Iterative functional-differential system with retarded argument

Abstract

Existence, uniqueness and data dependence results of solution to theCauchy problem for iterative functional-differential system with delays are ob-tained using weakly Picard operator theory

Authors

Diana Otrocol
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

Iterative functional-differential equation; weakly Picard operator; delay; data dependence.

Paper coordinates

D. Otrocol, Iterative functional-differential system with retarded argument, Rev. Anal. Numér. Théor. Approx., 35 (2006), no. 2, 147-160.

PDF

About this paper

Journal

Rev. Anal. Numér. Théor. Approx.

Publisher Name

Romanian Academy

Print ISSN

2457-6794

Online ISSN

 2501-059X

google scholar link

[1]Coman, Gh.,Pavel, G.,Rus, I.,Rus, I. A.,Introducere ˆın teoria ecuat ̧iilor operatoriale,Editura Dacia, Cluj-Napoca, 1976.
[2]Hale, J.,Theory of functional Differential Equations, Springer-Verlag, Berlin, 1977.
[3]Mures ̧an, V.,Functional-Integral Equations, Editura Mediamira, Cluj-Napoca, 2003.
[4]Kuang, Y.,Delay differential equations with applications to population dynamics, Aca-demic Press, Boston, 1993.
[5]Otrocol, D.,Data dependence for the solution of a Lotka-Volterra system with twodelays, Mathematica, Tome48(71), no. 1, pp. 61–68, 2006.
[6]Otrocol, D.,Smooth dependence on parameters for some Lotka-Volterra system withdelays(to appear).
[7]Rus, I. A.,Principii ̧si aplicat ̧ii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca,1979.
[8]Rus, I. A.,Weakly Picard mappings, Comment. Math. Univ. Caroline,34, pp. 769–773,1993.
[9]Rus, I. A.,Functional-differential equation of mixed type, via weakly Picard operators,Seminar of Fixed Point Theory, Cluj-Napoca,3, pp. 335–346, 2002.
[10]Rus, I. A. andEgri, E.,Boundary value problems for iterative functional-differentialequations, Studia Univ. “Babe ̧s-Bolyai”, Matematica,51(2) pp. 109–126, 2006.[11]Si, J. G.,Li, W. R. andCheng, S. S.,Analytic solution of on iterative functional-differential equation, Comput. Math. Appl.,33(6), pp. 47–51, 1997.
[12]Stanek, S.,Global properties of decreasing solutions of equationx(t) =x(x(t)) +x(t),Funct. Diff. Eq.,4(1–2), pp. 191–213, 1997.
[13]S ̧erban, M. A.,Fiberφ-contractions, Studia Univ. “Babe ̧s-Bolyai”, Mathematica,44(3), pp. 99–108, 1999.Received by the editors: February 14, 2006.

2006

Related Posts