ—))≀A⁒d⁒(xk,xβˆ—),𝑑𝑁subscriptπ‘₯π‘˜π‘superscriptπ‘₯βˆ—π΄π‘‘subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—d\left(N\left(x_{k}\right),N\left(x^{\ast}\right)\right)\leq Ad\left(x_{k},x^{% \ast}\right),italic_d ( italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ) ≀ italic_A italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ,

it follows that N⁒(xk)β†’N⁒(xβˆ—)→𝑁subscriptπ‘₯π‘˜π‘superscriptπ‘₯βˆ—N\left(x_{k}\right)\rightarrow N\left(x^{\ast}\right)italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) β†’ italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) as kβ†’βˆž,β†’π‘˜k\rightarrow\infty,italic_k β†’ ∞ , while from xk+1=N⁒(xk),subscriptπ‘₯π‘˜1𝑁subscriptπ‘₯π‘˜x_{k+1}=N\left(x_{k}\right),italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT = italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , passing to the limit, one obtains xβˆ—=N⁒(xβˆ—).superscriptπ‘₯βˆ—π‘superscriptπ‘₯βˆ—x^{\ast}=N\left(x^{\ast}\right).italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT = italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) . Hence N𝑁Nitalic_N has a fixed point. To prove uniqueness, suppose that there exists another fixed point xβˆ—βˆ—superscriptπ‘₯βˆ—absentβˆ—x^{\ast\ast}italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT. Then, from

d⁒(xβˆ—,xβˆ—βˆ—)=d⁒(N⁒(xβˆ—),N⁒(xβˆ—βˆ—))≀A⁒d⁒(xβˆ—,xβˆ—βˆ—),𝑑superscriptπ‘₯βˆ—superscriptπ‘₯βˆ—absentβˆ—π‘‘π‘superscriptπ‘₯βˆ—π‘superscriptπ‘₯βˆ—absentβˆ—π΄π‘‘superscriptπ‘₯βˆ—superscriptπ‘₯βˆ—absentβˆ—d\left(x^{\ast},x^{\ast\ast}\right)=d\left(N\left(x^{\ast}\right),N\left(x^{% \ast\ast}\right)\right)\leq Ad\left(x^{\ast},x^{\ast\ast}\right),italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT ) = italic_d ( italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT ) ) ≀ italic_A italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT ) ,

recursively, we obtain that

d⁒(xβˆ—,xβˆ—βˆ—)≀Ak⁒d⁒(xβˆ—,xβˆ—βˆ—),𝑑superscriptπ‘₯βˆ—superscriptπ‘₯βˆ—absentβˆ—superscriptπ΄π‘˜π‘‘superscriptπ‘₯βˆ—superscriptπ‘₯βˆ—absentβˆ—d\left(x^{\ast},x^{\ast\ast}\right)\leq A^{k}d\left(x^{\ast},x^{\ast\ast}% \right),italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT ) ≀ italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT ) ,

for all kβ‰₯1.π‘˜1k\geq 1.italic_k β‰₯ 1 . Since Akβ†’0nβ†’superscriptπ΄π‘˜subscript0𝑛A^{k}\rightarrow 0_{n}italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT β†’ 0 start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT as kβ†’βˆž,β†’π‘˜k\rightarrow\infty,italic_k β†’ ∞ , we deduce that d⁒(xβˆ—,xβˆ—βˆ—)=0,𝑑superscriptπ‘₯βˆ—superscriptπ‘₯βˆ—absentβˆ—0d\left(x^{\ast},x^{\ast\ast}\right)=0,italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT ) = 0 , i.e., xβˆ—βˆ—=xβˆ—.superscriptπ‘₯βˆ—absentβˆ—superscriptπ‘₯βˆ—x^{\ast\ast}=x^{\ast}.italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT . ∎

If we are not interested in the uniqueness of the fixed point for N𝑁Nitalic_N, the condition (3.1) can be relaxed and replaced by a weaker assumption on the graph of N𝑁Nitalic_N.

Theorem 3.2.

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a complete vector B𝐡Bitalic_B-metric space, where B𝐡Bitalic_B is either positive or inverse-positive, and let N:Xβ†’X:𝑁→𝑋𝑋N\colon X\rightarrow Xitalic_N : italic_X β†’ italic_X be an operator. Assume there exists a convergent to zero matrix Aβˆˆβ„³nΓ—n⁒(ℝ+)𝐴subscriptℳ𝑛𝑛subscriptℝA\in\mathcal{M}_{n\times n}(\mathbb{R}_{+})italic_A ∈ caligraphic_M start_POSTSUBSCRIPT italic_n Γ— italic_n end_POSTSUBSCRIPT ( blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) such that

(3.9) d⁒(N⁒(x),N2⁒(x))≀A⁒d⁒(x,N⁒(x)),for all β’x∈X.formulae-sequence𝑑𝑁π‘₯superscript𝑁2π‘₯𝐴𝑑π‘₯𝑁π‘₯for all π‘₯𝑋d\left(N(x),N^{2}(x)\right)\leq Ad(x,N(x)),\ \,\,\text{for all }x\in X.italic_d ( italic_N ( italic_x ) , italic_N start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_x ) ) ≀ italic_A italic_d ( italic_x , italic_N ( italic_x ) ) , for all italic_x ∈ italic_X .

Then, N𝑁Nitalic_N has at least one fixed point.

Proof.

Following the proof of Theorem 3.1, from any initial point x0,subscriptπ‘₯0x_{0},italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , the sequence xk=Nk⁒(x0)subscriptπ‘₯π‘˜superscriptπ‘π‘˜subscriptπ‘₯0x_{k}=N^{k}\left(x_{0}\right)italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_N start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) is convergent to a fixed point xβˆ—superscriptπ‘₯βˆ—x^{\ast}italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT of N,𝑁N,italic_N , which clearly depends on the starting point x0,subscriptπ‘₯0x_{0},italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , but condition (3.9) is insufficient to guarantee the uniqueness. ∎

The next result is a version for vector B𝐡Bitalic_B-metric spaces of Maia’s fixed point theorem. The contraction condition on the operator is considered with respect to a vector B1subscript𝐡1B_{1}italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-metric d1,subscript𝑑1d_{1},italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , not necessarily complete, while the convergence of the sequence of successive approximations is guaranteed in a complete vector B2subscript𝐡2B_{2}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-metric d2subscript𝑑2d_{2}italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT in a subordinate relationship to d1.subscript𝑑1d_{1}.italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT .

Theorem 3.3.

Let X𝑋Xitalic_X be a set equipped with two ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT-vector metrics, a B1subscript𝐡1B_{1}italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-metric d1subscript𝑑1d_{1}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and a B2subscript𝐡2B_{2}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-metric d2subscript𝑑2d_{2}italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, where B2subscript𝐡2B_{2}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is either positive or inverse-positive, and let N:Xβ†’X:𝑁→𝑋𝑋N\colon X\rightarrow Xitalic_N : italic_X β†’ italic_X be an operator. Assume that the following conditions hold:

  1. (i)

    (X,d1)𝑋subscript𝑑1(X,d_{1})( italic_X , italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is a complete vector B1subscript𝐡1B_{1}italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-metric space;

  2. (ii)

    d1⁒(x,y)≀C⁒d2⁒(x,y)subscript𝑑1π‘₯𝑦𝐢subscript𝑑2π‘₯𝑦d_{1}(x,y)\leq Cd_{2}(x,y)italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) ≀ italic_C italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) for all x,y∈Xπ‘₯𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X and some matrix Cβˆˆβ„³nΓ—n⁒(ℝ);𝐢subscriptℳ𝑛𝑛ℝC\in\mathcal{M}_{n\times n}\left(\mathbb{R}\right);italic_C ∈ caligraphic_M start_POSTSUBSCRIPT italic_n Γ— italic_n end_POSTSUBSCRIPT ( blackboard_R ) ;

  3. (iii)

    There exists a matrix A𝐴Aitalic_A convergent to zero such that

    (3.10) d2⁒(N⁒(x),N⁒(y))≀A⁒d2⁒(x,y), for all β’x,y∈X;formulae-sequencesubscript𝑑2𝑁π‘₯𝑁𝑦𝐴subscript𝑑2π‘₯𝑦 for all π‘₯𝑦𝑋d_{2}\left(N(x),N(y)\right)\leq Ad_{2}(x,y),\ \text{ for all }x,y\in X;italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_N ( italic_x ) , italic_N ( italic_y ) ) ≀ italic_A italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) , for all italic_x , italic_y ∈ italic_X ;
  4. (iv)

    The operator N𝑁Nitalic_N is continuous in (X,d1)𝑋subscript𝑑1\left(X,d_{1}\right)( italic_X , italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ).

Then, the operator N𝑁Nitalic_N has a unique fixed point.

Proof.

Let x0∈Xsubscriptπ‘₯0𝑋x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X be fixed, and consider the iterative sequence xk+1=N⁒(xk)subscriptπ‘₯π‘˜1𝑁subscriptπ‘₯π‘˜x_{k+1}=N(x_{k})italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT = italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) for kβ‰₯0.π‘˜0k\geq 0.italic_k β‰₯ 0 . For any k,k0,pβ‰₯0π‘˜subscriptπ‘˜0𝑝0k,k_{0},p\geq 0italic_k , italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_p β‰₯ 0, applying the triangle inequality twice and using condition (iii), we derive either

(B2βˆ’2βˆ’Ak0)⁒d2⁒(xk,xp)≀B2βˆ’1⁒Ak⁒d2⁒(x0,xk0)+Ap⁒d2⁒(x0,xk0),superscriptsubscript𝐡22superscript𝐴subscriptπ‘˜0subscript𝑑2subscriptπ‘₯π‘˜subscriptπ‘₯𝑝superscriptsubscript𝐡21superscriptπ΄π‘˜subscript𝑑2subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscript𝐴𝑝subscript𝑑2subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0(B_{2}^{-2}-A^{k_{0}})d_{2}(x_{k},x_{p})\leq B_{2}^{-1}A^{k}d_{2}(x_{0},x_{k_{% 0}})+A^{p}d_{2}(x_{0},x_{k_{0}}),( italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT - italic_A start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≀ italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ,

in case that B2subscript𝐡2B_{2}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is inverse-positive, or

(Iβˆ’B22⁒Ak0)⁒d2⁒(xk,xp)≀B2⁒Ak⁒d2⁒(x0,xk0)+B22⁒Ap⁒d2⁒(x0,xk0),𝐼superscriptsubscript𝐡22superscript𝐴subscriptπ‘˜0subscript𝑑2subscriptπ‘₯π‘˜subscriptπ‘₯𝑝subscript𝐡2superscriptπ΄π‘˜subscript𝑑2subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0superscriptsubscript𝐡22superscript𝐴𝑝subscript𝑑2subscriptπ‘₯0subscriptπ‘₯subscriptπ‘˜0(I-B_{2}^{2}A^{k_{0}})d_{2}(x_{k},x_{p})\leq B_{2}A^{k}d_{2}(x_{0},x_{k_{0}})+% B_{2}^{2}A^{p}d_{2}(x_{0},x_{k_{0}}),( italic_I - italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) ≀ italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ,

if B2subscript𝐡2B_{2}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is positive. Arguing similarly to the proof of Theorem 3.1, we deduce that (xk)subscriptπ‘₯π‘˜(x_{k})( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is a Cauchy sequence in (X,d2)𝑋subscript𝑑2(X,d_{2})( italic_X , italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). From (ii), it follows immediately that (xk)subscriptπ‘₯π‘˜(x_{k})( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is also a Cauchy sequence in (X,d1)𝑋subscript𝑑1(X,d_{1})( italic_X , italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), hence (xk)subscriptπ‘₯π‘˜(x_{k})( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is convergent with respect the metric d1subscript𝑑1d_{1}italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT to some xβˆ—,superscriptπ‘₯βˆ—x^{\ast},italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , that is,

d1⁒(N⁒(xk),xβˆ—)=d1⁒(xk+1,xβˆ—)β†’0,as β’kβ†’βˆž,formulae-sequencesubscript𝑑1𝑁subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—subscript𝑑1subscriptπ‘₯π‘˜1superscriptπ‘₯βˆ—β†’0β†’as π‘˜d_{1}(N(x_{k}),x^{\ast})=d_{1}\left(x_{k+1},x^{\ast}\right)\rightarrow 0,\ \ % \ \text{as }k\rightarrow\infty,italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) β†’ 0 , as italic_k β†’ ∞ ,

while the continuity of N𝑁Nitalic_N yields d1⁒(N⁒(xβˆ—),xβˆ—)=0subscript𝑑1𝑁superscriptπ‘₯βˆ—superscriptπ‘₯βˆ—0d_{1}(N(x^{\ast}),x^{\ast})=0italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = 0, i.e., N⁒(xβˆ—)=xβˆ—π‘superscriptπ‘₯βˆ—superscriptπ‘₯βˆ—N(x^{\ast})=x^{\ast}italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT. To establish uniqueness, suppose that xβˆ—βˆ—superscriptπ‘₯βˆ—absentβˆ—x^{\ast\ast}italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT is another fixed point of N,𝑁N,italic_N , i.e., N⁒(xβˆ—βˆ—)=xβˆ—βˆ—π‘superscriptπ‘₯βˆ—absentβˆ—superscriptπ‘₯βˆ—absentβˆ—N(x^{\ast\ast})=x^{\ast\ast}italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT ) = italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT. Then, by (3.10), one has

(Iβˆ’A)⁒d2⁒(xβˆ—,xβˆ—βˆ—)≀0.𝐼𝐴subscript𝑑2superscriptπ‘₯βˆ—superscriptπ‘₯βˆ—absentβˆ—0(I-A)d_{2}(x^{\ast},x^{\ast\ast})\leq 0.( italic_I - italic_A ) italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT ) ≀ 0 .

Since A𝐴Aitalic_A is convergent to zero, we necessarily have d2⁒(xβˆ—,xβˆ—βˆ—)=0subscript𝑑2superscriptπ‘₯βˆ—superscriptπ‘₯βˆ—absentβˆ—0d_{2}(x^{\ast},x^{\ast\ast})=0italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT ) = 0, i.e., xβˆ—=xβˆ—βˆ—superscriptπ‘₯βˆ—superscriptπ‘₯βˆ—absentβˆ—x^{\ast}=x^{\ast\ast}italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT βˆ— βˆ— end_POSTSUPERSCRIPT. ∎

3.2. Error estimates

The classical Banach and Perov fixed point theorems are accompanied by some error estimates in terms of the contraction constant and matrix, respectively. These estimates allow us to obtain stopping criteria for the iterative approximation process. It is the aim of this subsection to obtain such stopping criteria when working in vector B𝐡Bitalic_B-metric spaces.

Theorem 3.4.

Assume that all the conditions of Theorem 3.1 hold and let (xk)subscriptπ‘₯π‘˜\left(x_{k}\right)( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) be a sequence of successive approximations of the fixed point xβˆ—.superscriptπ‘₯βˆ—x^{\ast}.italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT .

(10):

If B𝐡Bitalic_B is inverse-positive, then

(3.11) (Bβˆ’1βˆ’A)⁒d⁒(xk,xβˆ—)≀Ak⁒d⁒(x0,x1)(kβ‰₯0).superscript𝐡1𝐴𝑑subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯1π‘˜0\left(B^{-1}-A\right)d\left(x_{k},x^{\ast}\right)\leq A^{k}d\left(x_{0},x_{1}% \right)\ \ \ \ \left(k\geq 0\right).( italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A ) italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( italic_k β‰₯ 0 ) .

If in addition the matrix Bβˆ’1βˆ’Asuperscript𝐡1𝐴B^{-1}-Aitalic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A is inverse-positive, then

(3.12) d⁒(xk,xβˆ—)≀(Bβˆ’1βˆ’A)βˆ’1⁒Ak⁒d⁒(x0,x1)(kβ‰₯0).𝑑subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—superscriptsuperscript𝐡1𝐴1superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯1π‘˜0d\left(x_{k},x^{\ast}\right)\leq\left(B^{-1}-A\right)^{-1}A^{k}d\left(x_{0},x_% {1}\right)\ \ \ \left(k\geq 0\right).italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ ( italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( italic_k β‰₯ 0 ) .
(20):

If B𝐡Bitalic_B is positive, then

(3.13) (Iβˆ’B⁒A)⁒d⁒(xk,xβˆ—)≀B⁒Ak⁒d⁒(x0,x1)(kβ‰₯0).𝐼𝐡𝐴𝑑subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—π΅superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯1π‘˜0\left(I-BA\right)d\left(x_{k},x^{\ast}\right)\leq BA^{k}d\left(x_{0},x_{1}% \right)\ \ \ \ \left(k\geq 0\right).( italic_I - italic_B italic_A ) italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( italic_k β‰₯ 0 ) .

If in addition Iβˆ’B⁒A𝐼𝐡𝐴\ I-BAitalic_I - italic_B italic_A is inverse-positive, then

(3.14) d⁒(xk,xβˆ—)≀(Iβˆ’B⁒A)βˆ’1⁒B⁒Ak⁒d⁒(x0,x1)(kβ‰₯0).𝑑subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—superscript𝐼𝐡𝐴1𝐡superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯1π‘˜0d\left(x_{k},x^{\ast}\right)\leq\left(I-BA\right)^{-1}BA^{k}d\left(x_{0},x_{1}% \right)\ \ \ \left(k\geq 0\right).italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ ( italic_I - italic_B italic_A ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( italic_k β‰₯ 0 ) .
Proof.

(1)0{}^{0})start_FLOATSUPERSCRIPT 0 end_FLOATSUPERSCRIPT ): We have

Bβˆ’1⁒d⁒(xk,xβˆ—)superscript𝐡1𝑑subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—\displaystyle B^{-1}d\left(x_{k},x^{\ast}\right)italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀\displaystyle\leq≀ d⁒(xk,xk+1)+d⁒(xk+1,xβˆ—)𝑑subscriptπ‘₯π‘˜subscriptπ‘₯π‘˜1𝑑subscriptπ‘₯π‘˜1superscriptπ‘₯βˆ—\displaystyle d\left(x_{k},x_{k+1}\right)+d\left(x_{k+1},x^{\ast}\right)italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT ) + italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT )
≀\displaystyle\leq≀ Ak⁒d⁒(x0,x1)+A⁒d⁒(xk,xβˆ—),superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯1𝐴𝑑subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—\displaystyle A^{k}d\left(x_{0},x_{1}\right)+Ad\left(x_{k},x^{\ast}\right),italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) + italic_A italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ,

whence we deduce (3.11). The second part is obvious.

(20): We have

d⁒(xk,xβˆ—)𝑑subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—\displaystyle d\left(x_{k},x^{\ast}\right)italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀\displaystyle\leq≀ B⁒d⁒(xk,xk+1)+B⁒d⁒(xk+1,xβˆ—)𝐡𝑑subscriptπ‘₯π‘˜subscriptπ‘₯π‘˜1𝐡𝑑subscriptπ‘₯π‘˜1superscriptπ‘₯βˆ—\displaystyle Bd\left(x_{k},x_{k+1}\right)+Bd\left(x_{k+1},x^{\ast}\right)italic_B italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT ) + italic_B italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT )
≀\displaystyle\leq≀ B⁒Ak⁒d⁒(x0,x1)+B⁒A⁒d⁒(xk,xβˆ—),𝐡superscriptπ΄π‘˜π‘‘subscriptπ‘₯0subscriptπ‘₯1𝐡𝐴𝑑subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—\displaystyle BA^{k}d\left(x_{0},x_{1}\right)+BAd\left(x_{k},x^{\ast}\right),italic_B italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) + italic_B italic_A italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ,

that is (3.13). The additional conclusion is obvious. ∎

Remark 3.5.

Clearly, since Aksuperscriptπ΄π‘˜A^{k}italic_A start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT tends to the zero matrix as kβ†’βˆž,β†’π‘˜k\rightarrow\infty,italic_k β†’ ∞ , formulas (3.12) and (3.14) provide stopping criteria for the iterative fixed point approximation algorithm starting from x0,subscriptπ‘₯0x_{0},italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , when an admissible error is given. It should be emphasized that these estimates are in terms of matrices A𝐴Aitalic_A and B𝐡Bitalic_B. In contrast, if we make the transition to (scalar) b𝑏bitalic_b-metric spaces, as discussed in Section 2, the resulting estimates will depend on the chosen norm in ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and may vary across different norms. So, from this point of view, the vector approach not only unifies the results that can be obtained with the scalar method, but also provides the best estimates.

3.3. Stability results

We now present two stability properties of the Perov contraction mappings in vector B𝐡Bitalic_B-metric spaces.

The first property is in the sense of Reich and Zaslavski and generalizes the one obtained in [18] for b𝑏bitalic_b-metric spaces.

Theorem 3.6.

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a complete vector B𝐡Bitalic_B-metric space, and let N:Xβ†’X:𝑁→𝑋𝑋N\colon X\rightarrow Xitalic_N : italic_X β†’ italic_X be an operator such that (3.1) holds with a matrix A𝐴Aitalic_A convergent to zero. In addition assume that either

(a):

B𝐡Bitalic_B and Bβˆ’1βˆ’Asuperscript𝐡1𝐴B^{-1}-Aitalic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A are inverse-positive;

or

(b):

B𝐡Bitalic_B is positive and Iβˆ’B⁒A𝐼𝐡𝐴I-BAitalic_I - italic_B italic_A is inverse-positive.

Then, N𝑁Nitalic_N is stable in the sense of Reich and Zaslavski, i.e., N𝑁Nitalic_N has a unique fixed point xβˆ—superscriptπ‘₯βˆ—x^{\ast}italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT, and for every sequence (xk)βŠ‚Xsubscriptπ‘₯π‘˜π‘‹(x_{k})\subset X( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) βŠ‚ italic_X satisfying

(3.15) d⁒(xk,N⁒(xk))β†’0⁒ as β’kβ†’βˆž,formulae-sequence→𝑑subscriptπ‘₯π‘˜π‘subscriptπ‘₯π‘˜0 β†’as π‘˜d(x_{k},N(x_{k}))\rightarrow 0\text{ }\ \ \text{as\ \ }k\rightarrow\infty,italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) β†’ 0 as italic_k β†’ ∞ ,

one has

xkβ†’xβˆ— as β’kβ†’βˆž.formulae-sequenceβ†’subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—β†’ as π‘˜x_{k}\rightarrow x^{\ast}\ \ \ \text{ as \ }k\rightarrow\infty.italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT as italic_k β†’ ∞ .
Proof.

According to Theorem 3.1 the operator N𝑁Nitalic_N has a unique fixed point xβˆ—.superscriptπ‘₯βˆ—x^{\ast}.italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT . In addition, for any sequence (xk)subscriptπ‘₯π‘˜\left(x_{k}\right)( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) satisfying (3.15), in case (a), we have

Bβˆ’1⁒d⁒(xk,xβˆ—)superscript𝐡1𝑑subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—\displaystyle B^{-1}d(x_{k},x^{\ast})italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀d⁒(xk,N⁒(xk))+d⁒(N⁒(xk),xβˆ—)absent𝑑subscriptπ‘₯π‘˜π‘subscriptπ‘₯π‘˜π‘‘π‘subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—\displaystyle\leq d(x_{k},N(x_{k}))+d(N(x_{k}),x^{\ast})≀ italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) + italic_d ( italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT )
=d⁒(xk,N⁒(xk))+d⁒(N⁒(xk),N⁒(xβˆ—))absent𝑑subscriptπ‘₯π‘˜π‘subscriptπ‘₯π‘˜π‘‘π‘subscriptπ‘₯π‘˜π‘superscriptπ‘₯βˆ—\displaystyle=d(x_{k},N(x_{k}))+d(N(x_{k}),N(x^{\ast}))= italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) + italic_d ( italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) )
≀d⁒(xk,N⁒(xk))+A⁒d⁒(xk,xβˆ—),absent𝑑subscriptπ‘₯π‘˜π‘subscriptπ‘₯π‘˜π΄π‘‘subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—\displaystyle\leq d(x_{k},N(x_{k}))+Ad(x_{k},x^{\ast}),≀ italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) + italic_A italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ,

that is,

d⁒(xk,xβˆ—)≀(Bβˆ’1βˆ’A)βˆ’1⁒d⁒(xk,N⁒(xk)),𝑑subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—superscriptsuperscript𝐡1𝐴1𝑑subscriptπ‘₯π‘˜π‘subscriptπ‘₯π‘˜d(x_{k},x^{\ast})\leq(B^{-1}-A)^{-1}d(x_{k},N(x_{k})),italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ ( italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) ,

while in case (b),

d⁒(xk,xβˆ—)≀(Iβˆ’B⁒A)βˆ’1⁒B⁒d⁒(xk,N⁒(xk)).𝑑subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—superscript𝐼𝐡𝐴1𝐡𝑑subscriptπ‘₯π‘˜π‘subscriptπ‘₯π‘˜d(x_{k},x^{\ast})\leq\left(I-BA\right)^{-1}Bd(x_{k},N(x_{k})).italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ ( italic_I - italic_B italic_A ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_B italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) .

These estimates immediately yield the conclusion. ∎

The second stability result is in the sense of Ostrowski and extends to vector B𝐡Bitalic_B-metric spaces a similar property established in [18] for b𝑏bitalic_b-metric spaces.

Theorem 3.7.

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a complete vector B𝐡Bitalic_B-metric space, and let N:Xβ†’X:𝑁→𝑋𝑋N\colon X\rightarrow Xitalic_N : italic_X β†’ italic_X be an operator. Assume N𝑁Nitalic_N satisfies (3.1) with a matrix A𝐴Aitalic_A convergent to zero. In addition, assume that either

(a):

B𝐡Bitalic_B and Iβˆ’b~⁒A𝐼~𝑏𝐴I-\tilde{b}Aitalic_I - over~ start_ARG italic_b end_ARG italic_A are inverse-positive, where b~=max⁑{bi⁒i:i=1,2,…,n}~𝑏:subscript𝑏𝑖𝑖𝑖12…𝑛\tilde{b}=\max\{b_{ii}\,:\,i=1,2,\ldots,n\}over~ start_ARG italic_b end_ARG = roman_max { italic_b start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT : italic_i = 1 , 2 , … , italic_n };

or

(b):

B𝐡Bitalic_B is positive and Iβˆ’B⁒A𝐼𝐡𝐴I-BAitalic_I - italic_B italic_A is inverse-positive.

Then, N𝑁Nitalic_N has the Ostrowski property, i.e., N𝑁Nitalic_N has a unique fixed point xβˆ—superscriptπ‘₯βˆ—x^{\ast}italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT, and for every sequence (xk)βŠ‚Xsubscriptπ‘₯π‘˜π‘‹(x_{k})\subset X( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) βŠ‚ italic_X satisfying

d⁒(xk+1,N⁒(xk))β†’0⁒ as β’kβ†’βˆž,→𝑑subscriptπ‘₯π‘˜1𝑁subscriptπ‘₯π‘˜0 as π‘˜β†’d(x_{k+1},N(x_{k}))\rightarrow 0\text{ \ as \ }k\rightarrow\infty,italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) β†’ 0 as italic_k β†’ ∞ ,

one has

xkβ†’xβˆ— as β’kβ†’βˆž.formulae-sequenceβ†’subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—β†’ as π‘˜x_{k}\rightarrow x^{\ast}\ \ \ \text{ as \ }k\rightarrow\infty.italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT as italic_k β†’ ∞ .
Proof.

As previously established, the operator N𝑁Nitalic_N has a unique fixed point xβˆ—superscriptπ‘₯βˆ—x^{\ast}italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT. In case (a), we have

d⁒(xk+1,xβˆ—)𝑑subscriptπ‘₯π‘˜1superscriptπ‘₯βˆ—\displaystyle d(x_{k+1},x^{\ast})italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀b~⁒d⁒(xk+1,N⁒(xk))+b~⁒d⁒(N⁒(xk),N⁒(xβˆ—))absent~𝑏𝑑subscriptπ‘₯π‘˜1𝑁subscriptπ‘₯π‘˜~𝑏𝑑𝑁subscriptπ‘₯π‘˜π‘superscriptπ‘₯βˆ—\displaystyle\leq\tilde{b}\,d(x_{k+1},N(x_{k}))+\tilde{b}\,d(N(x_{k}),N(x^{% \ast}))≀ over~ start_ARG italic_b end_ARG italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) + over~ start_ARG italic_b end_ARG italic_d ( italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) )
≀b~⁒d⁒(xk+1,N⁒(xk))+b~⁒A⁒d⁒(xk,xβˆ—)absent~𝑏𝑑subscriptπ‘₯π‘˜1𝑁subscriptπ‘₯π‘˜~𝑏𝐴𝑑subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—\displaystyle\leq\tilde{b}\,d(x_{k+1},N(x_{k}))+\tilde{b}A\,d(x_{k},x^{\ast})≀ over~ start_ARG italic_b end_ARG italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) + over~ start_ARG italic_b end_ARG italic_A italic_d ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT )
≀…absent…\displaystyle\leq\ \ldots≀ …
≀b~β’βˆ‘p=0k(b~⁒A)p⁒d⁒(xk+1βˆ’p,N⁒(xkβˆ’p))+(b~⁒A)k+1⁒d⁒(x0,xβˆ—),absent~𝑏superscriptsubscript𝑝0π‘˜superscript~𝑏𝐴𝑝𝑑subscriptπ‘₯π‘˜1𝑝𝑁subscriptπ‘₯π‘˜π‘superscript~π‘π΄π‘˜1𝑑subscriptπ‘₯0superscriptπ‘₯βˆ—\displaystyle\leq\tilde{b}\sum_{p=0}^{k}(\tilde{b}A)^{p}d(x_{k+1-p},N(x_{k-p})% )+(\tilde{b}A)^{k+1}d(x_{0},x^{\ast}),≀ over~ start_ARG italic_b end_ARG βˆ‘ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( over~ start_ARG italic_b end_ARG italic_A ) start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 - italic_p end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k - italic_p end_POSTSUBSCRIPT ) ) + ( over~ start_ARG italic_b end_ARG italic_A ) start_POSTSUPERSCRIPT italic_k + 1 end_POSTSUPERSCRIPT italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ,

while in case (b), similar estimation gives

d⁒(xk+1,xβˆ—)β‰€βˆ‘p=0k(B⁒A)p⁒B⁒d⁒(xk+1βˆ’p,N⁒(xkβˆ’p))+(B⁒A)k⁒B⁒d⁒(x0,xβˆ—).𝑑subscriptπ‘₯π‘˜1superscriptπ‘₯βˆ—superscriptsubscript𝑝0π‘˜superscript𝐡𝐴𝑝𝐡𝑑subscriptπ‘₯π‘˜1𝑝𝑁subscriptπ‘₯π‘˜π‘superscriptπ΅π΄π‘˜π΅π‘‘subscriptπ‘₯0superscriptπ‘₯βˆ—d(x_{k+1},x^{\ast})\leq\sum_{p=0}^{k}(BA)^{p}Bd(x_{k+1-p},N(x_{k-p}))+(BA)^{k}% Bd(x_{0},x^{\ast}).italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ βˆ‘ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( italic_B italic_A ) start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_B italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 - italic_p end_POSTSUBSCRIPT , italic_N ( italic_x start_POSTSUBSCRIPT italic_k - italic_p end_POSTSUBSCRIPT ) ) + ( italic_B italic_A ) start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_B italic_d ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) .

Since Iβˆ’b~⁒A𝐼~𝑏𝐴I-\tilde{b}Aitalic_I - over~ start_ARG italic_b end_ARG italic_A is inverse-positive and b~⁒A~𝑏𝐴\tilde{b}Aover~ start_ARG italic_b end_ARG italic_A is positive in the first case, and Iβˆ’B⁒A𝐼𝐡𝐴I-BAitalic_I - italic_B italic_A is inverse-positive and B⁒A𝐡𝐴BAitalic_B italic_A is positive in the second case, the series βˆ‘p=0k(b~⁒A)psuperscriptsubscript𝑝0π‘˜superscript~𝑏𝐴𝑝\sum_{p=0}^{k}(\tilde{b}A)^{p}βˆ‘ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( over~ start_ARG italic_b end_ARG italic_A ) start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT and βˆ‘p=0k(B⁒A)psuperscriptsubscript𝑝0π‘˜superscript𝐡𝐴𝑝\sum_{p=0}^{k}(BA)^{p}βˆ‘ start_POSTSUBSCRIPT italic_p = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( italic_B italic_A ) start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT are convergent. Moreover, (b~⁒A)ksuperscript~π‘π΄π‘˜(\tilde{b}A)^{k}( over~ start_ARG italic_b end_ARG italic_A ) start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT and (B⁒A)ksuperscriptπ΅π΄π‘˜(BA)^{k}( italic_B italic_A ) start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT converge to the zero matrix as kβ†’βˆžβ†’π‘˜k\to\inftyitalic_k β†’ ∞. Therefore, using the Cauchy-Toeplitz lemma (see [28]), it follows that d⁒(xk+1,xβˆ—)β†’0→𝑑subscriptπ‘₯π‘˜1superscriptπ‘₯βˆ—0d(x_{k+1},x^{\ast})\rightarrow 0italic_d ( italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) β†’ 0 as kβ†’βˆž.β†’π‘˜k\rightarrow\infty.italic_k β†’ ∞ . ∎

3.4. Avramescu type fixed point theorem

Our next result is a variant of Avramescu’s fixed point theorem (see [29]) in vector B𝐡Bitalic_B-metric spaces.

Theorem 3.8 (Avramescu theorem in vector B𝐡Bitalic_B-metric spaces).

Let (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) be a complete vector B𝐡Bitalic_B-metric space, D𝐷Ditalic_D a nonempty closed convex subset of a normed space Y,π‘ŒY,italic_Y , N1:XΓ—Dβ†’X:subscript𝑁1→𝑋𝐷𝑋N_{1}:X\times D\rightarrow Xitalic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : italic_X Γ— italic_D β†’ italic_X and N2:XΓ—Dβ†’D:subscript𝑁2→𝑋𝐷𝐷N_{2}:X\times D\rightarrow Ditalic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : italic_X Γ— italic_D β†’ italic_D be two mappings. Assume that the following conditions are satisfied:

  1. (i)

    N1(x,.)N_{1}\left(x,.\right)italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , . ) is continuous for every x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X and there is a matrix A𝐴Aitalic_A convergent to zero such that

    d⁒(N1⁒(x,y),N1⁒(xΒ―,y))≀A⁒d⁒(x,xΒ―),𝑑subscript𝑁1π‘₯𝑦subscript𝑁1Β―π‘₯𝑦𝐴𝑑π‘₯Β―π‘₯d(N_{1}(x,y),N_{1}(\overline{x},y))\leq A\,d(x,\overline{x}),italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( overΒ― start_ARG italic_x end_ARG , italic_y ) ) ≀ italic_A italic_d ( italic_x , overΒ― start_ARG italic_x end_ARG ) ,

    for all x,x¯∈Xπ‘₯Β―π‘₯𝑋x,\overline{x}\in Xitalic_x , overΒ― start_ARG italic_x end_ARG ∈ italic_X and y∈D;𝑦𝐷y\in D;italic_y ∈ italic_D ;

  2. (ii)

    Either

(a):

B𝐡Bitalic_B and Bβˆ’1βˆ’Asuperscript𝐡1𝐴B^{-1}-Aitalic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A is inverse-positive;

or

(b):

B𝐡Bitalic_B is positive and Iβˆ’B⁒A𝐼𝐡𝐴I-BAitalic_I - italic_B italic_A is inverse-positive.

  1. (iii)

    N2subscript𝑁2N_{2}italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is continuous and N2⁒(XΓ—D)subscript𝑁2𝑋𝐷N_{2}(X\times D)italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X Γ— italic_D ) is a relatively compact subset of Yπ‘ŒYitalic_Y .

Then, there exists (xβˆ—,yβˆ—)∈XΓ—Dsuperscriptπ‘₯βˆ—superscriptπ‘¦βˆ—π‘‹π·(x^{\ast},y^{\ast})\in X\times D( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ∈ italic_X Γ— italic_D such that

N1⁒(xβˆ—,yβˆ—)=xβˆ—,N2⁒(xβˆ—,yβˆ—)=yβˆ—.formulae-sequencesubscript𝑁1superscriptπ‘₯βˆ—superscriptπ‘¦βˆ—superscriptπ‘₯βˆ—subscript𝑁2superscriptπ‘₯βˆ—superscriptπ‘¦βˆ—superscriptπ‘¦βˆ—N_{1}(x^{\ast},y^{\ast})=x^{\ast},\quad N_{2}(x^{\ast},y^{\ast})=y^{\ast}.italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT .
Proof.

For each y∈D𝑦𝐷y\in Ditalic_y ∈ italic_D, Theorem 3.1 applies to the operator N1(.,y)N_{1}\left(.,y\right)italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( . , italic_y ) and gives a unique S⁒(y)∈X𝑆𝑦𝑋S(y)\in Xitalic_S ( italic_y ) ∈ italic_X such that

(3.16) N1⁒(S⁒(y),y)=S⁒(y).subscript𝑁1𝑆𝑦𝑦𝑆𝑦N_{1}(S(y),y)=S(y).italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( italic_y ) , italic_y ) = italic_S ( italic_y ) .

We claim that the mapping S:Dβ†’X:𝑆→𝐷𝑋S:D\rightarrow Xitalic_S : italic_D β†’ italic_X is continuous. To prove this, let y,y¯∈D𝑦¯𝑦𝐷y,\overline{y}\in Ditalic_y , overΒ― start_ARG italic_y end_ARG ∈ italic_D. In case (a), we have

Bβˆ’1⁒d⁒(S⁒(y),S⁒(yΒ―))superscript𝐡1𝑑𝑆𝑦𝑆¯𝑦\displaystyle B^{-1}d(S(y),S(\overline{y}))italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_S ( italic_y ) , italic_S ( overΒ― start_ARG italic_y end_ARG ) ) =Bβˆ’1⁒d⁒(N1⁒(S⁒(y),y),N1⁒(S⁒(yΒ―),yΒ―))absentsuperscript𝐡1𝑑subscript𝑁1𝑆𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦\displaystyle=B^{-1}d\left(N_{1}\left(S(y),y\right),N_{1}\left(S(\overline{y})% ,\overline{y}\right)\right)= italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( italic_y ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , overΒ― start_ARG italic_y end_ARG ) )
≀d⁒(N1⁒(S⁒(y),y),N1⁒(S⁒(yΒ―),y))+d⁒(N1⁒(S⁒(yΒ―),y),N1⁒(S⁒(yΒ―),yΒ―))absent𝑑subscript𝑁1𝑆𝑦𝑦subscript𝑁1𝑆¯𝑦𝑦𝑑subscript𝑁1𝑆¯𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦\displaystyle\leq d\left(N_{1}\left(S(y),y\right),N_{1}\left(S(\overline{y}),y% \right)\right)+d\left(N_{1}\left(S(\overline{y}),y\right),N_{1}\left(S(% \overline{y}),\overline{y}\right)\right)≀ italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( italic_y ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , italic_y ) ) + italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , overΒ― start_ARG italic_y end_ARG ) )
≀A⁒d⁒(S⁒(y),S⁒(yΒ―))+d⁒(N1⁒(S⁒(yΒ―),y),N1⁒(S⁒(yΒ―),yΒ―)),absent𝐴𝑑𝑆𝑦𝑆¯𝑦𝑑subscript𝑁1𝑆¯𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦\displaystyle\leq Ad\left(S(y),S(\overline{y})\right)+d\left(N_{1}\left(S(% \overline{y}),y\right),N_{1}\left(S(\overline{y}),\overline{y}\right)\right),≀ italic_A italic_d ( italic_S ( italic_y ) , italic_S ( overΒ― start_ARG italic_y end_ARG ) ) + italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , overΒ― start_ARG italic_y end_ARG ) ) ,

which implies

(Bβˆ’1βˆ’A)⁒d⁒(S⁒(y),S⁒(yΒ―))≀d⁒(N1⁒(S⁒(yΒ―),y),N1⁒(S⁒(yΒ―),yΒ―)),superscript𝐡1𝐴𝑑𝑆𝑦𝑆¯𝑦𝑑subscript𝑁1𝑆¯𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦\left(B^{-1}-A\right)d(S(y),S(\overline{y}))\leq d\left(N_{1}\left(S(\overline% {y}),y\right),N_{1}\left(S(\overline{y}),\overline{y}\right)\right),( italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A ) italic_d ( italic_S ( italic_y ) , italic_S ( overΒ― start_ARG italic_y end_ARG ) ) ≀ italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , overΒ― start_ARG italic_y end_ARG ) ) ,

while in case (b), one has

(Iβˆ’B⁒A)⁒d⁒(S⁒(y),S⁒(yΒ―))≀B⁒d⁒(N1⁒(S⁒(yΒ―),y),N1⁒(S⁒(yΒ―),yΒ―)).𝐼𝐡𝐴𝑑𝑆𝑦𝑆¯𝑦𝐡𝑑subscript𝑁1𝑆¯𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦\left(I-BA\right)d(S(y),S(\overline{y}))\leq Bd\left(N_{1}\left(S(\overline{y}% ),y\right),N_{1}\left(S(\overline{y}),\overline{y}\right)\right).( italic_I - italic_B italic_A ) italic_d ( italic_S ( italic_y ) , italic_S ( overΒ― start_ARG italic_y end_ARG ) ) ≀ italic_B italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , overΒ― start_ARG italic_y end_ARG ) ) .

Since Bβˆ’1βˆ’Asuperscript𝐡1𝐴B^{-1}-Aitalic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A and Iβˆ’B⁒A𝐼𝐡𝐴I-BAitalic_I - italic_B italic_A are inverse-positive, respectively, in case (a), we deduce that

(3.17) d⁒(S⁒(y),S⁒(yΒ―))≀(Bβˆ’1βˆ’A)βˆ’1⁒d⁒(N1⁒(S⁒(yΒ―),y),N1⁒(S⁒(yΒ―),yΒ―)),𝑑𝑆𝑦𝑆¯𝑦superscriptsuperscript𝐡1𝐴1𝑑subscript𝑁1𝑆¯𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦d(S(y),S(\overline{y}))\leq\left(B^{-1}-A\right)^{-1}d\left(N_{1}\left(S(% \overline{y}),y\right),N_{1}\left(S(\overline{y}),\overline{y}\right)\right),italic_d ( italic_S ( italic_y ) , italic_S ( overΒ― start_ARG italic_y end_ARG ) ) ≀ ( italic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , overΒ― start_ARG italic_y end_ARG ) ) ,

and in case (b),

(3.18) d⁒(S⁒(y),S⁒(yΒ―))≀(Iβˆ’B⁒A)βˆ’1⁒B⁒d⁒(N1⁒(S⁒(yΒ―),y),N1⁒(S⁒(yΒ―),yΒ―)).𝑑𝑆𝑦𝑆¯𝑦superscript𝐼𝐡𝐴1𝐡𝑑subscript𝑁1𝑆¯𝑦𝑦subscript𝑁1𝑆¯𝑦¯𝑦d(S(y),S(\overline{y}))\leq\left(I-BA\right)^{-1}Bd\left(N_{1}\left(S(% \overline{y}),y\right),N_{1}\left(S(\overline{y}),\overline{y}\right)\right).italic_d ( italic_S ( italic_y ) , italic_S ( overΒ― start_ARG italic_y end_ARG ) ) ≀ ( italic_I - italic_B italic_A ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_B italic_d ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , italic_y ) , italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( overΒ― start_ARG italic_y end_ARG ) , overΒ― start_ARG italic_y end_ARG ) ) .

Then, for any convergent sequence (yk)βŠ‚D,subscriptπ‘¦π‘˜π·\left(y_{k}\right)\subset D,( italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) βŠ‚ italic_D , ykβ†’yβˆ—β†’subscriptπ‘¦π‘˜superscriptπ‘¦βˆ—y_{k}\rightarrow y^{\ast}italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT as kβ†’βˆž,β†’π‘˜k\rightarrow\infty,italic_k β†’ ∞ , the continuity of N1(S(yβˆ—),.)N_{1}\left(S\left(y^{\ast}\right),.\right)italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ( italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , . ) together with relations (3.17) and (3.18) implies that d⁒(S⁒(yk),S⁒(yβˆ—))β†’0→𝑑𝑆subscriptπ‘¦π‘˜π‘†superscriptπ‘¦βˆ—0d(S(y_{k}),S(y^{\ast}))\rightarrow 0italic_d ( italic_S ( italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , italic_S ( italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ) β†’ 0 as kβ†’βˆž.β†’π‘˜k\rightarrow\infty.italic_k β†’ ∞ . Thus, S𝑆Sitalic_S is continuous, and since N2subscript𝑁2N_{2}italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is continuous, the composed mapping

N2(S(.),.):D→DN_{2}(S(.),.):D\rightarrow Ditalic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_S ( . ) , . ) : italic_D → italic_D

is continuous too. Since its range is relatively compact by condition (iii), Schauder’s fixed point theorem applies and guarantees the existence of a point yβˆ—βˆˆDsuperscriptπ‘¦βˆ—π·y^{\ast}\in Ditalic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_D such that

(3.19) N2⁒(S⁒(yβˆ—),yβˆ—)=yβˆ—.subscript𝑁2𝑆superscriptπ‘¦βˆ—superscriptπ‘¦βˆ—superscriptπ‘¦βˆ—N_{2}\left(S(y^{\ast}),y^{\ast}\right)=y^{\ast}.italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_S ( italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT .

Finally, denoting xβˆ—:=S⁒(yβˆ—),assignsuperscriptπ‘₯βˆ—π‘†superscriptπ‘¦βˆ—x^{\ast}:=S(y^{\ast}),italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT := italic_S ( italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , from (3.16) and (3.19) we have the conclusion. ∎

Remark 3.9.

Without the invariance condition N2⁒(XΓ—D)βŠ‚D,subscript𝑁2𝑋𝐷𝐷N_{2}\left(X\times D\right)\subset D,italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X Γ— italic_D ) βŠ‚ italic_D , a similar result holds if D𝐷Ditalic_D is a closed ball BRsubscript𝐡𝑅B_{R}italic_B start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT centered at the origin and of radius R𝑅Ritalic_R in the space (Y,βˆ₯.βˆ₯),\left(Y,\left\|.\right\|\right),( italic_Y , βˆ₯ . βˆ₯ ) , provided that Schaefer’s fixed point theorem is used instead of Schauder’s theorem. In this case, in addition to conditions (i) and (ii), we need the Leray-Schauder condition

y≠λ⁒N2⁒(x,y),π‘¦πœ†subscript𝑁2π‘₯𝑦y\neq\lambda N_{2}\left(x,y\right),italic_y β‰  italic_Ξ» italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x , italic_y ) ,

for all x∈X,π‘₯𝑋x\in X,italic_x ∈ italic_X , y∈Yπ‘¦π‘Œy\in Yitalic_y ∈ italic_Y with β€–yβ€–=R,norm𝑦𝑅\left\|y\right\|=R,βˆ₯ italic_y βˆ₯ = italic_R , and λ∈(0,1).πœ†01\lambda\in\left(0,1\right).italic_Ξ» ∈ ( 0 , 1 ) .

In particular, for scalar b𝑏bitalic_b-metric spaces, conditions (a) and (b) from hypothesis (ii) of Theorem 3.8 are the same and reduce to the unique requirement that the product of b𝑏bitalic_b and the Lipschitz constant aπ‘Žaitalic_a of N𝑁Nitalic_N is less than one. More exactly, Theorem 3.8 reads as follows.

Theorem 3.10 (Avramescu theorem in b𝑏bitalic_b-metric spaces).

Let (X,ρ)π‘‹πœŒ(X,\rho)( italic_X , italic_ρ ) be a complete b𝑏bitalic_b-metric space (bβ‰₯1)𝑏1\left(b\geq 1\right)( italic_b β‰₯ 1 ), D𝐷Ditalic_D a nonempty closed convex subset of a normed space Y,π‘ŒY,italic_Y , N1:XΓ—Dβ†’X:subscript𝑁1→𝑋𝐷𝑋N_{1}:X\times D\rightarrow Xitalic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : italic_X Γ— italic_D β†’ italic_X and N2:XΓ—Dβ†’D:subscript𝑁2→𝑋𝐷𝐷N_{2}:X\times D\rightarrow Ditalic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : italic_X Γ— italic_D β†’ italic_D be two mappings. Assume that the following conditions are satisfied:

  1. (i)

    N1(x,.)N_{1}\left(x,.\right)italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , . ) is continuous for every x∈Xπ‘₯𝑋x\in Xitalic_x ∈ italic_X and there is a constant aβ‰₯0π‘Ž0a\geq 0italic_a β‰₯ 0 such that

    ρ⁒(N1⁒(x,y),N2⁒(xΒ―,y))≀a⁒ρ⁒(x,xΒ―),𝜌subscript𝑁1π‘₯𝑦subscript𝑁2Β―π‘₯π‘¦π‘ŽπœŒπ‘₯Β―π‘₯\rho(N_{1}(x,y),N_{2}(\overline{x},y))\leq a\rho(x,\overline{x}),italic_ρ ( italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_y ) , italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( overΒ― start_ARG italic_x end_ARG , italic_y ) ) ≀ italic_a italic_ρ ( italic_x , overΒ― start_ARG italic_x end_ARG ) ,

    for all x,x¯∈Xπ‘₯Β―π‘₯𝑋x,\overline{x}\in Xitalic_x , overΒ― start_ARG italic_x end_ARG ∈ italic_X and y∈D;𝑦𝐷y\in D;italic_y ∈ italic_D ;

  2. (ii)

    a⁒b<1;π‘Žπ‘1ab<1;italic_a italic_b < 1 ;

  3. (iii)

    N2subscript𝑁2N_{2}italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is continuous and N2⁒(XΓ—D)subscript𝑁2𝑋𝐷N_{2}(X\times D)italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X Γ— italic_D ) is a relatively compact subset of Yπ‘ŒYitalic_Y .

Then, there exists (xβˆ—,yβˆ—)∈XΓ—Dsuperscriptπ‘₯βˆ—superscriptπ‘¦βˆ—π‘‹π·(x^{\ast},y^{\ast})\in X\times D( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ∈ italic_X Γ— italic_D such that N1⁒(xβˆ—,yβˆ—)=xβˆ—subscript𝑁1superscriptπ‘₯βˆ—superscriptπ‘¦βˆ—superscriptπ‘₯βˆ—\ N_{1}(x^{\ast},y^{\ast})=x^{\ast}italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT and N2⁒(xβˆ—,yβˆ—)=yβˆ—.subscript𝑁2superscriptπ‘₯βˆ—superscriptπ‘¦βˆ—superscriptπ‘¦βˆ—\ N_{2}(x^{\ast},y^{\ast})=y^{\ast}.italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) = italic_y start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT .

4. Ekeland’s principle and Caristi’s fixed point theorem in vector B𝐡Bitalic_B-metric spaces

4.1. Classical results

We first recall for comparison the classical results in metric spaces (see, [30, 31, 32, 33]).

Theorem 4.1 (Weak Ekeland variational principle).

Let (X,ρ)π‘‹πœŒ\ \left(X,\rho\right)( italic_X , italic_ρ ) be a complete metric space and let f:X→ℝ:𝑓→𝑋ℝ\ f:X\rightarrow\mathbf{\mathbb{R}}italic_f : italic_X β†’ blackboard_R be a lower semicontinuous function bounded from below. Then, for given Ξ΅>0πœ€0\ \varepsilon>0italic_Ξ΅ > 0 and x0∈X,subscriptπ‘₯0𝑋\ x_{0}\in X,italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X , there exists a point xβˆ—βˆˆXsuperscriptπ‘₯βˆ—π‘‹\ x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_X such that

f⁒(xβˆ—)≀f⁒(x0)βˆ’Ξ΅β’Οβ’(xβˆ—,x0)𝑓superscriptπ‘₯βˆ—π‘“subscriptπ‘₯0πœ€πœŒsuperscriptπ‘₯βˆ—subscriptπ‘₯0f\left(x^{\ast}\right)\leq f\left(x_{0}\right)-\varepsilon\rho\left(x^{\ast},x% _{0}\right)italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_Ξ΅ italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT )

and

f⁒(xβˆ—)<f⁒(x)+Ρ⁒ρ⁒(xβˆ—,x)for all β’x∈X,xβ‰ xβˆ—.formulae-sequence𝑓superscriptπ‘₯βˆ—π‘“π‘₯πœ€πœŒsuperscriptπ‘₯βˆ—π‘₯formulae-sequencefor all π‘₯𝑋π‘₯superscriptπ‘₯βˆ—f\left(x^{\ast}\right)<f\left(x\right)+\varepsilon\rho\left(x^{\ast},x\right)% \ \ \ \text{for all \ }x\in X,\ x\neq x^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) < italic_f ( italic_x ) + italic_Ξ΅ italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x ) for all italic_x ∈ italic_X , italic_x β‰  italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT .
Theorem 4.2 (Strong Ekeland variational principle).

Let (X,ρ)π‘‹πœŒ(X,\rho)( italic_X , italic_ρ ) be a complete metric space, and let f:X→ℝ:𝑓→𝑋ℝf:X\rightarrow\mathbb{R}italic_f : italic_X β†’ blackboard_R be a lower semicontinuous function that is bounded from below. For given Ξ΅>0πœ€0\varepsilon>0italic_Ξ΅ > 0, Ξ΄>0𝛿0\delta>0italic_Ξ΄ > 0, and x0∈Xsubscriptπ‘₯0𝑋x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X satisfying

f⁒(x0)≀infx∈Xf⁒(x)+Ξ΅,𝑓subscriptπ‘₯0subscriptinfimumπ‘₯𝑋𝑓π‘₯πœ€f(x_{0})\leq\inf_{x\in X}f(x)+\varepsilon,italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≀ roman_inf start_POSTSUBSCRIPT italic_x ∈ italic_X end_POSTSUBSCRIPT italic_f ( italic_x ) + italic_Ξ΅ ,

there exists a point xβˆ—βˆˆXsuperscriptπ‘₯βˆ—π‘‹x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_X such that the following hold:

f⁒(xβˆ—)≀f⁒(x0),𝑓superscriptπ‘₯βˆ—π‘“subscriptπ‘₯0\displaystyle f(x^{\ast})\leq f(x_{0}),italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,
ρ⁒(xβˆ—,x0)≀δ,𝜌superscriptπ‘₯βˆ—subscriptπ‘₯0𝛿\displaystyle\rho(x^{\ast},x_{0})\leq\delta,italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≀ italic_Ξ΄ ,
f⁒(xβˆ—)<f⁒(x)+Ρδ⁒ρ⁒(xβˆ—,x)for all β’x∈X,xβ‰ xβˆ—.formulae-sequence𝑓superscriptπ‘₯βˆ—π‘“π‘₯πœ€π›ΏπœŒsuperscriptπ‘₯βˆ—π‘₯formulae-sequencefor all π‘₯𝑋π‘₯superscriptπ‘₯βˆ—\displaystyle f(x^{\ast})<f(x)+\frac{\varepsilon}{\delta}\rho(x^{\ast},x)\ \,% \,\ \text{for all }x\in X,\ x\neq x^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) < italic_f ( italic_x ) + divide start_ARG italic_Ξ΅ end_ARG start_ARG italic_Ξ΄ end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x ) for all italic_x ∈ italic_X , italic_x β‰  italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT .

Below, we have a version of Ekeland’s variational principle for scalar b𝑏bitalic_b-metric spaces (see, [19]).

Theorem 4.3 ([19]).

Let (X,ρ)π‘‹πœŒ(X,\rho)( italic_X , italic_ρ ) be a complete b𝑏bitalic_b-metric space with b>1𝑏1b>1italic_b > 1, where the b𝑏bitalic_b-metric ρ𝜌\rhoitalic_ρ is continuous. Let f:X→ℝ:𝑓→𝑋ℝf:X\rightarrow\mathbb{R}italic_f : italic_X β†’ blackboard_R be a lower semicontinuous function bounded from below. For a given Ξ΅>0πœ€0\varepsilon>0italic_Ξ΅ > 0 and x0∈Xsubscriptπ‘₯0𝑋x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X satisfying

f⁒(x0)≀infx∈Xf⁒(x)+Ξ΅,𝑓subscriptπ‘₯0subscriptinfimumπ‘₯𝑋𝑓π‘₯πœ€f(x_{0})\leq\inf_{x\in X}f(x)+\varepsilon,italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≀ roman_inf start_POSTSUBSCRIPT italic_x ∈ italic_X end_POSTSUBSCRIPT italic_f ( italic_x ) + italic_Ξ΅ ,

there exists a sequence (xk)βŠ‚Xsubscriptπ‘₯π‘˜π‘‹(x_{k})\subset X( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) βŠ‚ italic_X and a point xβˆ—βˆˆXsuperscriptπ‘₯βˆ—π‘‹x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_X such that:

xkβ†’xβˆ—as β’kβ†’βˆž,formulae-sequenceβ†’subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—β†’as π‘˜\displaystyle x_{k}\rightarrow x^{\ast}\quad\text{as }k\rightarrow\infty,italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT as italic_k β†’ ∞ ,
ρ⁒(xβˆ—,xk)≀Ρ2k,kβˆˆβ„•,formulae-sequence𝜌superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜πœ€superscript2π‘˜π‘˜β„•\displaystyle\rho(x^{\ast},x_{k})\leq\frac{\varepsilon}{2^{k}},\quad k\in% \mathbb{N},italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≀ divide start_ARG italic_Ξ΅ end_ARG start_ARG 2 start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG , italic_k ∈ blackboard_N ,
f⁒(xβˆ—)≀f⁒(x0)βˆ’βˆ‘k=0∞1bk⁒ρ⁒(xβˆ—,xk),𝑓superscriptπ‘₯βˆ—π‘“subscriptπ‘₯0superscriptsubscriptπ‘˜01superscriptπ‘π‘˜πœŒsuperscriptπ‘₯βˆ—subscriptπ‘₯π‘˜\displaystyle f(x^{\ast})\leq f(x_{0})-\sum_{k=0}^{\infty}\frac{1}{b^{k}}\rho(% x^{\ast},x_{k}),italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - βˆ‘ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_b start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ,
f⁒(xβˆ—)+βˆ‘k=0∞1bk⁒ρ⁒(xβˆ—,xk)<f⁒(x)+βˆ‘k=0∞1bk⁒ρ⁒(x,xk),for β’xβ‰ xβˆ—.formulae-sequence𝑓superscriptπ‘₯βˆ—superscriptsubscriptπ‘˜01superscriptπ‘π‘˜πœŒsuperscriptπ‘₯βˆ—subscriptπ‘₯π‘˜π‘“π‘₯superscriptsubscriptπ‘˜01superscriptπ‘π‘˜πœŒπ‘₯subscriptπ‘₯π‘˜for π‘₯superscriptπ‘₯βˆ—\displaystyle f(x^{\ast})+\sum_{k=0}^{\infty}\frac{1}{b^{k}}\rho(x^{\ast},x_{k% })<f(x)+\sum_{k=0}^{\infty}\frac{1}{b^{k}}\rho(x,x_{k}),\quad\text{for }x\neq x% ^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + βˆ‘ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_b start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f ( italic_x ) + βˆ‘ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_b start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG italic_ρ ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , for italic_x β‰  italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT .

The proof of Theorem 4.3 in [19] is based on the version for scalar b𝑏bitalic_b-metric spaces of Cantor’s intersection lemma.

Lemma 4.4 ([19]).

Let (X,ρ)π‘‹πœŒ\left(X,\rho\right)( italic_X , italic_ρ ) be a complete b𝑏bitalic_b-metric space. For every descending sequence (Fk)kβ‰₯1subscriptsubscriptπΉπ‘˜π‘˜1\left(F_{k}\right)_{k\geq 1}( italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT of nonempty closed subsets of X𝑋Xitalic_X with diam(Fk)ρ→0{}_{\rho}\left(F_{k}\right)\rightarrow 0start_FLOATSUBSCRIPT italic_ρ end_FLOATSUBSCRIPT ( italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) β†’ 0 as kβ†’βˆž,β†’π‘˜k\rightarrow\infty,italic_k β†’ ∞ , the intersection β‹‚k=1∞Fksuperscriptsubscriptπ‘˜1subscriptπΉπ‘˜\bigcap\limits_{k=1}^{\infty}F_{k}β‹‚ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT contains one and only one element.

Let us first note that a version of Cantor’s intersection lemma remains true in complete vector B𝐡Bitalic_B-metric spaces.

Lemma 4.5.

Let (X,d)𝑋𝑑\left(X,d\right)( italic_X , italic_d ) be a complete vector B𝐡Bitalic_B-metric space, and let (Fk)kβ‰₯1subscriptsubscriptπΉπ‘˜π‘˜1\left(F_{k}\right)_{k\geq 1}( italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k β‰₯ 1 end_POSTSUBSCRIPT be a descending sequence of nonempty closed subsets of X𝑋Xitalic_X. Assume that for every Ξ΅>0πœ€0\varepsilon>0italic_Ξ΅ > 0, there exists k0β‰₯1subscriptπ‘˜01k_{0}\geq 1italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT β‰₯ 1 such that

(4.1) d⁒(x,y)≀Ρ⁒e for all β’x,y∈Fk⁒ and β’kβ‰₯k0,formulae-sequence𝑑π‘₯π‘¦πœ€π‘’ for all π‘₯𝑦subscriptπΉπ‘˜ and π‘˜subscriptπ‘˜0d(x,y)\leq\varepsilon e\ \ \text{ for all }x,y\in F_{k}\text{ and }k\geq k_{0},italic_d ( italic_x , italic_y ) ≀ italic_Ξ΅ italic_e for all italic_x , italic_y ∈ italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and italic_k β‰₯ italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ,

where e=(1,1,…,1)𝑒11…1e=(1,1,\ldots,1)italic_e = ( 1 , 1 , … , 1 ). Then, the intersection β‹‚k=1∞Fksuperscriptsubscriptπ‘˜1subscriptπΉπ‘˜\bigcap\limits_{k=1}^{\infty}F_{k}β‹‚ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT contains exactly one element.

Proof.

As stated in the Preliminaries, condition (4.1) implies that the diameter of FksubscriptπΉπ‘˜F_{k}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT with respect to the scalar b𝑏bitalic_b-metric ρ1subscript𝜌1\rho_{1}italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT tends to zero. Since (X,d)𝑋𝑑(X,d)( italic_X , italic_d ) is complete, it follows that (X,ρ1)𝑋subscript𝜌1(X,\rho_{1})( italic_X , italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is also complete. From Cantor’s lemma in scalar b𝑏bitalic_b-metric spaces (Lemma 4.4), we conclude that the intersection β‹‚k=1∞Fksuperscriptsubscriptπ‘˜1subscriptπΉπ‘˜\bigcap\limits_{k=1}^{\infty}F_{k}β‹‚ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT has exactly one element. ∎

4.2. Ekeland variational principle in vector B𝐡Bitalic_B-metric spaces

First we state and prove a version of the weak form of Ekeland’s variational principle in vector B𝐡Bitalic_B-metric spaces.

Theorem 4.6 (Weak Ekeland variational principle in vector B𝐡Bitalic_B-metric spaces).

Let (X,d)𝑋𝑑\left(X,d\right)( italic_X , italic_d ) be a complete vector B𝐡Bitalic_B-metric space such that the B𝐡Bitalic_B-metric d𝑑ditalic_d is continuous, and let f:X→ℝn:𝑓→𝑋superscriptℝ𝑛f:X\rightarrow\mathbb{R}^{n}italic_f : italic_X β†’ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT be a lower semicontinuous function bounded from below. Assume that f𝑓fitalic_f satisfies the following condition:

(H):

For every nonempty closed subset FβŠ‚X𝐹𝑋F\subset Xitalic_F βŠ‚ italic_X and every Ξ΅>0πœ€0\varepsilon>0italic_Ξ΅ > 0, there exists a point xΞ΅,F∈Fsubscriptπ‘₯πœ€πΉπΉx_{\varepsilon,F}\in Fitalic_x start_POSTSUBSCRIPT italic_Ξ΅ , italic_F end_POSTSUBSCRIPT ∈ italic_F such that

(4.2) f⁒(xΞ΅,F)≀f⁒(x)+Ρ⁒e,for all β’x∈F,formulae-sequence𝑓subscriptπ‘₯πœ€πΉπ‘“π‘₯πœ€π‘’for all π‘₯𝐹f(x_{\varepsilon,F})\leq f(x)+\varepsilon e,\quad\text{for all }x\in F,italic_f ( italic_x start_POSTSUBSCRIPT italic_Ξ΅ , italic_F end_POSTSUBSCRIPT ) ≀ italic_f ( italic_x ) + italic_Ξ΅ italic_e , for all italic_x ∈ italic_F ,

where e=(1,1,…,1)βˆˆβ„n𝑒11…1superscriptℝ𝑛e=(1,1,\ldots,1)\in\mathbb{R}^{n}italic_e = ( 1 , 1 , … , 1 ) ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT.

Then, for a given x0∈Xsubscriptπ‘₯0𝑋x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X, there exists a sequence {xk}βŠ‚Xsubscriptπ‘₯π‘˜π‘‹\{x_{k}\}\subset X{ italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT } βŠ‚ italic_X and a point xβˆ—βˆˆXsuperscriptπ‘₯βˆ—π‘‹x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_X such that xkβ†’xβˆ—β†’subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—x_{k}\to x^{\ast}italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT as kβ†’βˆžβ†’π‘˜k\to\inftyitalic_k β†’ ∞,

(4.3) f⁒(xβˆ—)≀f⁒(x0)βˆ’d⁒(xβˆ—,x0),𝑓superscriptπ‘₯βˆ—π‘“subscriptπ‘₯0𝑑superscriptπ‘₯βˆ—subscriptπ‘₯0f(x^{\ast})\leq f(x_{0})-d(x^{\ast},x_{0}),italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,

and

(4.4) f⁒(xβˆ—)+d⁒(xβˆ—,xk)β‰₯f⁒(x)+d⁒(x,xk)for all β’kβ‰₯0implies β’x=xβˆ—.formulae-sequence𝑓superscriptπ‘₯βˆ—π‘‘superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜π‘“π‘₯𝑑π‘₯subscriptπ‘₯π‘˜formulae-sequencefor all π‘˜0implies π‘₯superscriptπ‘₯βˆ—f(x^{\ast})+d(x^{\ast},x_{k})\geq f(x)+d(x,x_{k})\quad\text{for all }k\geq 0% \quad\text{implies }x=x^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) β‰₯ italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) for all italic_k β‰₯ 0 implies italic_x = italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT .

Moreover,

(4.5) f⁒(xβˆ—)β‰₯f⁒(x)+B⁒d⁒(xβˆ—,x)+(Bβˆ’I)⁒d⁒(xβˆ—,xk)for all β’kβ‰₯0implies β’x=xβˆ—.formulae-sequence𝑓superscriptπ‘₯βˆ—π‘“π‘₯𝐡𝑑superscriptπ‘₯βˆ—π‘₯𝐡𝐼𝑑superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜formulae-sequencefor all π‘˜0implies π‘₯superscriptπ‘₯βˆ—f(x^{\ast})\geq f(x)+Bd(x^{\ast},x)+(B-I)d(x^{\ast},x_{k})\quad\text{for all }% k\geq 0\quad\text{implies }x=x^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) β‰₯ italic_f ( italic_x ) + italic_B italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x ) + ( italic_B - italic_I ) italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) for all italic_k β‰₯ 0 implies italic_x = italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT .
Proof.

Let us fix a sequence (Ξ΅k)subscriptπœ€π‘˜\left(\varepsilon_{k}\right)( italic_Ξ΅ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) of positive numbers satisfying Ξ΅kβ†’0β†’subscriptπœ€π‘˜0\varepsilon_{k}\rightarrow 0italic_Ξ΅ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ 0 as kβ†’βˆž.β†’π‘˜k\rightarrow\infty.italic_k β†’ ∞ . We now proceed to construct the sequence (xk).subscriptπ‘₯π‘˜\left(x_{k}\right).( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . Let

F⁒(x0):={x∈X:f⁒(x)+d⁒(x,x0)≀f⁒(x0)}.assign𝐹subscriptπ‘₯0conditional-setπ‘₯𝑋𝑓π‘₯𝑑π‘₯subscriptπ‘₯0𝑓subscriptπ‘₯0F\left(x_{0}\right):=\left\{x\in X:\ f\left(x\right)+d\left(x,x_{0}\right)\leq f% \left(x_{0}\right)\right\}.italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) := { italic_x ∈ italic_X : italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) } .

Clearly, x0∈F⁒(x0)subscriptπ‘₯0𝐹subscriptπ‘₯0x_{0}\in F\left(x_{0}\right)italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and F⁒(x0)𝐹subscriptπ‘₯0F\left(x_{0}\right)italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) is closed because d𝑑ditalic_d is continuous and f𝑓fitalic_f is lower semicontinuous. Then, by assumption (4.2), there exists a point x1∈F⁒(x0)subscriptπ‘₯1𝐹subscriptπ‘₯0x_{1}\in F\left(x_{0}\right)italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) with

f⁒(x1)≀f⁒(x)+Ξ΅1⁒efor all β’x∈F⁒(x0).formulae-sequence𝑓subscriptπ‘₯1𝑓π‘₯subscriptπœ€1𝑒for all π‘₯𝐹subscriptπ‘₯0f\left(x_{1}\right)\leq f\left(x\right)+\varepsilon_{1}e\ \ \ \text{for all }x\in F\left(x_{0}\right).italic_f ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ≀ italic_f ( italic_x ) + italic_Ξ΅ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_e for all italic_x ∈ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) .

Define

F⁒(x1):={x∈F⁒(x0):f⁒(x)+d⁒(x,x1)≀f⁒(x1)},assign𝐹subscriptπ‘₯1conditional-setπ‘₯𝐹subscriptπ‘₯0𝑓π‘₯𝑑π‘₯subscriptπ‘₯1𝑓subscriptπ‘₯1F\left(x_{1}\right):=\left\{x\in F\left(x_{0}\right):\ f\left(x\right)+d\left(% x,x_{1}\right)\leq f\left(x_{1}\right)\right\},italic_F ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) := { italic_x ∈ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) : italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) } ,

and recursively, having xk∈F⁒(xkβˆ’1)subscriptπ‘₯π‘˜πΉsubscriptπ‘₯π‘˜1x_{k}\in F\left(x_{k-1}\right)italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) with

f⁒(xk)≀f⁒(x)+Ξ΅k⁒efor all β’x∈F⁒(xkβˆ’1),formulae-sequence𝑓subscriptπ‘₯π‘˜π‘“π‘₯subscriptπœ€π‘˜π‘’for all π‘₯𝐹subscriptπ‘₯π‘˜1f\left(x_{k}\right)\leq f\left(x\right)+\varepsilon_{k}e\ \ \ \text{for all }x\in F\left(x_{k-1}\right),italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≀ italic_f ( italic_x ) + italic_Ξ΅ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_e for all italic_x ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) ,

we define

F⁒(xk):={x∈F⁒(xkβˆ’1):f⁒(x)+d⁒(x,xk)≀f⁒(xk)}.assign𝐹subscriptπ‘₯π‘˜conditional-setπ‘₯𝐹subscriptπ‘₯π‘˜1𝑓π‘₯𝑑π‘₯subscriptπ‘₯π‘˜π‘“subscriptπ‘₯π‘˜F\left(x_{k}\right):=\left\{x\in F\left(x_{k-1}\right):\ f\left(x\right)+d% \left(x,x_{k}\right)\leq f\left(x_{k}\right)\right\}.italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) := { italic_x ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) : italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) } .

The sets F⁒(xk)𝐹subscriptπ‘₯π‘˜F\left(x_{k}\right)italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) are nonempty and closed, and by their definition form a descending sequence. To apply Cantor’s intersection lemma, we verify that their diameters tend to zero as kβ†’βˆž.β†’π‘˜k\rightarrow\infty.italic_k β†’ ∞ . Indeed, for any y∈F⁒(xk)βŠ‚F⁒(xkβˆ’1),𝑦𝐹subscriptπ‘₯π‘˜πΉsubscriptπ‘₯π‘˜1y\in F\left(x_{k}\right)\subset F\left(x_{k-1}\right),italic_y ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) βŠ‚ italic_F ( italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) , one has

f⁒(y)+d⁒(y,xk)≀f⁒(xk).𝑓𝑦𝑑𝑦subscriptπ‘₯π‘˜π‘“subscriptπ‘₯π‘˜f\left(y\right)+d\left(y,x_{k}\right)\leq f\left(x_{k}\right).italic_f ( italic_y ) + italic_d ( italic_y , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

Also, from the definition of xk,subscriptπ‘₯π‘˜x_{k},italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ,

f⁒(xk)≀f⁒(y)+Ξ΅k⁒e.𝑓subscriptπ‘₯π‘˜π‘“π‘¦subscriptπœ€π‘˜π‘’f\left(x_{k}\right)\leq f\left(y\right)+\varepsilon_{k}e.italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≀ italic_f ( italic_y ) + italic_Ξ΅ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_e .

Consequently, using the definition of F⁒(xk)𝐹subscriptπ‘₯π‘˜F(x_{k})italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ), we deduce

d⁒(y,xk)≀f⁒(xk)βˆ’f⁒(y)≀Ρk⁒e,𝑑𝑦subscriptπ‘₯π‘˜π‘“subscriptπ‘₯π‘˜π‘“π‘¦subscriptπœ€π‘˜π‘’d\left(y,x_{k}\right)\leq f\left(x_{k}\right)-f\left(y\right)\leq\varepsilon_{% k}e,italic_d ( italic_y , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) - italic_f ( italic_y ) ≀ italic_Ξ΅ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_e ,

whence, for every y1,y2∈F⁒(xk),subscript𝑦1subscript𝑦2𝐹subscriptπ‘₯π‘˜y_{1},y_{2}\in F\left(x_{k}\right),italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , we have

d⁒(y1,y2)≀B⁒(d⁒(y1,xk)+d⁒(y2,xk)).𝑑subscript𝑦1subscript𝑦2𝐡𝑑subscript𝑦1subscriptπ‘₯π‘˜π‘‘subscript𝑦2subscriptπ‘₯π‘˜d\left(y_{1},y_{2}\right)\leq B\left(d\left(y_{1},x_{k}\right)+d\left(y_{2},x_% {k}\right)\right).italic_d ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ≀ italic_B ( italic_d ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) + italic_d ( italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) .

As a result, diam(F(xk))dβ†’0{}_{d}\left(F\left(x_{k}\right)\right)\rightarrow 0start_FLOATSUBSCRIPT italic_d end_FLOATSUBSCRIPT ( italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) β†’ 0 as kβ†’βˆž.β†’π‘˜k\rightarrow\infty.italic_k β†’ ∞ . Thus, by Cantor’s lemma,

β‹‚k=0∞F⁒(xk)={xβˆ—}.superscriptsubscriptπ‘˜0𝐹subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—\bigcap\limits_{k=0}^{\infty}F\left(x_{k}\right)=\left\{x^{\ast}\right\}.β‹‚ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) = { italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT } .

From xβˆ—βˆˆF⁒(x0),superscriptπ‘₯βˆ—πΉsubscriptπ‘₯0x^{\ast}\in F\left(x_{0}\right),italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , one has (4.3).

Next, we prove (4.4). To this end, we show the equivalent statement: if xβ‰ xβˆ—,π‘₯superscriptπ‘₯βˆ—x\neq x^{\ast},italic_x β‰  italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , then there exists k=k⁒(x)β‰₯0π‘˜π‘˜π‘₯0k=k\left(x\right)\geq 0italic_k = italic_k ( italic_x ) β‰₯ 0 such that

f⁒(xβˆ—)+d⁒(xβˆ—,xk)β©ΎΜΈf⁒(x)+d⁒(x,xk),not-greater-than-nor-equals𝑓superscriptπ‘₯βˆ—π‘‘superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜π‘“π‘₯𝑑π‘₯subscriptπ‘₯π‘˜f\left(x^{\ast}\right)+d\left(x^{\ast},x_{k}\right)\ngeqslant f\left(x\right)+% d\left(x,x_{k}\right),italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) β©ΎΜΈ italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ,

that is

fi⁒(xβˆ—)+di⁒(xβˆ—,xk)<fi⁒(x)+di⁒(x,xk)subscript𝑓𝑖superscriptπ‘₯βˆ—subscript𝑑𝑖superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜subscript𝑓𝑖π‘₯subscript𝑑𝑖π‘₯subscriptπ‘₯π‘˜f_{i}\left(x^{\ast}\right)+d_{i}\left(x^{\ast},x_{k}\right)<f_{i}\left(x\right% )+d_{i}\left(x,x_{k}\right)italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT )

for at least one index i∈{1,2,…,n}.𝑖12…𝑛i\in\left\{1,2,...,n\right\}.italic_i ∈ { 1 , 2 , … , italic_n } .

Let x∈X,xβ‰ xβˆ—formulae-sequenceπ‘₯𝑋π‘₯superscriptπ‘₯βˆ—x\in X,\ x\neq x^{\ast}italic_x ∈ italic_X , italic_x β‰  italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT be arbitrary. Then xβˆ‰β‹‚k=0∞F⁒(xk).π‘₯superscriptsubscriptπ‘˜0𝐹subscriptπ‘₯π‘˜x\notin\bigcap\limits_{k=0}^{\infty}F\left(x_{k}\right).italic_x βˆ‰ β‹‚ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . We distinguish two cases:

(a) β’xβˆ‰F⁒(x0);(b) β’x∈F⁒(xkβˆ’1)⁒and β’xβˆ‰F⁒(xk)⁒for some β’k=k⁒(x)β‰₯1.formulae-sequence(a) π‘₯𝐹subscriptπ‘₯0(b) π‘₯𝐹subscriptπ‘₯π‘˜1and π‘₯𝐹subscriptπ‘₯π‘˜for some π‘˜π‘˜π‘₯1\text{(a)\ \ }x\notin F\left(x_{0}\right);\ \ \text{(b)\ \ }x\in F\left(x_{k-1% }\right)\ \text{and }x\notin F\left(x_{k}\right)\ \text{for some }k=k\left(x% \right)\geq 1.(a) italic_x βˆ‰ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ; (b) italic_x ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) and italic_x βˆ‰ italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) for some italic_k = italic_k ( italic_x ) β‰₯ 1 .

In case (a), we have f⁒(x)+d⁒(x,x0)β©½ΜΈf⁒(x0).not-less-than-nor-equals𝑓π‘₯𝑑π‘₯subscriptπ‘₯0𝑓subscriptπ‘₯0f\left(x\right)+d\left(x,x_{0}\right)\nleqslant f\left(x_{0}\right).italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) β©½ΜΈ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) . In case (b), we have f⁒(x)+d⁒(x,xk)β©½ΜΈf⁒(xk).not-less-than-nor-equals𝑓π‘₯𝑑π‘₯subscriptπ‘₯π‘˜π‘“subscriptπ‘₯π‘˜f\left(x\right)+d\left(x,x_{k}\right)\nleqslant f\left(x_{k}\right).italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) β©½ΜΈ italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . Thus, in both cases, there exists k=k⁒(x)β‰₯0π‘˜π‘˜π‘₯0k=k\left(x\right)\geq 0italic_k = italic_k ( italic_x ) β‰₯ 0 such that f⁒(x)+d⁒(x,xk)β©½ΜΈf⁒(xk).not-less-than-nor-equals𝑓π‘₯𝑑π‘₯subscriptπ‘₯π‘˜π‘“subscriptπ‘₯π‘˜f\left(x\right)+d\left(x,x_{k}\right)\nleqslant f\left(x_{k}\right).italic_f ( italic_x ) + italic_d ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) β©½ΜΈ italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . This implies that there is some i∈{1,2,…,n}𝑖12…𝑛i\in\left\{1,2,...,n\right\}italic_i ∈ { 1 , 2 , … , italic_n } with

fi⁒(x)+di⁒(x,xk)>fi⁒(xk).subscript𝑓𝑖π‘₯subscript𝑑𝑖π‘₯subscriptπ‘₯π‘˜subscript𝑓𝑖subscriptπ‘₯π‘˜f_{i}\left(x\right)+d_{i}\left(x,x_{k}\right)>f_{i}\left(x_{k}\right).italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) > italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

On the other hand, since xβˆ—βˆˆF⁒(xk),superscriptπ‘₯βˆ—πΉsubscriptπ‘₯π‘˜x^{\ast}\in F\left(x_{k}\right),italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , one has f⁒(xβˆ—)+d⁒(xβˆ—,xk)≀f⁒(xk).𝑓superscriptπ‘₯βˆ—π‘‘superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜π‘“subscriptπ‘₯π‘˜f\left(x^{\ast}\right)+d\left(x^{\ast},x_{k}\right)\leq f\left(x_{k}\right).italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . In particular, for the index i𝑖iitalic_i identified above, it holds that

fi⁒(xk)β‰₯fi⁒(xβˆ—)+di⁒(xβˆ—,xk).subscript𝑓𝑖subscriptπ‘₯π‘˜subscript𝑓𝑖superscriptπ‘₯βˆ—subscript𝑑𝑖superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜f_{i}(x_{k})\geq f_{i}(x^{\ast})+d_{i}(x^{\ast},x_{k}).italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) β‰₯ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

Then, from these two ineqialities we obtain

(4.6) fi⁒(xβˆ—)+di⁒(xβˆ—,xk)<fi⁒(x)+di⁒(x,xk),subscript𝑓𝑖superscriptπ‘₯βˆ—subscript𝑑𝑖superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜subscript𝑓𝑖π‘₯subscript𝑑𝑖π‘₯subscriptπ‘₯π‘˜f_{i}\left(x^{\ast}\right)+d_{i}\left(x^{\ast},x_{k}\right)<f_{i}\left(x\right% )+d_{i}\left(x,x_{k}\right),italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ,

which equivalently proves (4.4).

In order to establish (4.5), we apply the triangle inequality for d𝑑ditalic_d on the right hand side of (4.6), which gives,

fi⁒(xβˆ—)+di⁒(xβˆ—,xk)<fi⁒(x)+di⁒(x,xk)≀fi⁒(x)+(B⁒d⁒(xβˆ—,xk))i+(B⁒d⁒(xβˆ—,x))i.subscript𝑓𝑖superscriptπ‘₯βˆ—subscript𝑑𝑖superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜subscript𝑓𝑖π‘₯subscript𝑑𝑖π‘₯subscriptπ‘₯π‘˜subscript𝑓𝑖π‘₯subscript𝐡𝑑superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜π‘–subscript𝐡𝑑superscriptπ‘₯βˆ—π‘₯𝑖f_{i}\left(x^{\ast}\right)+d_{i}\left(x^{\ast},x_{k}\right)<f_{i}\left(x\right% )+d_{i}\left(x,x_{k}\right)\leq f_{i}\left(x\right)+\left(Bd\left(x^{\ast},x_{% k}\right)\right)_{i}+\left(Bd\left(x^{\ast},x\right)\right)_{i}.italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≀ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) + ( italic_B italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + ( italic_B italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x ) ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT .

Hence

fi⁒(xβˆ—)+di⁒(xβˆ—,xk)<fi⁒(x)+(B⁒d⁒(xβˆ—,xk))i+(B⁒d⁒(xβˆ—,x))i,subscript𝑓𝑖superscriptπ‘₯βˆ—subscript𝑑𝑖superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜subscript𝑓𝑖π‘₯subscript𝐡𝑑superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜π‘–subscript𝐡𝑑superscriptπ‘₯βˆ—π‘₯𝑖f_{i}\left(x^{\ast}\right)+d_{i}\left(x^{\ast},x_{k}\right)<f_{i}\left(x\right% )+\left(Bd\left(x^{\ast},x_{k}\right)\right)_{i}+\left(Bd\left(x^{\ast},x% \right)\right)_{i},italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) + ( italic_B italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + ( italic_B italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x ) ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ,

that is,

f⁒(xβˆ—)β©ΎΜΈf⁒(x)+B⁒d⁒(xβˆ—,x)+(Bβˆ’I)⁒d⁒(xβˆ—,xk).not-greater-than-nor-equals𝑓superscriptπ‘₯βˆ—π‘“π‘₯𝐡𝑑superscriptπ‘₯βˆ—π‘₯𝐡𝐼𝑑superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜f\left(x^{\ast}\right)\ngeqslant f\left(x\right)+Bd\left(x^{\ast},x\right)+% \left(B-I\right)d\left(x^{\ast},x_{k}\right).italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) β©ΎΜΈ italic_f ( italic_x ) + italic_B italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x ) + ( italic_B - italic_I ) italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

Thus, (4.5) holds. ∎

A version of the strong form of Ekeland’s variational principle in vector B𝐡Bitalic_B-metric spaces is the following one.

Theorem 4.7 (Strong Ekeland variational principle in vector B𝐡Bitalic_B-metric spaces).

Let (X,d)𝑋𝑑\left(X,d\right)( italic_X , italic_d ) be a complete B𝐡Bitalic_B-metric space such that the B𝐡Bitalic_B-metric d𝑑ditalic_d is continuous, and let f:X→ℝn:𝑓→𝑋superscriptℝ𝑛f:X\rightarrow\mathbb{R}^{n}italic_f : italic_X β†’ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT be a lower semicontinuous function bounded from below and satisfying condition (H). Then, for given Ξ΅,Ξ΄>0πœ€π›Ώ0\ \varepsilon,\delta>0italic_Ξ΅ , italic_Ξ΄ > 0 and x0∈Xsubscriptπ‘₯0𝑋\ x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X with

(4.7) f⁒(x0)≀f⁒(x)+Ρ⁒efor all β’x∈X,formulae-sequence𝑓subscriptπ‘₯0𝑓π‘₯πœ€π‘’for all π‘₯𝑋f\left(x_{0}\right)\leq f\left(x\right)+\varepsilon e\ \ \ \text{for all }x\in X,italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≀ italic_f ( italic_x ) + italic_Ξ΅ italic_e for all italic_x ∈ italic_X ,

there exists a sequence (xk)βŠ‚Xsubscriptπ‘₯π‘˜π‘‹\left(x_{k}\right)\subset X( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) βŠ‚ italic_X and xβˆ—βˆˆXsuperscriptπ‘₯βˆ—π‘‹x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_X such that xkβ†’xβˆ—β†’subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—x_{k}\rightarrow x^{\ast}\ \ \ italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPTas  kβ†’βˆž,β†’π‘˜k\rightarrow\infty,italic_k β†’ ∞ ,

(4.8) f⁒(xβˆ—)≀f⁒(x0),𝑓superscriptπ‘₯βˆ—π‘“subscriptπ‘₯0f\left(x^{\ast}\right)\leq f\left(x_{0}\right),italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,
(4.9) d⁒(xβˆ—,x0)≀δ⁒e,𝑑superscriptπ‘₯βˆ—subscriptπ‘₯0𝛿𝑒d\left(x^{\ast},x_{0}\right)\leq\delta e,italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≀ italic_Ξ΄ italic_e ,
f⁒(xβˆ—)+Ρδ⁒d⁒(xβˆ—,xk)β‰₯f⁒(x)+Ρδ⁒d⁒(x,xk)for all β’kβ‰₯0 implies β’x=xβˆ—.formulae-sequence𝑓superscriptπ‘₯βˆ—πœ€π›Ώπ‘‘superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜π‘“π‘₯πœ€π›Ώπ‘‘π‘₯subscriptπ‘₯π‘˜formulae-sequencefor all π‘˜0 implies π‘₯superscriptπ‘₯βˆ—f\left(x^{\ast}\right)+\frac{\varepsilon}{\delta}d\left(x^{\ast},x_{k}\right)% \geq f\left(x\right)+\frac{\varepsilon}{\delta}d\left(x,x_{k}\right)\ \ \text{% for all }k\geq 0\ \ \text{\ implies \ }x=x^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + divide start_ARG italic_Ξ΅ end_ARG start_ARG italic_Ξ΄ end_ARG italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) β‰₯ italic_f ( italic_x ) + divide start_ARG italic_Ξ΅ end_ARG start_ARG italic_Ξ΄ end_ARG italic_d ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) for all italic_k β‰₯ 0 implies italic_x = italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT .

Moreover,

f⁒(xβˆ—)β‰₯f⁒(x)+Ρδ⁒B⁒d⁒(xβˆ—,x)+Ρδ⁒(Bβˆ’I)⁒d⁒(xβˆ—,xk)for all β’kβ‰₯0implies β’x=xβˆ—.formulae-sequence𝑓superscriptπ‘₯βˆ—π‘“π‘₯πœ€π›Ώπ΅π‘‘superscriptπ‘₯βˆ—π‘₯πœ€π›Ώπ΅πΌπ‘‘superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜formulae-sequencefor all π‘˜0implies π‘₯superscriptπ‘₯βˆ—f\left(x^{\ast}\right)\geq f\left(x\right)+\frac{\varepsilon}{\delta}Bd\left(x% ^{\ast},x\right)+\frac{\varepsilon}{\delta}\left(B-I\right)d\left(x^{\ast},x_{% k}\right)\ \ \text{for all }k\geq 0\ \ \ \text{implies \ }x=x^{\ast}.italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) β‰₯ italic_f ( italic_x ) + divide start_ARG italic_Ξ΅ end_ARG start_ARG italic_Ξ΄ end_ARG italic_B italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x ) + divide start_ARG italic_Ξ΅ end_ARG start_ARG italic_Ξ΄ end_ARG ( italic_B - italic_I ) italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) for all italic_k β‰₯ 0 implies italic_x = italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT .
Proof.

We apply the weak form of Ekeland’s variational principle, Theorem 4.6, to the vector B𝐡Bitalic_B-metric Ρδ⁒d.πœ€π›Ώπ‘‘\frac{\varepsilon}{\delta}d.divide start_ARG italic_Ξ΅ end_ARG start_ARG italic_Ξ΄ end_ARG italic_d . From (4.3), we immediately obtain (4.8), while from xβˆ—βˆˆF⁒(x0)superscriptπ‘₯βˆ—πΉsubscriptπ‘₯0x^{\ast}\in F\left(x_{0}\right)italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_F ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and (4.7), we deduce

Ρδ⁒d⁒(xβˆ—,x0)≀f⁒(x0)βˆ’f⁒(xβˆ—)≀Ρ⁒e,πœ€π›Ώπ‘‘superscriptπ‘₯βˆ—subscriptπ‘₯0𝑓subscriptπ‘₯0𝑓superscriptπ‘₯βˆ—πœ€π‘’\frac{\varepsilon}{\delta}d\left(x^{\ast},x_{0}\right)\leq f\left(x_{0}\right)% -f\left(x^{\ast}\right)\leq\varepsilon e,divide start_ARG italic_Ξ΅ end_ARG start_ARG italic_Ξ΄ end_ARG italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ italic_Ξ΅ italic_e ,

whence (4.9). The remaining conclusions follow directly. ∎

A consequence of the weak form of Ekeland’s variational principle is the following version of Caristi’s fixed point theorem (see [34]) in vector B𝐡Bitalic_B-metric spaces.

Theorem 4.8.

Let (X,d)𝑋𝑑\left(X,d\right)( italic_X , italic_d ) be a complete vector B𝐡Bitalic_B-metric space such that the B𝐡Bitalic_B-metric d𝑑ditalic_d is continuous, and let f:X→ℝn:𝑓→𝑋superscriptℝ𝑛f:X\rightarrow\mathbb{R}^{n}italic_f : italic_X β†’ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT be a lower semicontinuous function bounded from below and satisfying condition (H). Assume that for an operator N:Xβ†’X,:𝑁→𝑋𝑋N:X\rightarrow X,italic_N : italic_X β†’ italic_X , the following conditions are satisfied:

(4.10) d⁒(N⁒(x),y)≀d⁒(x,y)+B⁒d⁒(N⁒(x),x),x,y∈Xformulae-sequence𝑑𝑁π‘₯𝑦𝑑π‘₯𝑦𝐡𝑑𝑁π‘₯π‘₯π‘₯𝑦𝑋d\left(N\left(x\right),y\right)\leq d\left(x,y\right)+Bd\left(N\left(x\right),% x\right),\ \ \ x,y\in Xitalic_d ( italic_N ( italic_x ) , italic_y ) ≀ italic_d ( italic_x , italic_y ) + italic_B italic_d ( italic_N ( italic_x ) , italic_x ) , italic_x , italic_y ∈ italic_X

and

(4.11) B⁒d⁒(N⁒(x),x)≀f⁒(x)βˆ’f⁒(N⁒(x)),x∈X.formulae-sequence𝐡𝑑𝑁π‘₯π‘₯𝑓π‘₯𝑓𝑁π‘₯π‘₯𝑋Bd\left(N\left(x\right),x\right)\leq f\left(x\right)-f\left(N\left(x\right)% \right),\ \ \ x\in X.italic_B italic_d ( italic_N ( italic_x ) , italic_x ) ≀ italic_f ( italic_x ) - italic_f ( italic_N ( italic_x ) ) , italic_x ∈ italic_X .

Then, N𝑁Nitalic_N has at least one fixed point.

Proof.

Assume that N𝑁Nitalic_N has no fixed points. Then, applying Ekeland’s variational principle to f𝑓fitalic_f (Theorem 4.6), from (4.4), one has

f⁒(xβˆ—)+d⁒(xβˆ—,xk)β©ΎΜΈf⁒(N⁒(xβˆ—))+d⁒(N⁒(xβˆ—),xk)not-greater-than-nor-equals𝑓superscriptπ‘₯βˆ—π‘‘superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜π‘“π‘superscriptπ‘₯βˆ—π‘‘π‘superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜f\left(x^{\ast}\right)+d\left(x^{\ast},x_{k}\right)\ngeqslant f\left(N\left(x^% {\ast}\right)\right)+d\left(N\left(x^{\ast}\right),x_{k}\right)italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + italic_d ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) β©ΎΜΈ italic_f ( italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ) + italic_d ( italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT )

for some k.π‘˜k.italic_k . Therefore, there is an index i𝑖iitalic_i with

fi⁒(xβˆ—)+di⁒(xβˆ—,xk)<fi⁒(N⁒(xβˆ—))+di⁒(N⁒(xβˆ—),xk).subscript𝑓𝑖superscriptπ‘₯βˆ—subscript𝑑𝑖superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜subscript𝑓𝑖𝑁superscriptπ‘₯βˆ—subscript𝑑𝑖𝑁superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜f_{i}\left(x^{\ast}\right)+d_{i}\left(x^{\ast},x_{k}\right)<f_{i}\left(N\left(% x^{\ast}\right)\right)+d_{i}\left(N\left(x^{\ast}\right),x_{k}\right).italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ) + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

Using (4.11) gives

(B⁒d⁒(N⁒(xβˆ—),xβˆ—))i≀fi⁒(xβˆ—)βˆ’fi⁒(N⁒(xβˆ—))<di⁒(N⁒(xβˆ—),xk)βˆ’di⁒(xβˆ—,xk),subscript𝐡𝑑𝑁superscriptπ‘₯βˆ—superscriptπ‘₯βˆ—π‘–subscript𝑓𝑖superscriptπ‘₯βˆ—subscript𝑓𝑖𝑁superscriptπ‘₯βˆ—subscript𝑑𝑖𝑁superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜subscript𝑑𝑖superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜\left(Bd\left(N\left(x^{\ast}\right),x^{\ast}\right)\right)_{i}\leq f_{i}\left% (x^{\ast}\right)-f_{i}\left(N\left(x^{\ast}\right)\right)<d_{i}\left(N\left(x^% {\ast}\right),x_{k}\right)-d_{i}\left(x^{\ast},x_{k}\right),( italic_B italic_d ( italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≀ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) - italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ) < italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) - italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ,

that is

di⁒(xβˆ—,xk)+(B⁒d⁒(N⁒(xβˆ—),xβˆ—))i<di⁒(N⁒(xβˆ—),xk),subscript𝑑𝑖superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜subscript𝐡𝑑𝑁superscriptπ‘₯βˆ—superscriptπ‘₯βˆ—π‘–subscript𝑑𝑖𝑁superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜d_{i}\left(x^{\ast},x_{k}\right)+\left(Bd\left(N\left(x^{\ast}\right),x^{\ast}% \right)\right)_{i}<d_{i}\left(N\left(x^{\ast}\right),x_{k}\right),italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) + ( italic_B italic_d ( italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_N ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ,

which contradicts (4.10). Consequently, N𝑁Nitalic_N has a fixed point. ∎

4.3. New versions of the Ekeland variational principle in b𝑏bitalic_b-metric spaces

We emphasize that in the scalar case, that is, when n=1,B=bβ‰₯1formulae-sequence𝑛1𝐡𝑏1n=1,\ B=b\geq 1italic_n = 1 , italic_B = italic_b β‰₯ 1 and d=Οπ‘‘πœŒd=\rhoitalic_d = italic_ρ is a b𝑏bitalic_b-metric, our theorems from the previous subsection offer more natural versions in b𝑏bitalic_b-metric spaces to the classical results, as follows.

Theorem 4.9 (Weak Ekeland variational principle in b𝑏bitalic_b-metric spaces).

Let (X,ρ)π‘‹πœŒ\left(X,\rho\right)( italic_X , italic_ρ ) be a complete b𝑏bitalic_b-metric space (bβ‰₯1𝑏1b\geq 1italic_b β‰₯ 1) such that the b𝑏bitalic_b-metric ρ𝜌\rhoitalic_ρ is continuous, and let f:X→ℝ:𝑓→𝑋ℝf:X\rightarrow\mathbb{R}italic_f : italic_X β†’ blackboard_R be a lower semicontinuous function bounded from below. Then, for given x0∈X,subscriptπ‘₯0𝑋x_{0}\in X,italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X , there exists a sequence (xk)βŠ‚Xsubscriptπ‘₯π‘˜π‘‹\left(x_{k}\right)\subset X( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) βŠ‚ italic_X and xβˆ—βˆˆXsuperscriptπ‘₯βˆ—π‘‹x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_X such that xkβ†’xβˆ—β†’subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—x_{k}\rightarrow x^{\ast}\ \ \ italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPTas  kβ†’βˆž,β†’π‘˜k\rightarrow\infty,italic_k β†’ ∞ ,

f⁒(xβˆ—)≀f⁒(x0)βˆ’Οβ’(xβˆ—,x0),𝑓superscriptπ‘₯βˆ—π‘“subscriptπ‘₯0𝜌superscriptπ‘₯βˆ—subscriptπ‘₯0f\left(x^{\ast}\right)\leq f\left(x_{0}\right)-\rho\left(x^{\ast},x_{0}\right),italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,

and for each x∈X,π‘₯𝑋x\in X,italic_x ∈ italic_X , xβ‰ xβˆ—,π‘₯superscriptπ‘₯βˆ—x\neq x^{\ast},italic_x β‰  italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , there exists an index k=k⁒(x)π‘˜π‘˜π‘₯k=k\left(x\right)italic_k = italic_k ( italic_x ) with

f⁒(xβˆ—)+ρ⁒(xβˆ—,xk)<f⁒(x)+ρ⁒(x,xk).𝑓superscriptπ‘₯βˆ—πœŒsuperscriptπ‘₯βˆ—subscriptπ‘₯π‘˜π‘“π‘₯𝜌π‘₯subscriptπ‘₯π‘˜f\left(x^{\ast}\right)+\rho\left(x^{\ast},x_{k}\right)<f\left(x\right)+\rho% \left(x,x_{k}\right).italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f ( italic_x ) + italic_ρ ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

Moreover, for each x∈X,π‘₯𝑋x\in X,italic_x ∈ italic_X , xβ‰ xβˆ—,π‘₯superscriptπ‘₯βˆ—x\neq x^{\ast},italic_x β‰  italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , there exists an index k=k⁒(x)π‘˜π‘˜π‘₯k=k\left(x\right)italic_k = italic_k ( italic_x ) with

(4.12) f⁒(xβˆ—)<f⁒(x)+b⁒ρ⁒(xβˆ—,x)+(bβˆ’1)⁒ρ⁒(xβˆ—,xk).𝑓superscriptπ‘₯βˆ—π‘“π‘₯π‘πœŒsuperscriptπ‘₯βˆ—π‘₯𝑏1𝜌superscriptπ‘₯βˆ—subscriptπ‘₯π‘˜f\left(x^{\ast}\right)<f\left(x\right)+b\rho\left(x^{\ast},x\right)+\left(b-1% \right)\rho\left(x^{\ast},x_{k}\right).italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) < italic_f ( italic_x ) + italic_b italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x ) + ( italic_b - 1 ) italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .
Theorem 4.10 (Strong Ekeland variational principle in b𝑏bitalic_b-metric spaces).

Let (X,ρ)π‘‹πœŒ\left(X,\rho\right)( italic_X , italic_ρ ) be a complete b𝑏bitalic_b-metric space (bβ‰₯1𝑏1b\geq 1italic_b β‰₯ 1) such that the b𝑏bitalic_b-metric ρ𝜌\rhoitalic_ρ is continuous, and let f:X→ℝ:𝑓→𝑋ℝf:X\rightarrow\mathbb{R}italic_f : italic_X β†’ blackboard_R be a lower semicontinuous function bounded from below. Then, for given Ξ΅,Ξ΄>0πœ€π›Ώ0\ \varepsilon,\delta>0italic_Ξ΅ , italic_Ξ΄ > 0 and x0∈Xsubscriptπ‘₯0𝑋\ x_{0}\in Xitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ italic_X with

f⁒(x0)≀infx∈Xf⁒(x)+Ξ΅,𝑓subscriptπ‘₯0subscriptinfimumπ‘₯𝑋𝑓π‘₯πœ€f\left(x_{0}\right)\leq\inf_{x\in X}f\left(x\right)+\varepsilon,italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≀ roman_inf start_POSTSUBSCRIPT italic_x ∈ italic_X end_POSTSUBSCRIPT italic_f ( italic_x ) + italic_Ξ΅ ,

there exists a sequence (xk)βŠ‚Xsubscriptπ‘₯π‘˜π‘‹\left(x_{k}\right)\subset X( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) βŠ‚ italic_X and xβˆ—βˆˆXsuperscriptπ‘₯βˆ—π‘‹x^{\ast}\in Xitalic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ∈ italic_X such that xkβ†’xβˆ—β†’subscriptπ‘₯π‘˜superscriptπ‘₯βˆ—x_{k}\rightarrow x^{\ast}\ \ \ italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT β†’ italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPTas  kβ†’βˆž,β†’π‘˜k\rightarrow\infty,italic_k β†’ ∞ ,

f⁒(xβˆ—)≀f⁒(x0),𝑓superscriptπ‘₯βˆ—π‘“subscriptπ‘₯0f\left(x^{\ast}\right)\leq f\left(x_{0}\right),italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) ≀ italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,
ρ⁒(xβˆ—,x0)≀δ,𝜌superscriptπ‘₯βˆ—subscriptπ‘₯0𝛿\rho\left(x^{\ast},x_{0}\right)\leq\delta,italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≀ italic_Ξ΄ ,

and for each x∈X,π‘₯𝑋x\in X,italic_x ∈ italic_X , xβ‰ xβˆ—,π‘₯superscriptπ‘₯βˆ—x\neq x^{\ast},italic_x β‰  italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , there exists an index k=k⁒(x)π‘˜π‘˜π‘₯k=k\left(x\right)italic_k = italic_k ( italic_x ) with

f⁒(xβˆ—)+Ρδ⁒ρ⁒(xβˆ—,xk)<f⁒(x)+Ρδ⁒ρ⁒(x,xk).𝑓superscriptπ‘₯βˆ—πœ€π›ΏπœŒsuperscriptπ‘₯βˆ—subscriptπ‘₯π‘˜π‘“π‘₯πœ€π›ΏπœŒπ‘₯subscriptπ‘₯π‘˜f\left(x^{\ast}\right)+\frac{\varepsilon}{\delta}\rho\left(x^{\ast},x_{k}% \right)<f\left(x\right)+\frac{\varepsilon}{\delta}\rho\left(x,x_{k}\right).italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) + divide start_ARG italic_Ξ΅ end_ARG start_ARG italic_Ξ΄ end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) < italic_f ( italic_x ) + divide start_ARG italic_Ξ΅ end_ARG start_ARG italic_Ξ΄ end_ARG italic_ρ ( italic_x , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .

Moreover, for each x∈X,π‘₯𝑋x\in X,italic_x ∈ italic_X , xβ‰ xβˆ—,π‘₯superscriptπ‘₯βˆ—x\neq x^{\ast},italic_x β‰  italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , there exists an index k=k⁒(x)π‘˜π‘˜π‘₯k=k\left(x\right)italic_k = italic_k ( italic_x ) with

(4.13) f⁒(xβˆ—)<f⁒(x)+b⁒Ρδ⁒ρ⁒(xβˆ—,x)+(bβˆ’1)⁒Ρδ⁒ρ⁒(xβˆ—,xk).𝑓superscriptπ‘₯βˆ—π‘“π‘₯π‘πœ€π›ΏπœŒsuperscriptπ‘₯βˆ—π‘₯𝑏1πœ€π›ΏπœŒsuperscriptπ‘₯βˆ—subscriptπ‘₯π‘˜f\left(x^{\ast}\right)<f\left(x\right)+b\frac{\varepsilon}{\delta}\rho\left(x^% {\ast},x\right)+\left(b-1\right)\frac{\varepsilon}{\delta}\rho\left(x^{\ast},x% _{k}\right).italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) < italic_f ( italic_x ) + italic_b divide start_ARG italic_Ξ΅ end_ARG start_ARG italic_Ξ΄ end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x ) + ( italic_b - 1 ) divide start_ARG italic_Ξ΅ end_ARG start_ARG italic_Ξ΄ end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .
Theorem 4.11 (Caristi fixed point theorem in b𝑏bitalic_b-metric spaces).

Let (X,ρ)π‘‹πœŒ\left(X,\rho\right)( italic_X , italic_ρ ) be a complete b𝑏bitalic_b-metric space (bβ‰₯1𝑏1b\geq 1italic_b β‰₯ 1) such that the b𝑏bitalic_b-metric ρ𝜌\rhoitalic_ρ is continuous, and let f:X→ℝ:𝑓→𝑋ℝf:X\rightarrow\mathbb{R}italic_f : italic_X β†’ blackboard_R be a lower semicontinuous function bounded from below. If for an operator N:Xβ†’X,:𝑁→𝑋𝑋N:X\rightarrow X,italic_N : italic_X β†’ italic_X , one has

(4.14) ρ⁒(N⁒(x),y)≀ρ⁒(x,y)+b⁒ρ⁒(N⁒(x),x),x,y∈Xformulae-sequenceπœŒπ‘π‘₯π‘¦πœŒπ‘₯π‘¦π‘πœŒπ‘π‘₯π‘₯π‘₯𝑦𝑋\rho\left(N\left(x\right),y\right)\leq\rho\left(x,y\right)+b\rho\left(N\left(x% \right),x\right),\ \ \ x,y\in Xitalic_ρ ( italic_N ( italic_x ) , italic_y ) ≀ italic_ρ ( italic_x , italic_y ) + italic_b italic_ρ ( italic_N ( italic_x ) , italic_x ) , italic_x , italic_y ∈ italic_X

and

(4.15) b⁒ρ⁒(N⁒(x),x)≀f⁒(x)βˆ’f⁒(N⁒(x)),x∈X,formulae-sequenceπ‘πœŒπ‘π‘₯π‘₯𝑓π‘₯𝑓𝑁π‘₯π‘₯𝑋b\rho\left(N\left(x\right),x\right)\leq f\left(x\right)-f\left(N\left(x\right)% \right),\ \ \ x\in X,italic_b italic_ρ ( italic_N ( italic_x ) , italic_x ) ≀ italic_f ( italic_x ) - italic_f ( italic_N ( italic_x ) ) , italic_x ∈ italic_X ,

then N𝑁Nitalic_N has at least one fixed point.

The last three results reduce to the classical ones in ordinary metric spaces, i.e., if b=1.𝑏1b=1.italic_b = 1 . Thus, (4.12) reduces to

f⁒(xβˆ—)<f⁒(x)+ρ⁒(xβˆ—,x),xβ‰ xβˆ—;formulae-sequence𝑓superscriptπ‘₯βˆ—π‘“π‘₯𝜌superscriptπ‘₯βˆ—π‘₯π‘₯superscriptπ‘₯βˆ—f\left(x^{\ast}\right)<f\left(x\right)+\rho\left(x^{\ast},x\right),\ \ \ \ x% \neq x^{\ast};italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) < italic_f ( italic_x ) + italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x ) , italic_x β‰  italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ;

(4.13) reduces to

f⁒(xβˆ—)<f⁒(x)+Ρδ⁒ρ⁒(xβˆ—,x),xβ‰ xβˆ—;formulae-sequence𝑓superscriptπ‘₯βˆ—π‘“π‘₯πœ€π›ΏπœŒsuperscriptπ‘₯βˆ—π‘₯π‘₯superscriptπ‘₯βˆ—f\left(x^{\ast}\right)<f\left(x\right)+\frac{\varepsilon}{\delta}\rho\left(x^{% \ast},x\right),\ \ \ \ x\neq x^{\ast};italic_f ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ) < italic_f ( italic_x ) + divide start_ARG italic_Ξ΅ end_ARG start_ARG italic_Ξ΄ end_ARG italic_ρ ( italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT , italic_x ) , italic_x β‰  italic_x start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ;

assumption (4.14) trivially holds, while (4.15) becomes the classical Caristi’s inequality

ρ⁒(N⁒(x),x)≀f⁒(x)βˆ’f⁒(N⁒(x)),x∈X.formulae-sequenceπœŒπ‘π‘₯π‘₯𝑓π‘₯𝑓𝑁π‘₯π‘₯𝑋\rho\left(N\left(x\right),x\right)\leq f\left(x\right)-f\left(N\left(x\right)% \right),\ \ \ x\in X.italic_ρ ( italic_N ( italic_x ) , italic_x ) ≀ italic_f ( italic_x ) - italic_f ( italic_N ( italic_x ) ) , italic_x ∈ italic_X .

5. Conclusion and further research

In this paper, we introduced the concept of a vector B𝐡Bitalic_B-metric space. Several fixed-point theorems, analogous to those in scalar b𝑏bitalic_b-metric spaces as well as their classical counterparts, were presented. Additionally, we discussed some stability results. Finally, we provided a variant of Ekeland’s variational principle alongside a version of Caristi’s theorem. It remains an open question whether the assumption that Bβˆ’1βˆ’Asuperscript𝐡1𝐴B^{-1}-Aitalic_B start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A or Iβˆ’B⁒A𝐼𝐡𝐴I-BAitalic_I - italic_B italic_A is inverse-positive can be omitted in Theorems 3.8, 3.6 and 3.7. Additionally, one may explore a variant of Ekeland’s variational principle where Caristi’s theorem holds without requiring the additional assumption (4.10). Lastly, it would be interesting to study the case where the matrix B𝐡Bitalic_B is neither positive nor inverse-positive; for instance, when it has positive diagonal elements but contains both positive and negative entries elsewhere.

6. Aknowledgements

The authors wish to mention that the notion of a vector B𝐡Bitalic_B-metric space was suggested by Professor Ioan A. Rus in the Seminar of Nonlinear Operators and Differential Equations at Babeş-Bolyai University.

References

  • [1] Wilson, W. A. On Quasi-Metric Spaces. Amer. J. Math. 1931, 675–684.
  • [2] Bakhtin, I.A. Contracting mapping principle in an almost metric space. Funktsionalnyi Analiz 1989, 30, 26–37.
  • [3] Czerwik, S. Contraction mappings in b𝑏bitalic_b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11.
  • [4] Coifman, R.R.; de Guzman, M. Singular integrals and multipliers on homogeneous spaces. Rev. Un. Mat. Argentina 1970/71, 25, 137–143.
  • [5] Hyers, D.H. A note on linear topological spaces. Bull. Amer. Math. Soc. 1938, 44, 76–80.
  • [6] Bourgin, D.G. Linear topological spaces. Amer. J. Math. 1943, 65, 637–659.
  • [7] Berinde, V.; PΔƒcurar, M. The early developments in fixed point theory on b𝑏bitalic_b-metric spaces: A brief survey and some important related aspects. Carpathian J. Math. 2022, 38, 523–538.
  • [8] An, T.V.; Van Dung, N.; Kadelburg, Z.; RadenoviΔ‡, S. Various generalizations of metric spaces and fixed point theorems. RACSAM 2015, 109(1), 175–198.
  • [9] MitroviΔ‡, Z.D. Fixed point results in b𝑏bitalic_b-metric spaces. Fixed Point Theory 2019, 20, 559–566. https://doi.org/10.24193/fpt-ro.2019.2.36.
  • [10] Boriceanu, M.; Petruşel, A.; Rus, I.A. Fixed point theorems for some multivalued generalized contractions in b𝑏bitalic_b-metric spaces. Int. J. Math. Stat. 2010, 6, 65–76.
  • [11] Aydi, H.; Czerwik, S. Modern Discrete Mathematics and Analysis. Springer: Cham, Switzerland, 2018.
  • [12] Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces. Springer: Cham, Switzerland, 2014.
  • [13] Reich, S.; Zaslavski, A.J. Well-posedness of fixed point problems. Far East J. Math. Sci. 2001, Special Volume (Functional Analysis and its Applications), Part III, 393–401.
  • [14] Berinde, V. Generalized contractions in quasimetric spaces. Seminar on Fixed Point Theory, Preprint no. 3, 1993, 3–9.
  • [15] Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b𝑏bitalic_b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163.
  • [16] Suzuki, T. Basic inequality on a b𝑏bitalic_b-metric space and its applications. J. Inequal. Appl. 2017, 2017, 256.
  • [17] Bota, M.-F.; Micula, S. Ulam–Hyers stability via fixed point results for special contractions in b𝑏bitalic_b-metric spaces. Symmetry 2022, 14, 2461.
  • [18] PetruΘ™el, A.; PetruΘ™el, G. Graphical contractions and common fixed points in b𝑏bitalic_b-metric spaces. Arab. J. Math. 2023, 12, 423–430. https://doi.org/10.1007/s40065-022-00396-8.
  • [19] Bota, M.; Molnar, A.; Varga, C. On Ekeland’s variational principle in b𝑏bitalic_b-metric spaces. Fixed Point Theory 2011, 12, 21–28.
  • [20] Farkas, C; MolnΓ‘r, A.; Nagy, S. A generalized variational principle in b𝑏bitalic_b-metric spaces. Le Matematiche 2014, 69(2), 205–221.
  • [21] Boriceanu, M. Fixed point theory on spaces with vector-valued b𝑏bitalic_b-metrics. Demonstr. Math. 2009, 42, 831–841.
  • [22] Precup, R. The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comput. Model. 2009, 49(3), 703–708.
  • [23] Berman, A.; Plemmons, R.J. Nonnegative matrices in the mathematical sciences. Academic Press: New York, USA, 1997.
  • [24] Collatz, L. Aufgaben monotoner Art. Arch. Math. (Basel) 1952, 3, 366–376.
  • [25] CobzaΘ™, Ș.; Czerwik, S. The completion of generalized b𝑏bitalic_b-metric spaces and fixed points. Fixed Point Theory 2020, 21(1), 133–150.
  • [26] Perov, A.I. On the Cauchy problem for a system of ordinary differential equations (Russian). Priblizhen. Metody Reshen. Differ. Uravn. 1964, 2, 115–134.
  • [27] Perov, A.I. Generalized principle of contraction mappings (Russian). Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2005, 1, 196–207.
  • [28] Ortega, J.M.; Rheinboldt, W.C. Iterative Solutions of Nonlinear Equations in Several Variables. Academic Press: New York, USA, 1970.
  • [29] Avramescu, C. Asupra unei teoreme de punct fix. St. Cerc. Mat. 1970, 22, 215–221.
  • [30] Ekeland, I. On the variational principle. J. Math. Anal. Appl. 1974, 47(2), 324–353.
  • [31] Mawhin, J.; Willem, M. Critical Point Theory And Hamiltonian Systems. Applied Mathematical Sciences: Springer, New York, USA, 1989.
  • [32] De Figueiredo, D.G. Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research: Bombay, India, 1989.
  • [33] Meghea, I. Ekeland Variational Principle with Generalizations and Variants. Old City Publishing: Philadelphia, USA, 2009.
  • [34] Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 1976, 215, 241–251.
2025

Related Posts