Functional-differential equations with maxima of mixed type

Abstract

In this paper we study the following second order functional-differential equations

with maxima, of mixed type,%

\[
-x^{n}\left( t\right) -f(t,x\left( t\right) ,\max_{t-h_{1}\leq \xi \leq
t}x\left( \xi \right) ,\max_{t\leq \xi \leq t+h_{2}}x\left( \xi)\right)
,\ \ t\in \left[ a,b\right]
\]
with \textquotedblright boundary\textquotedblright \ conditions%

\[
\left \{
\begin{array}
[c]{c}%
x\left( t\right) -\varphi \left( t\right) ,\ t\in \left[ a-h_{1},a\right]
,\\
x\left( t\right) =\psi \left( t\right) ,\ t\in \left[ b,b+h_{2}\right] .
\end{array}
\right.\]

The plan of the paper is the following: 1. Introduction 2. Picard and weaklyΒ  Picard operator 3. The operator max 4. Existence and uniqueness 5. Inequalities of Caplygin type \ 6. Data dependence: monotony 7. Data dependence: continuity 8. Examples.

Authors

Diana Otrocol
Tiberiu Popoviciu Institute of Numerical Analysis Romanian Academy

Ioan A. Rus
Department of Applied Mathematics Babes-Bolyai University Cluj-Napoca, Romania

Keywords

Picard operator; weakly Picard operators; equation of mixed type; equations with maxima; fixed points, data dependence.

Paper coordinates

D. Otrocol, I.A. Rus, Functional-differential equations with maxima of mixed type, Fixed Point Theory, Volume 9, No. 1, 2008, 207-220.

PDF

About this paper

Print ISSN

1583-5022

Online ISSN

2066 – 9208

google scholar link

[1] N.V. Azbelev (ed.), Functional-Differential Equations, Perm. Politekh. Inst. Perm, 1985 (in Russian).
[2] D. Bainov, D. Mishev, Oscillation Theory of Operator-Differential Equations, World Scientific, Singapore, 1995.
[3] D.D. Bainov, V. A. Petrov, V.S. Proyteheva, Existence and asymptotic behavior of nonoscillatory solutions of second order neutral differential equations with ”maxima”, J. Comput. Appl. Math., 83(1997), no. 2, 237-249.
[4] L. Georgiev, V.G. Angelov, On the existence and uniqueness of solutions for maximum equations, Glas. Mat., 37(2002), 275-281.
[5] J. Hale, Theory of Functional Differential Equations, Springer, 1977.
[6] T. Jankovskyi, System of differential equations with maxima, Dopov, Akad. Nauk. Ukr., 8(1997), 57-60.
[7] V. Kolmanovskii, A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Acad. Publ., Dordrecht, 1992.
[8] E. Liz, Monotone iterative technique in ordered Banach spaces, Nonlinear Analysis, 30(1997), 5179-5190.
[9] A.R. Magomedov, Existence and uniqueness theorems for solutions of differential equations with maxima containing a functional parameter, Arch. Math., Brne, 28(1992), 139-154 (in Russian).
[10] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58(2003), 191-219.
[11] I.A. Rus, Functional differential equations of mixed type, via weakly Picard operators, Seminar on Fixed Point Theory Cluj-Napoca, 3(2002), 335-346.
[12] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, 2001.
[13] I.A. Rus, Weakly Picard operators and applications, Seminar on Fixed Point Theory Cluj-Napoca, 2(2001), 41-58.
[14] I.A. Rus, A. Petrusel, M. SΒΈerban, Weakly Picard operators: equivalent definitions, applications and open problems, Fixed Point Theory, 7(2006), 3-22.
[15] E. Stepanov, On solvability of same boundary value problems for differential equations with ”maxima”, Topological Methods in Nonlinear Analysis, 8(1996), 315-326.
[16] B.G. Zhang, G. Zhang, Qualitative properties of functional equations with ”maxima”, Rocky Mount. J. Math., 29(1999), 357-367.
[17] M. Zima, Applications of the spectral radius to same integral equations, Comment. Math. Univ. Caroline, 36(1997), 695-703.

Paper (preprint) in HTML form

FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH MAXIMA OF MIXED TYPE

DIANA OTROCOL* AND IOAN A. RUS**
*Tiberiu Popoviciu Institute of Numerical Analysis
Romanian Academy
Cluj-Napoca, Romania
E-mail: dotrocol@ictp.acad.ro
**Department of Applied Mathematics
Babeş-Bolyai University
Cluj-Napoca, Romania
E-mail: iarus@math.ubbcluj.ro
Abstract

In this paper we study the following second order functional-differential equations with maxima, of mixed type,

βˆ’xβ€²β€²(t)=f(t,x(t),maxtβˆ’h1≀ξ≀t⁑x(ΞΎ),maxt≀ξ≀t+h2⁑x(ΞΎ)),t∈[a,b]-x^{\prime\prime}(t)=f\left(t,x(t),\max_{t-h_{1}\leq\xi\leq t}x(\xi),\max_{t\leq\xi\leq t+h_{2}}x(\xi)\right),t\in[a,b]

with "boundary" conditions

{x(t)=Ο†(t),t∈[aβˆ’h1,a]x(t)=ψ(t),t∈[b,b+h2]\left\{\begin{array}[]{l}x(t)=\varphi(t),t\in\left[a-h_{1},a\right]\\ x(t)=\psi(t),t\in\left[b,b+h_{2}\right]\end{array}\right.

The plan of the paper is the following: 1. Introduction 2. Picard and weakly Picard operator 3. The operator maxI⁑4\max_{I}4. Existence and uniqueness 5. Inequalities of Caplygin type 6. Data dependence: monotony 7. Data dependence: continuity 8. Examples.

Key Words and Phrases: Picard operator, weakly Picard operators, equation of mixed type, equations with maxima, fixed points, data dependence.
2000 Mathematics Subject Classification: 34K10, 47H10.

1. Introduction

Differential equations with maxima are often met in applications, for instance in the theory of automatic control. The existence and uniqueness of
solutions of the equation with maxima is considered in [3], [4], [9]. The asymptotic stability of the solution of this equations and other problems concerning equations with maxima are investigated in [2], [3], [6], [15], [16].

The main goal of the presented paper is to study a second order functionaldifferential equations with maxima, of mixed type, using the theory of weakly Picard operators ([10]-[14]).

We consider the following functional-differential equation

βˆ’xβ€²β€²(t)=f(t,x(t),maxtβˆ’h1≀ξ≀t⁑x(ΞΎ),maxt≀ξ≀t+h2⁑x(ΞΎ)),t∈[a,b]-x^{\prime\prime}(t)=f\left(t,x(t),\max_{t-h_{1}\leq\xi\leq t}x(\xi),\max_{t\leq\xi\leq t+h_{2}}x(\xi)\right),t\in[a,b] (1.1)

with the "boundary" conditions

{x(t)=Ο†(t),t∈[aβˆ’h1,a]x(t)=ψ(t),t∈[b,b+h2]\left\{\begin{array}[]{l}x(t)=\varphi(t),t\in\left[a-h_{1},a\right]\\ x(t)=\psi(t),t\in\left[b,b+h_{2}\right]\end{array}\right.

We suppose that:
(C1)h1,h2,a\left(\mathrm{C}_{1}\right)h_{1},h_{2},a and bβˆˆβ„,a<b,h1>0,h2>0b\in\mathbb{R},a<b,h_{1}>0,h_{2}>0;
(C2)f∈C([a,b]×ℝ3)\left(\mathrm{C}_{2}\right)f\in C\left([a,b]\times\mathbb{R}^{3}\right);
( C3\mathrm{C}_{3} ) there exists Lf>0L_{f}>0 such that

|f(t,u1,u2,u3)βˆ’f(t,v1,v2,v3)|≀Lfmaxi=1,2,3⁑|uiβˆ’vi|\left|f\left(t,u_{1},u_{2},u_{3}\right)-f\left(t,v_{1},v_{2},v_{3}\right)\right|\leq L_{f}\max_{i=1,2,3}\left|u_{i}-v_{i}\right|

for all t∈[a,b]t\in[a,b] and ui,viβˆˆβ„,i=1,2,3;u_{i},v_{i}\in\mathbb{R},i=1,2,3;
(C4)Ο†βˆˆC[aβˆ’h1,a]\left(\mathrm{C}_{4}\right)\varphi\in C\left[a-h_{1},a\right] and ψ∈C[b,b+h2]\psi\in C\left[b,b+h_{2}\right].
Let GG be the Green function of the following problem

βˆ’xβ€²β€²=Ο‡,x(a)=0,x(b)=0,Ο‡βˆˆC[a,b].-x^{\prime\prime}=\chi,x(a)=0,x(b)=0,\chi\in C[a,b].

The problem (1.1)-(1.2), x∈C[aβˆ’h1,b+h2]∩C2[a,b]x\in C\left[a-h_{1},b+h_{2}\right]\cap C^{2}[a,b] is equivalent with the following fixed point equation

x(t)={Ο†(t),t∈[aβˆ’h1,a]w(Ο†,ψ)(t)++∫abG(t,s)f(s,x(s),maxsβˆ’h1≀ξ≀s⁑x(ΞΎ),maxs≀ξ≀s+h2⁑x(ΞΎ))𝑑s,t∈[a,b]ψ(t),t∈[b,b+h2]x(t)=\left\{\begin{array}[]{l}\varphi(t),t\in\left[a-h_{1},a\right]\\ w(\varphi,\psi)(t)+\\ \quad+\int_{a}^{b}G(t,s)f\left(s,x(s),\max_{s-h_{1}\leq\xi\leq s}x(\xi),\max_{s\leq\xi\leq s+h_{2}}x(\xi)\right)ds,t\in[a,b]\\ \psi(t),t\in\left[b,b+h_{2}\right]\end{array}\right.

x∈C[aβˆ’h1,b+h2]x\in C\left[a-h_{1},b+h_{2}\right], where

w(Ο†,ψ)(t):=tβˆ’abβˆ’aψ(b)+bβˆ’tbβˆ’aΟ†(a)w(\varphi,\psi)(t):=\frac{t-a}{b-a}\psi(b)+\frac{b-t}{b-a}\varphi(a)

The equation (1.1) is equivalent with

x(t)={x(t),t∈[aβˆ’h1,a]w(x|[aβˆ’h1,a],x|[b,b+h2])(t)++∫abG(t,s)f(s,x(s),maxsβˆ’h1≀ξ≀s⁑x(ΞΎ),maxs≀ξ≀s+h2⁑x(ΞΎ))𝑑s,t∈[a,b]x(t),t∈[b,b+h2]x(t)=\left\{\begin{array}[]{l}x(t),t\in\left[a-h_{1},a\right]\\ w\left(\left.x\right|_{\left[a-h_{1},a\right]},\left.x\right|_{\left[b,b+h_{2}\right]}\right)(t)+\\ \quad+\int_{a}^{b}G(t,s)f\left(s,x(s),\max_{s-h_{1}\leq\xi\leq s}x(\xi),\max_{s\leq\xi\leq s+h_{2}}x(\xi)\right)ds,t\in[a,b]\\ x(t),t\in\left[b,b+h_{2}\right]\end{array}\right.

x∈C[aβˆ’h1,b+h2]x\in C\left[a-h_{1},b+h_{2}\right].
In what follow we consider the operators:

Bf,Ef:C[aβˆ’h1,b+h2]β†’C[aβˆ’h1,b+h2]B_{f},E_{f}:C\left[a-h_{1},b+h_{2}\right]\rightarrow C\left[a-h_{1},b+h_{2}\right]

defined by

Bf(x)(t):= second part of (1.3)B_{f}(x)(t):=\text{ second part of }(1.3)

and

Ef(x)(t):= second part of (1.4). E_{f}(x)(t):=\text{ second part of (1.4). }

Let X:=C[aβˆ’h1,b+h2]X:=C\left[a-h_{1},b+h_{2}\right] and XΟ†,ψ:={x∈X|x|[aβˆ’h1,a]=Ο†,x|[b,b+h2]=ψ}X_{\varphi,\psi}:=\left\{x\in X|x|_{\left[a-h_{1},a\right]}=\varphi,\left.x\right|_{\left[b,b+h_{2}\right]}=\psi\right\}. It is clear that

X=XΟ†,ψβˆͺ∈C[aβˆ’h1,a]ψ∈C[b,b+h2]X=\underset{\begin{subarray}{c}\cup\in C\left[a-h_{1},a\right]\\ \psi\in C\left[b,b+h_{2}\right]\end{subarray}}{X_{\varphi,\psi}}

is a partition of XX.
We have
Lemma 1.1. We suppose that the conditions (C1),(C2)\left(C_{1}\right),\left(C_{2}\right) and (C4)\left(C_{4}\right) are satisfied. Then
(a) Bf(X)βŠ‚XΟ†,ψB_{f}(X)\subset X_{\varphi,\psi} and Bf(XΟ†,ψ)βŠ‚XΟ†,ψB_{f}\left(X_{\varphi,\psi}\right)\subset X_{\varphi,\psi};
(b) Bf|XΟ†,ψ=Ef|XΟ†,ψ\left.B_{f}\right|_{X_{\varphi,\psi}}=\left.E_{f}\right|_{X_{\varphi,\psi}}.

In this paper we shall prove that, if LfL_{f} is small enough, then the operator EfE_{f} is weakly Picard operator and we shall study the equation (1.1) in the terms of this operator.

2. Picard and Weakly Picard operators

Let ( X,dX,d ) be a metric space and A:X→XA:X\rightarrow X an operator. We shall use the following notations:

FA:={x∈X∣A(x)=x} - the fixed point set of AF_{A}:=\{x\in X\mid A(x)=x\}\text{ - the fixed point set of }A\text{; }

I(A):={YβŠ‚X∣A(Y)βŠ‚Y,Yβ‰ βˆ…}I(A):=\{Y\subset X\mid A(Y)\subset Y,Y\neq\emptyset\} - the family of the nonempty invariant subset of AA;

An+1:=A∘An,A0=1X,A1=A,nβˆˆβ„•;A^{n+1}:=A\circ A^{n},A^{0}=1_{X},A^{1}=A,n\in\mathbb{N};

Definition 2.1. ([10], [13]) Let ( X,dX,d ) be a metric space. An operator AA : Xβ†’XX\rightarrow X is a Picard operator (PO) if there exists xβˆ—βˆˆXx^{*}\in X such that:
(i) FA={xβˆ—}F_{A}=\left\{x^{*}\right\};
(ii) the sequence (An(x0))nβˆˆβ„•\left(A^{n}\left(x_{0}\right)\right)_{n\in\mathbb{N}} converges to xβˆ—x^{*} for all x0∈Xx_{0}\in X.

Definition 2.2. ([10], [13]) Let (X,d)(X,d) be a metric space. An operator A:Xβ†’XA:X\rightarrow X is a weakly Picard operator ( WPOWPO ) if the sequence (An(x))nβˆˆβ„•\left(A^{n}(x)\right)_{n\in\mathbb{N}} converges for all x∈Xx\in X, and its limit (which may depend on xx ) is a fixed point of AA.

Definition 2.3. ([10], [13]) If AA is weakly Picard operator then we consider the operator A∞A^{\infty} defined by

A∞:Xβ†’X,A∞(x):=limnβ†’βˆžAn(x)A^{\infty}:X\rightarrow X,A^{\infty}(x):=\lim_{n\rightarrow\infty}A^{n}(x)

Remark 2.4. It is clear that A∞(X)=FA={x∈X∣A(x)=x}A^{\infty}(X)=F_{A}=\{x\in X\mid A(x)=x\}.
Definition 2.5. ([10], [13]) Let AA be a weakly Picard operator and c>0c>0. The operator AA is cc-weakly Picard operator if

d(x,A∞(x))≀cd(x,A(x)),βˆ€x∈X.d\left(x,A^{\infty}(x)\right)\leq cd(x,A(x)),\forall x\in X.

Theorem 2.6. ([10], [13]) Let ( X,dX,d ) be a metric space and A:X→XA:X\rightarrow X an operator. The operator AA is weakly Picard operator if and only if there exists a partition of XX,

X=βˆͺΞ»βˆˆΞ›XΞ»X=\cup_{\lambda\in\Lambda}X_{\lambda}

where Ξ›\Lambda is the indices set of partition, such that:
(a) Xλ∈I(A),Ξ»βˆˆΞ›X_{\lambda}\in I(A),\lambda\in\Lambda;
(b) A|XΞ»:XΞ»β†’XΞ»\left.A\right|_{X_{\lambda}}:X_{\lambda}\rightarrow X_{\lambda} is a Picard operator for all Ξ»βˆˆΞ›\lambda\in\Lambda.

Example 2.7. ([10], [13]) Let ( X,dX,d ) be a complete metric space and A:Xβ†’XA:X\rightarrow X an Ξ±\alpha-contraction. Then AA is 11βˆ’Ξ±βˆ’PO\frac{1}{1-\alpha}-PO.

Example 2.8. Let (X,d)(X,d) be a complete metric space and A:Xβ†’XA:X\rightarrow X continuous and Ξ±\alpha-graphic contraction. Then AA is 11βˆ’Ξ±βˆ’WPO\frac{1}{1-\alpha}-WPO.

For more details on WPOs theory see [10], [12], [13].

3. The operator maxI\max_{I}

Let I:ℝ→Pcp,cv(ℝ):={YβŠ‚β„βˆ£YI:\mathbb{R}\rightarrow P_{cp,cv}(\mathbb{R}):=\{Y\subset\mathbb{R}\mid Y compact and convex }\} be a multivalued operator. We suppose that I(t)=[Ξ±(t),Ξ²(t)]I(t)=[\alpha(t),\beta(t)] where α≀β\alpha\leq\beta and Ξ±,β∈C(ℝ)\alpha,\beta\in C(\mathbb{R}).

For x∈C(ℝ)x\in C(\mathbb{R}) we consider the function maxI⁑x\max_{I}x defined by (maxI⁑x)(t):=maxξ∈I(t)⁑x(ΞΎ)\left(\max_{I}x\right)(t):=\max_{\xi\in I(t)}x(\xi). We remark that maxI⁑x∈C(ℝ)\max_{I}x\in C(\mathbb{R}). So, we have the operator

maxI:C(ℝ)β†’C(ℝ).\max_{I}:C(\mathbb{R})\rightarrow C(\mathbb{R}).

Some properties of the operator maxI\max_{I} are given by
Lemma 3.1. We have
(i) x≀yβ‡’maxI⁑x≀maxI⁑yx\leq y\Rightarrow\max_{I}x\leq\max_{I}y, i.e. the operator maxI\max_{I} is increasing;
(ii) |maxξ∈I(t)⁑x(ΞΎ)βˆ’maxξ∈I(t)⁑y(ΞΎ)|≀maxξ∈I(t)⁑|x(ΞΎ)βˆ’y(ΞΎ)|\left|\max_{\xi\in I(t)}x(\xi)-\max_{\xi\in I(t)}y(\xi)\right|\leq\max_{\xi\in I(t)}|x(\xi)-y(\xi)|, for all tβˆˆβ„,x,y∈C(ℝ);t\in\mathbb{R},\quad x,y\in C(\mathbb{R});
(iii) maxt∈K⁑|maxξ∈I(t)⁑x(ΞΎ)βˆ’maxξ∈I(t)⁑y(ΞΎ)|≀maxξ∈βˆͺt∈KI(t)⁑|x(ΞΎ)βˆ’y(ΞΎ)|\max_{t\in K}\left|\max_{\xi\in I(t)}x(\xi)-\max_{\xi\in I(t)}y(\xi)\right|\leq\max_{\xi\in\cup_{t\in K}I(t)}|x(\xi)-y(\xi)|, for all tβˆˆβ„,x,y∈C(ℝ)t\in\mathbb{R},x,y\in C(\mathbb{R}).

Proof.

(ii) Let ξ∈I(t)\xi\in I(t). We have

x(ΞΎ)≀x(ΞΎ)βˆ’y(ΞΎ)+y(ΞΎ)≀y(ΞΎ)+|x(ΞΎ)βˆ’y(ΞΎ)|x(\xi)\leq x(\xi)-y(\xi)+y(\xi)\leq y(\xi)+|x(\xi)-y(\xi)|

Then

maxξ∈I(t)⁑x(ΞΎ)≀maxξ∈I(t)⁑y(ΞΎ)+maxξ∈I(t)⁑|x(ΞΎ)βˆ’y(ΞΎ)|\max_{\xi\in I(t)}x(\xi)\leq\max_{\xi\in I(t)}y(\xi)+\max_{\xi\in I(t)}|x(\xi)-y(\xi)|

and

|maxξ∈I(t)⁑x(ΞΎ)βˆ’maxξ∈I(t)⁑y(ΞΎ)|≀maxξ∈I(t)⁑|x(ΞΎ)βˆ’y(ΞΎ)|, for all tβˆˆβ„,x,y∈C(ℝ)\left|\max_{\xi\in I(t)}x(\xi)-\max_{\xi\in I(t)}y(\xi)\right|\leq\max_{\xi\in I(t)}|x(\xi)-y(\xi)|,\text{ for all }t\in\mathbb{R},x,y\in C(\mathbb{R})

(iii) Follows from (ii).

4. Existence and uniqueness

Our first result is the following
Theorem 4.1. We suppose that:
(a) the conditions (C1)βˆ’(C4)\left(C_{1}\right)-\left(C_{4}\right) are satisfied;
(C5)Lf8(bβˆ’a)2<1\left(\mathrm{C}_{5}\right)\frac{L_{f}}{8}(b-a)^{2}<1.
Then the problem (1.1)-(1.2) has a unique solution which is the uniform limit of the successive approximations.

Proof. Consider the Banach space ( C[aβˆ’h1,b+h2],βˆ₯β‹…βˆ₯C\left[a-h_{1},b+h_{2}\right],\|\cdot\| ) where βˆ₯β‹…βˆ₯\|\cdot\| is the Chebyshev norm, βˆ₯β‹…βˆ₯:=maxaβˆ’h1≀t≀b+h2|x(t)|\|\cdot\|:=\max_{a-h_{1}\leq t\leq b+h_{2}}|x(t)|.

The problem (1.1)-(1.2) is equivalent with the fixed point equation

Bf(x)=x,x∈C[aβˆ’h1,b+h2].B_{f}(x)=x,x\in C\left[a-h_{1},b+h_{2}\right].

From the condition ( C3C_{3} ) we have, for t∈[a,b]t\in[a,b]

|Bf(x)(t)βˆ’Bf(y)(t)|≀\displaystyle\left|B_{f}(x)(t)-B_{f}(y)(t)\right|\leq
≀Lf∫abG(t,s)max{|x(s)βˆ’y(s)|,|maxaβˆ’h1≀ξ≀ax(ΞΎ)βˆ’maxaβˆ’h1≀ξ≀ay(ΞΎ)|\displaystyle\leq L_{f}\int_{a}^{b}G(t,s)\max\left\{|x(s)-y(s)|,\left|\max_{a-h_{1}\leq\xi\leq a}x(\xi)-\max_{a-h_{1}\leq\xi\leq a}y(\xi)\right|\right.
|maxb≀ξ≀b+h2x(ΞΎ)βˆ’maxb≀ξ≀b+h2y(ΞΎ)|}ds≀\displaystyle\left.\quad\left|\max_{b\leq\xi\leq b+h_{2}}x(\xi)-\max_{b\leq\xi\leq b+h_{2}}y(\xi)\right|\right\}ds\leq
≀Lf∫abG(t,s)maxaβˆ’h1≀ξ≀b+h2⁑|x(s)βˆ’y(s)|ds≀\displaystyle\leq L_{f}\int_{a}^{b}G(t,s)\max_{a-h_{1}\leq\xi\leq b+h_{2}}|x(s)-y(s)|ds\leq
≀Lf8(bβˆ’a)2β€–xβˆ’yβ€–\displaystyle\leq\frac{L_{f}}{8}(b-a)^{2}\|x-y\|

This implies that BfB_{f} is an Ξ±\alpha-contraction, with Ξ±=Lf8(bβˆ’a)2\alpha=\frac{L_{f}}{8}(b-a)^{2}. The proof follows from the contraction principle.

Remark 4.2. From the proof of Theorem 4.1, it follows that the operator BfB_{f} is PO. Since

Bf|XΟ†,ψ=Ef|XΟ†,ψ\left.B_{f}\right|_{X_{\varphi,\psi}}=\left.E_{f}\right|_{X_{\varphi,\psi}}

and

X:=C[aβˆ’h1,b+h2]=βˆͺΟ†,ψXΟ†,ψ,Ef(XΟ†,ψ)βŠ‚XΟ†,ψX:=C\left[a-h_{1},b+h_{2}\right]=\cup_{\varphi,\psi}X_{\varphi,\psi},E_{f}\left(X_{\varphi,\psi}\right)\subset X_{\varphi,\psi}

hence, the operator EfE_{f} is WPO and

FEf∩XΟ†,ψ={xΟ†,Οˆβˆ—},βˆ€Ο†βˆˆC[aβˆ’h1,a],βˆ€ΟˆβˆˆC[b,b+h2]F_{E_{f}}\cap X_{\varphi,\psi}=\left\{x_{\varphi,\psi}^{*}\right\},\forall\varphi\in C\left[a-h_{1},a\right],\forall\psi\in C\left[b,b+h_{2}\right]

where xΟ†,Οˆβˆ—x_{\varphi,\psi}^{*} is the unique solution of the problem (1.1)-(1.2).
Remark 4.3. EfE_{f} is Ξ±\alpha-graphic contraction, i.e.

β€–Ef2(x)βˆ’Ef(x)‖≀α‖xβˆ’Ef(x)β€–,βˆ€x∈C[aβˆ’h1,b+h2].\left\|E_{f}^{2}(x)-E_{f}(x)\right\|\leq\alpha\left\|x-E_{f}(x)\right\|,\forall x\in C\left[a-h_{1},b+h_{2}\right].

5. Inequalities of Čaplygin type

In this section we need the following abstract result
Lemma 5.1. (see[12]) Let ( X,d,≀X,d,\leq ) be an ordered metric space and A:Xβ†’XA:X\rightarrow X an operator. We suppose that:
(i) AA is WPOWPO;
(ii) AA is increasing.

Then, the operator A∞A^{\infty} is increasing.
Now we consider the operators EfE_{f} and BfB_{f} on the ordered Banach space (C[aβˆ’h1,b+h2],βˆ₯β‹…βˆ₯,≀)\left(C\left[a-h_{1},b+h_{2}\right],\|\cdot\|,\leq\right).

We have
Theorem 5.2. We suppose that:
(a) the conditions (C1)βˆ’(C4)\left(C_{1}\right)-\left(C_{4}\right) are satisfied;
(b) Lf8(bβˆ’a)2<1\frac{L_{f}}{8}(b-a)^{2}<1;
(c) f(t,β‹…,β‹…,β‹…):ℝ3→ℝf(t,\cdot,\cdot,\cdot):\mathbb{R}^{3}\rightarrow\mathbb{R} is increasing, βˆ€t∈[a,b]\forall t\in[a,b].

Let xx be a solution of equation (1.1) and yy a solution of the inequality

βˆ’yβ€²β€²(t)≀f(t,y(t),maxtβˆ’h1≀ξ≀t⁑y(ΞΎ),maxt≀ξ≀t+h2⁑y(ΞΎ)),t∈[a,b]-y^{\prime\prime}(t)\leq f\left(t,y(t),\max_{t-h_{1}\leq\xi\leq t}y(\xi),\max_{t\leq\xi\leq t+h_{2}}y(\xi)\right),t\in[a,b]

Then

y(t)≀x(t),βˆ€t∈[aβˆ’h1,a]βˆͺ[b,b+h2] implies that y≀x.y(t)\leq x(t),\forall t\in\left[a-h_{1},a\right]\cup\left[b,b+h_{2}\right]\text{ implies that }y\leq x.

Proof. Let us consider the operator w~:C[aβˆ’h1,b+h2]β†’C[aβˆ’h1,b+h2]\widetilde{w}:C\left[a-h_{1},b+h_{2}\right]\rightarrow C\left[a-h_{1},b+h_{2}\right] defined by

w~(z)(t):={z(t),t∈[aβˆ’h1,a]w(z|[aβˆ’h1,a],z|[b,b+h2])(t),t∈[a,b]z(t),t∈[b,b+h2]\widetilde{w}(z)(t):=\left\{\begin{array}[]{l}z(t),t\in\left[a-h_{1},a\right]\\ w\left(\left.z\right|_{\left[a-h_{1},a\right]},\left.z\right|_{\left[b,b+h_{2}\right]}\right)(t),t\in[a,b]\\ z(t),t\in\left[b,b+h_{2}\right]\end{array}\right.

First of all we remark that

w(y|[aβˆ’h1,a],y|[b,b+h2])≀w(x|[aβˆ’h1,a],x|[b,b+h2])w\left(\left.y\right|_{\left[a-h_{1},a\right]},\left.y\right|_{\left[b,b+h_{2}\right]}\right)\leq w\left(\left.x\right|_{\left[a-h_{1},a\right]},\left.x\right|_{\left[b,b+h_{2}\right]}\right)

and

w~(y)≀w~(x)\widetilde{w}(y)\leq\widetilde{w}(x)

In the terms of the operator EfE_{f}, we have

x=Ef(x) and y≀Ef(y)x=E_{f}(x)\text{ and }y\leq E_{f}(y)

On the other hand, from the condition (c) and Lemma 5.1, we have that the operator Ef∞E_{f}^{\infty} is increasing. Hence

y≀Ef(y)≀Ef2(y)≀…≀Ef∞(y)=Ef∞(w~(y))≀Ef∞(w~(x))=xy\leq E_{f}(y)\leq E_{f}^{2}(y)\leq\ldots\leq E_{f}^{\infty}(y)=E_{f}^{\infty}(\widetilde{w}(y))\leq E_{f}^{\infty}(\widetilde{w}(x))=x

So, y≀xy\leq x.

6. Data dependence: monotony

In this section we study the monotony of the solution of the problem (1.1)(1.2) with respect to Ο†,ψ\varphi,\psi and ff. For this we need the following result from the WPOs theory.

Lemma 6.1. (Abstract comparison lemma, [13]) Let ( X,d,≀X,d,\leq ) an ordered metric space and A,B,C:Xβ†’XA,B,C:X\rightarrow X be such that:
(i) the operator A,B,CA,B,C, are WPOs;
(ii) A≀B≀CA\leq B\leq C;
(iii) the operator BB is increasing.

Then x≀y≀zx\leq y\leq z implies that A∞(x)≀B∞(y)≀C∞(z)A^{\infty}(x)\leq B^{\infty}(y)\leq C^{\infty}(z).
From this abstract result we have
Theorem 6.2. Let fi∈C([a,b]×ℝ3),i=1,2,3f_{i}\in C\left([a,b]\times\mathbb{R}^{3}\right),i=1,2,3, be as in Theorem 4.1. We suppose that:
(i) f1≀f2≀f3f_{1}\leq f_{2}\leq f_{3};
(ii) f2(t,β‹…,β‹…,β‹…):ℝ3→ℝf_{2}(t,\cdot,\cdot,\cdot):\mathbb{R}^{3}\rightarrow\mathbb{R} is monotone increasing;

Let xix_{i} be a solution of the equation

βˆ’xiβ€²β€²(t)=fi(t,x(t),maxtβˆ’h1≀ξ≀t⁑x(ΞΎ),maxt≀ξ≀t+h2⁑x(ΞΎ)),t∈[a,b] and i=1,2,3-x_{i}^{\prime\prime}(t)=f_{i}\left(t,x(t),\max_{t-h_{1}\leq\xi\leq t}x(\xi),\max_{t\leq\xi\leq t+h_{2}}x(\xi)\right),t\in[a,b]\text{ and }i=1,2,3

Then, x1(t)≀x2(t)≀x3(t),βˆ€t∈[aβˆ’h1,a]βˆͺ[b,b+h2]x_{1}(t)\leq x_{2}(t)\leq x_{3}(t),\forall t\in\left[a-h_{1},a\right]\cup\left[b,b+h_{2}\right], implies that x1≀x2≀x3x_{1}\leq x_{2}\leq x_{3}, i.e. the unique solution of the problem (1.1)-(1.2) is increasing with respect to f,Ο†f,\varphi and ψ\psi.

Proof. From Theorem 4.1, the operators Efi,i=1,2,3E_{f_{i}},i=1,2,3, are WPOs. From the condition (ii) the operator Ef2E_{f_{2}} is monotone increasing. From the condition (i) it follows that

Ef1≀Ef2≀Ef3E_{f_{1}}\leq E_{f_{2}}\leq E_{f_{3}}

On the other hand we remark that

w~(x1)≀w~(x2)≀w~(x3)\widetilde{w}\left(x_{1}\right)\leq\widetilde{w}\left(x_{2}\right)\leq\widetilde{w}\left(x_{3}\right)

and

xi=Efi∞(w~(xi)),i=1,2,3x_{i}=E_{f_{i}}^{\infty}\left(\widetilde{w}\left(x_{i}\right)\right),i=1,2,3

So, the proof follows from Lemma 6.1.

7. Data DEPENDENCE: CONTINUITY

Consider the boundary value problem (1.1)-(1.2) and suppose the conditions of the Theorem 4.1 are satisfied. Denote by xβˆ—(β‹…;Ο†,ψ,f)x^{*}(\cdot;\varphi,\psi,f), the solution of this problem.

We need the following well known result (see [12]).
Theorem 7.1. Let (X,d)(X,d) be a complete metric space and A,B:X→XA,B:X\rightarrow X two operators. We suppose that
(i) the operator AA is a Ξ±\alpha-contraction;
(ii) FBβ‰ βˆ…F_{B}\neq\emptyset;
(iii) there exists Ξ·>0\eta>0 such that

d(A(x),B(x))≀η,βˆ€x∈Xd(A(x),B(x))\leq\eta,\forall x\in X

Then, if FA={xAβˆ—}F_{A}=\left\{x_{A}^{*}\right\} and xBβˆ—βˆˆFBx_{B}^{*}\in F_{B}, we have

d(xAβˆ—,xBβˆ—)≀η1βˆ’Ξ±d\left(x_{A}^{*},x_{B}^{*}\right)\leq\frac{\eta}{1-\alpha}

We state the following result:
Theorem 7.2. Let Ο†i,ψi,fi,i=1,2\varphi_{i},\psi_{i},f_{i},i=1,2 be as in the Theorem 4.1. Furthermore, we suppose that there exists Ξ·i>0,i=1,2\eta_{i}>0,i=1,2 such that
(i) |Ο†1(t)βˆ’Ο†2(t)|≀η1,βˆ€t∈[aβˆ’h1,a]\left|\varphi_{1}(t)-\varphi_{2}(t)\right|\leq\eta_{1},\forall t\in\left[a-h_{1},a\right] and |ψ1(t)βˆ’Οˆ2(t)|≀η1,βˆ€t∈[b,b+h2];\left|\psi_{1}(t)-\psi_{2}(t)\right|\leq\eta_{1},\forall t\in\left[b,b+h_{2}\right];
(ii) |f1(t,u1,u2,u3)βˆ’f2(t,u1,u2,u3)|≀η2,βˆ€t∈C[a,b],uiβˆˆβ„,i=1,2,3\left|f_{1}\left(t,u_{1},u_{2},u_{3}\right)-f_{2}\left(t,u_{1},u_{2},u_{3}\right)\right|\leq\eta_{2},\forall t\in C[a,b],u_{i}\in\mathbb{R},i=1,2,3.

Then

β€–x1βˆ—(t;Ο†1,ψ1,f1)βˆ’x2βˆ—(t;Ο†2,ψ2,f2)‖≀8Ξ·1+(bβˆ’a)2Ξ·28βˆ’Lf(bβˆ’a)2\left\|x_{1}^{*}\left(t;\varphi_{1},\psi_{1},f_{1}\right)-x_{2}^{*}\left(t;\varphi_{2},\psi_{2},f_{2}\right)\right\|\leq\frac{8\eta_{1}+(b-a)^{2}\eta_{2}}{8-L_{f}(b-a)^{2}}

where xiβˆ—(t;Ο†i,ψi,fi)x_{i}^{*}\left(t;\varphi_{i},\psi_{i},f_{i}\right) are the solution of the problem (1.1)-(1.2) with respect to Ο†i,ψi,fi,i=1,2\varphi_{i},\psi_{i},f_{i},i=1,2, and Lf=max⁑(Lf1,Lf2)L_{f}=\max\left(L_{f_{1}},L_{f_{2}}\right).

Proof. Consider the operators BΟ†i,ψi,fi,i=1,2B_{\varphi_{i},\psi_{i},f_{i}},i=1,2. From Theorem 4.1 these operators are contractions.

Additionally

β€–BΟ†1,ψ1,f1(x)βˆ’BΟ†2,ψ2,f2(x)‖≀η1+Ξ·2(bβˆ’a)28\left\|B_{\varphi_{1},\psi_{1},f_{1}}(x)-B_{\varphi_{2},\psi_{2},f_{2}}(x)\right\|\leq\eta_{1}+\eta_{2}\frac{(b-a)^{2}}{8}

βˆ€x∈C[aβˆ’h1,b+h2]\forall x\in C\left[a-h_{1},b+h_{2}\right].
Now the proof follows from the Theorem 7.1, with A:=BΟ†1,ψ1,f1,B=BΟ†2,ψ2,f2,Ξ·=Ξ·1+Ξ·2(bβˆ’a)28A:=B_{\varphi_{1},\psi_{1},f_{1}},B=B_{\varphi_{2},\psi_{2},f_{2}},\eta=\eta_{1}+\eta_{2}\frac{(b-a)^{2}}{8} and Ξ±:=Lf8(bβˆ’a)2\alpha:=\frac{L_{f}}{8}(b-a)^{2} where Lf=max⁑(Lf1,Lf2)L_{f}=\max\left(L_{f_{1}},L_{f_{2}}\right).

We have
Theorem 7.3. ([13]) Let ( X,dX,d ) be a metric space and Ai:X→X,i=1,2A_{i}:X\rightarrow X,i=1,2. Suppose that
(i) the operator AiA_{i} is cic_{i}-weakly Picard operator, i=1,2i=1,2;
(ii) there exists Ξ·>0\eta>0 such that

d(A1(x),A2(x))≀η,βˆ€x∈Xd\left(A_{1}(x),A_{2}(x)\right)\leq\eta,\forall x\in X

Then H(FA1,FA2)≀ηmax⁑(c1,c2)H\left(F_{A_{1}},F_{A_{2}}\right)\leq\eta\max\left(c_{1},c_{2}\right).
In what follow we shall use the cc-WPOs techniques to give some data dependence results using Theorem 7.3.

Theorem 7.4. Let f1f_{1} and f2f_{2} be as in the Theorem 4.1. Let SEf1,SEf2S_{E_{f_{1}}},S_{E_{f_{2}}} be the solution sets of system (1.1) corresponding to f1f_{1} and f2f_{2}. Suppose that there exists Ξ·>0\eta>0, such that

|f1(t,u1,u2,u3)βˆ’f2(t,u1,u2,u3)|≀η\left|f_{1}\left(t,u_{1},u_{2},u_{3}\right)-f_{2}\left(t,u_{1},u_{2},u_{3}\right)\right|\leq\eta (7.1)

for all t∈[a,b],uiβˆˆβ„,i=1,2,3t\in[a,b],u_{i}\in\mathbb{R},i=1,2,3.
Then

Hβˆ₯β‹…βˆ₯C(SEf1,SEf2)≀(bβˆ’a)2Ξ·8βˆ’Lf(bβˆ’a)2H_{\|\cdot\|_{C}}\left(S_{E_{f_{1}}},S_{E_{f_{2}}}\right)\leq\frac{(b-a)^{2}\eta}{8-L_{f}(b-a)^{2}}

where Lf=max⁑(Lf1,Lf2)L_{f}=\max\left(L_{f_{1}},L_{f_{2}}\right) and Hβˆ₯β‹…βˆ₯CH_{\|\cdot\|_{C}} denotes the Pompeiu-Hausdorff functional with respect to βˆ₯β‹…βˆ₯C\|\cdot\|_{C} on C[a,b]C[a,b].

Proof. In the condition of Theorem 4.1, the operators Ef1E_{f_{1}} and Ef2E_{f_{2}} are c1c_{1} WPO and c2c_{2}-weakly Picard operators.

Let

XΟ†,ψ:={x∈X|x|[aβˆ’h1,a]=Ο†,x|[b,b+h2]=ψ}X_{\varphi,\psi}:=\left\{x\in X|x|_{\left[a-h_{1},a\right]}=\varphi,\left.x\right|_{\left[b,b+h_{2}\right]}=\psi\right\}

It is clear that Ef1|XΟ†,ψ=Bf1,Ef2|XΟ†,ψ=Bf2\left.E_{f_{1}}\right|_{X_{\varphi,\psi}}=B_{f_{1}},\left.E_{f_{2}}\right|_{X_{\varphi,\psi}}=B_{f_{2}}. Therefore,

|Ef12(x)βˆ’Ef1(x)|\displaystyle\left|E_{f_{1}}^{2}(x)-E_{f_{1}}(x)\right| ≀18Lf1(bβˆ’a)2|Ef1(x)βˆ’x|\displaystyle\leq\frac{1}{8}L_{f_{1}}(b-a)^{2}\left|E_{f_{1}}(x)-x\right|
|Ef22(x)βˆ’Ef2(x)|\displaystyle\left|E_{f_{2}}^{2}(x)-E_{f_{2}}(x)\right| ≀18Lf2(bβˆ’a)2|Ef2(x)βˆ’x|\displaystyle\leq\frac{1}{8}L_{f_{2}}(b-a)^{2}\left|E_{f_{2}}(x)-x\right|

for all x∈C[aβˆ’h1,b+h2]x\in C\left[a-h_{1},b+h_{2}\right].
Now, choosing

Ξ±i=18Lfi(bβˆ’a)2,i=1,2\alpha_{i}=\frac{1}{8}L_{f_{i}}(b-a)^{2},i=1,2

we get that Ef1E_{f_{1}} and Ef2E_{f_{2}} are c1c_{1}-weakly Picard operators and c2c_{2}-weakly Picard operators with c1=(1βˆ’Ξ±1)βˆ’1c_{1}=\left(1-\alpha_{1}\right)^{-1} and c2=(1βˆ’Ξ±2)βˆ’1c_{2}=\left(1-\alpha_{2}\right)^{-1}. From (7.1) we obtain that

β€–Ef1(x)βˆ’Ef2(x)β€–C≀(bβˆ’a)2Ξ·\left\|E_{f_{1}}(x)-E_{f_{2}}(x)\right\|_{C}\leq(b-a)^{2}\eta

βˆ€x∈C[aβˆ’h1,b+h2]\forall x\in C\left[a-h_{1},b+h_{2}\right]. Applying Theorem 7.3 we have that

Hβˆ₯β‹…βˆ₯C(SEf1,SEf2)≀(bβˆ’a)2Ξ·8βˆ’Lf(bβˆ’a)2H_{\|\cdot\|_{C}}\left(S_{E_{f_{1}}},S_{E_{f_{2}}}\right)\leq\frac{(b-a)^{2}\eta}{8-L_{f}(b-a)^{2}}

where Lf=max⁑(Lf1,Lf2)L_{f}=\max\left(L_{f_{1}},L_{f_{2}}\right) and Hβˆ₯β‹…βˆ₯CH_{\|\cdot\|_{C}} is the Pompeiu-Hausdorff functional with respect to βˆ₯β‹…βˆ₯C\|\cdot\|_{C} on C[aβˆ’h1,b+h2]C\left[a-h_{1},b+h_{2}\right].

8. Examples

Let p,q,r,g∈C[a,b]p,q,r,g\in C[a,b]. We consider the following boundary value problem

βˆ’xβ€²β€²(t)=p(t)x(t)+q(t)maxtβˆ’h1≀ξ≀t⁑x(ΞΎ)+r(t)maxt≀ξ≀t+h2⁑x(ΞΎ)+g(t),t∈[a,b],-x^{\prime\prime}(t)=p(t)x(t)+q(t)\max_{t-h_{1}\leq\xi\leq t}x(\xi)+r(t)\max_{t\leq\xi\leq t+h_{2}}x(\xi)+g(t),t\in[a,b], (8.1)

with the "boundary" conditions

{x(t)=Ο†(t),t∈[aβˆ’h1,a]x(t)=ψ(t),t∈[b,b+h2]\left\{\begin{array}[]{l}x(t)=\varphi(t),t\in\left[a-h_{1},a\right]\\ x(t)=\psi(t),t\in\left[b,b+h_{2}\right]\end{array}\right.

In this case f(t,u1,u2,u3)=p(t)u1+q(t)u2+r(t)u3+g(t),t∈[a,b],uiβˆˆβ„,i=1,2,3f\left(t,u_{1},u_{2},u_{3}\right)=p(t)u_{1}+q(t)u_{2}+r(t)u_{3}+g(t),t\in[a,b],u_{i}\in\mathbb{R},i=1,2,3, and Lf=maxt∈[a,b]⁑(|p(t)|+|q(t)|+|r(t)|)L_{f}=\max_{t\in[a,b]}(|p(t)|+|q(t)|+|r(t)|).

We suppose that:
(C1β€²)h1,h2,a\left(\mathrm{C}_{1}^{\prime}\right)h_{1},h_{2},a and bβˆˆβ„,a<b,h1>0,h2>0b\in\mathbb{R},a<b,h_{1}>0,h_{2}>0;
(C2β€²)p,q,r,g∈C[a,b]\left(\mathrm{C}_{2}^{\prime}\right)p,q,r,g\in C[a,b];
(C3β€²)Ο†βˆˆC[aβˆ’h1,a]\left(\mathrm{C}_{3}^{\prime}\right)\varphi\in C\left[a-h_{1},a\right] and ψ∈C[b,b+h2]\psi\in C\left[b,b+h_{2}\right].
From this conditions and the above results we have
Theorem 8.1. We suppose that:
(a) the conditions (C1β€²)βˆ’(C3β€²)\left(C_{1}^{\prime}\right)-\left(C_{3}^{\prime}\right) are satisfied;
(C4β€²)Lf8(bβˆ’a)2<1\left(\mathrm{C}_{4}^{\prime}\right)\frac{L_{f}}{8}(b-a)^{2}<1.
Then the problem (8.1)-(8.2) has a unique solution which is the uniform limit of the successive approximations.

Theorem 8.2. We suppose that:
(a) the conditions (C1β€²)βˆ’(C3β€²)\left(C_{1}^{\prime}\right)-\left(C_{3}^{\prime}\right) are satisfied;
(b) Lf8(bβˆ’a)2<1\frac{L_{f}}{8}(b-a)^{2}<1;
(c) pβ‰₯0,qβ‰₯0,rβ‰₯0p\geq 0,q\geq 0,r\geq 0.

Let xx be a solution of equation (8.1) and yy a solution of the inequality βˆ’yβ€²β€²(t)≀p(t)y(t)+q(t)maxtβˆ’h1≀ξ≀t⁑y(ΞΎ)+r(t)maxt≀ξ≀t+h2⁑y(ΞΎ)+g(t),t∈[a,b]-y^{\prime\prime}(t)\leq p(t)y(t)+q(t)\max_{t-h_{1}\leq\xi\leq t}y(\xi)+r(t)\max_{t\leq\xi\leq t+h_{2}}y(\xi)+g(t),t\in[a,b].
Then

y(t)≀x(t),βˆ€t∈[aβˆ’h1,a]βˆͺ[b,b+h2] implies that y≀x.y(t)\leq x(t),\forall t\in\left[a-h_{1},a\right]\cup\left[b,b+h_{2}\right]\text{ implies that }y\leq x.

Theorem 8.3. Let pi,qi,ri,gi∈C[a,b],i=1,2,3p_{i},q_{i},r_{i},g_{i}\in C[a,b],i=1,2,3, be as in Theorem 8.1. We suppose that:
(i) p1≀p2≀p3,q1≀q2≀q3,r1≀r2≀r3,g1≀g2≀g3p_{1}\leq p_{2}\leq p_{3},q_{1}\leq q_{2}\leq q_{3},r_{1}\leq r_{2}\leq r_{3},g_{1}\leq g_{2}\leq g_{3};
(ii) pβ‰₯0,qβ‰₯0,rβ‰₯0p\geq 0,q\geq 0,r\geq 0.

Let xi,i=1,2,3x_{i},i=1,2,3, be a solution of the equation

βˆ’xiβ€²β€²(t)=pi(t)x(t)+qi(t)maxtβˆ’h1≀ξ≀t⁑x(ΞΎ)+ri(t)maxt≀ξ≀t+h2⁑x(ΞΎ)+gi(t),t∈[a,b]-x_{i}^{\prime\prime}(t)=p_{i}(t)x(t)+q_{i}(t)\max_{t-h_{1}\leq\xi\leq t}x(\xi)+r_{i}(t)\max_{t\leq\xi\leq t+h_{2}}x(\xi)+g_{i}(t),t\in[a,b]

Then, x1(t)≀x2(t)≀x3(t),βˆ€t∈[aβˆ’h1,a]βˆͺ[b,b+h2]x_{1}(t)\leq x_{2}(t)\leq x_{3}(t),\forall t\in\left[a-h_{1},a\right]\cup\left[b,b+h_{2}\right], implies that x1≀x2≀x3x_{1}\leq x_{2}\leq x_{3}, i.e. the unique solution of the problem (8.1)-(8.2) is increasing with respect to p,q,r,Ο†p,q,r,\varphi and ψ\psi.

Theorem 8.4. Let Ο†i,ψi,pi,qi,ri,gi,i=1,2\varphi_{i},\psi_{i},p_{i},q_{i},r_{i},g_{i},i=1,2 be as in the Theorem 8.1. Furthermore, we suppose that there exists Ξ·i>0,i=1,2\eta_{i}>0,i=1,2, such that
(i) |Ο†1(t)βˆ’Ο†2(t)|≀η1,βˆ€t∈[aβˆ’h1,a]\left|\varphi_{1}(t)-\varphi_{2}(t)\right|\leq\eta_{1},\forall t\in\left[a-h_{1},a\right] and |ψ1(t)βˆ’Οˆ2(t)|≀η1,βˆ€t∈[b,b+h2];\left|\psi_{1}(t)-\psi_{2}(t)\right|\leq\eta_{1},\forall t\in\left[b,b+h_{2}\right];
(ii) |f1(t,u1,u2,u3)βˆ’f2(t,u1,u2,u3)|≀η2,βˆ€t∈C[a,b],uiβˆˆβ„,i=1,2,3\left|f_{1}\left(t,u_{1},u_{2},u_{3}\right)-f_{2}\left(t,u_{1},u_{2},u_{3}\right)\right|\leq\eta_{2},\forall t\in C[a,b],u_{i}\in\mathbb{R},i=1,2,3.

Then

β€–x1βˆ—(t;Ο†1,ψ1,f1)βˆ’x2βˆ—(t;Ο†2,ψ2,f2)‖≀8Ξ·1+(bβˆ’a)2Ξ·28βˆ’Lf(bβˆ’a)2\left\|x_{1}^{*}\left(t;\varphi_{1},\psi_{1},f_{1}\right)-x_{2}^{*}\left(t;\varphi_{2},\psi_{2},f_{2}\right)\right\|\leq\frac{8\eta_{1}+(b-a)^{2}\eta_{2}}{8-L_{f}(b-a)^{2}}

where xiβˆ—(t;Ο†i,ψi,fi)x_{i}^{*}\left(t;\varphi_{i},\psi_{i},f_{i}\right) are the solution of the problem (8.1)-(8.2) with respect to Ο†i,ψi,fi,i=1,2\varphi_{i},\psi_{i},f_{i},i=1,2, and p(t)=max⁑pi(t),q(t)=max⁑qi(t),r(t)=max⁑ri(t),g(t)=max⁑gi(t),i=1,2p(t)=\max p_{i}(t),q(t)=\max q_{i}(t),r(t)=\max r_{i}(t),g(t)=\max g_{i}(t),i=1,2.

Theorem 8.5. Let f1f_{1} and f2f_{2} be as in the Theorem 8.1. Let SEf1,SEf2S_{E_{f_{1}}},S_{E_{f_{2}}} be the solution sets of system (8.1) corresponding to f1f_{1} and f2f_{2}. Suppose that there exists Ξ·>0\eta>0, such that

|f1(t,u1,u2,u3)βˆ’f2(t,u1,u2,u3)|≀η\left|f_{1}\left(t,u_{1},u_{2},u_{3}\right)-f_{2}\left(t,u_{1},u_{2},u_{3}\right)\right|\leq\eta (8.3)

for all t∈[a,b],uiβˆˆβ„,i=1,2,3t\in[a,b],u_{i}\in\mathbb{R},i=1,2,3.
Then

Hβˆ₯β‹…βˆ₯C(SEf1,SEf2)≀(bβˆ’a)2Ξ·8βˆ’Lf(bβˆ’a)2H_{\|\cdot\|_{C}}\left(S_{E_{f_{1}}},S_{E_{f_{2}}}\right)\leq\frac{(b-a)^{2}\eta}{8-L_{f}(b-a)^{2}}

where p(t)=max⁑pi(t),q(t)=max⁑qi(t),r(t)=max⁑ri(t),g(t)=max⁑gi(t),i=1,2p(t)=\max p_{i}(t),q(t)=\max q_{i}(t),r(t)=\max r_{i}(t),g(t)=\max g_{i}(t),i=1,2 and Hβˆ₯β‹…βˆ₯CH_{\|\cdot\|_{C}} denotes the Pompeiu-Hausdorff functional with respect to βˆ₯β‹…βˆ₯C\|\cdot\|_{C} on C[a,b]C[a,b].

References

[1] N.V. Azbelev (ed.), Functional-Differential Equations, Perm. Politekh. Inst. Perm, 1985 (in Russian).
[2] D. Bainov, D. Mishev, Oscillation Theory of Operator-Differential Equations, World Scientific, Singapore, 1995.
[3] D.D. Bainov, V. A. Petrov, V.S. Proyteheva, Existence and asymptotic behavior of nonoscillatory solutions of second order neutral differential equations with "maxima", J. Comput. Appl. Math., 83(1997), no. 2, 237-249.
[4] L. Georgiev, V.G. Angelov, On the existence and uniqueness of solutions for maximum equations, Glas. Mat., 37(2002), 275-281.
[5] J. Hale, Theory of Functional Differential Equations, Springer, 1977.
[6] T. Jankovskyi, System of differential equations with maxima, Dopov, Akad. Nauk. Ukr., 8(1997), 57-60.
[7] V. Kolmanovskii, A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Acad. Publ., Dordrecht, 1992.
[8] E. Liz, Monotone iterative technique in ordered Banach spaces, Nonlinear Analysis, πŸ‘πŸŽ\mathbf{30} (1997), 5179-5190.
[9] A.R. Magomedov, Existence and uniqueness theorems for solutions of differential equations with maxima containing a functional parameter, Arch. Math., Brne, 28(1992), 139-154 (in Russian).
[10] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58(2003), 191-219.
[11] I.A. Rus, Functional differential equations of mixed type, via weakly Picard operators, Seminar on Fixed Point Theory Cluj-Napoca, 3(2002), 335-346.
[12] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, 2001.
[13] I.A. Rus, Weakly Picard operators and applications, Seminar on Fixed Point Theory Cluj-Napoca, 2(2001), 41-58.
[14] I.A. Rus, A. Petruşel, M. Şerban, Weakly Picard operators: equivalent definitions, applications and open problems, Fixed Point Theory, 7(2006), 3-22.
[15] E. Stepanov, On solvability of same boundary value problems for differential equations with "maxima", Topological Methods in Nonlinear Analysis, 8(1996), 315-326.
[16] B.G. Zhang, G. Zhang, Qualitative properties of functional equations with "maxima", Rocky Mount. J. Math., 29(1999), 357-367.
[17] M. Zima, Applications of the spectral radius to same integral equations, Comment. Math. Univ. Caroline, 36(1997), 695-703.

Received: December 18, 2007; Accepted: February 10, 2008.

2008

Related Posts