On the accuracy of numerical computation in interpolation by polynomials of two variables

Abstract

Authors

T. Popoviciu
Institutul de Calcul

Keywords

?

Paper coordinates

T. Popoviciu, Asupra preciziei calculului numeric în interpolarea prin polinoame de două variabile, Stud. Cerc. Mat. (Cluj), 11 (1960) fasc. anexă, pp. 159-165 (in Romanian)

PDF

About this paper

Journal

Studii si Cercetari Matematice

Publisher Name

Academy of the Republic of S.R.

Print ISSN

not available

Online ISSN

google scholar link

??

Paper (preprint) in HTML form

1960 g -Popoviciu- Stud. Cerc. Mat. (Cluj) - On the accuracy of numerical computation in interpolation by
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON THE ACCURACY OF NUMERICAL COMPUTATION IN INTERPOLATION BY POLYNOMIALS OF TWO VARIABLES

OF

TIBERIU POPOVICIUCORRESPONDING MEMBER OF THE RPR ACADEMY,

(Cluj)
Paper presented at the Colloquium on the Theory of Partial Differential Equations in 21 26 21 26 21-2621-262126 sept. 1959
  1. Let's consider ( m + 1 ) ( n + 1 ) m + 1 ( n + 1 ) (m^(')+1)(n+1)\left(m^{\prime}+1\right)(n+1)(m+1)(n+1)puncture ( x i , and j ) , i = 1 , 2 , , m + 1 x i , and j , i = 1 , 2 , , m + 1 (x_(i),y_(j)),i=1,2,dots,m+1\left(x_{i}, y_{j}\right), i=1,2, \ldots, m+1(xi,andj),i=1,2,,m+1, j = 1 , 2 , , n + 1 j = 1 , 2 , , n + 1 j=1,2,dots,n+1j=1,2, \ldots, n+1j=1,2,,n+1in the plane, forming a rectangular network of nodes. For the purpose of fixing the notations we will assume that x 1 < x 2 < < x m + 1 x 1 < x 2 < < x m + 1 x_(1) < x_(2) < dots < x_(m+1)x_{1}<x_{2}<\ldots<x_{m+1}x1<x2<<xm+1, and 1 < and 2 < < and n + 1 and 1 < and 2 < < and n + 1 y_(1) < y_(2) < dots < y_(n+1)y_{1}<y_{2}<\ldots<y_{n+1}and1<and2<<andn+1. Permutation P ( r 1 , r 2 , , r m + 1 ; s 1 , s 2 , , s n + 1 ) P r 1 , r 2 , , r m + 1 ; s 1 , s 2 , , s n + 1 P(r_(1),r_(2),dots,r_(m+1);s_(1),s_(2),dots,s_(n+1))P\left(r_{1}, r_{2}, \ldots, r_{m+1} ; s_{1}, s_{2}, \ldots, s_{n+1}\right)P(r1,r2,,rm+1;s1,s2,,sn+1)of the network of nodes is defined by a permutation r 1 , r 2 , , r m + 1 r 1 , r 2 , , r m + 1 r_(1),r_(2),dots,r_(m+1)r_{1}, r_{2}, \ldots, r_{m+1}r1,r2,,rm+1of indices 1 , 2 , , m + 1 1 , 2 , , m + 1 1,2,dots,m+11,2, \ldots, m+11,2,,m+1, from o to exchange s 1 , s 2 , , s n + 1 s 1 , s 2 , , s n + 1 s_(1),s_(2),dots,s_(n+1)s_{1}, s_{2}, \ldots, s_{n+1}s1,s2,,sn+1of indices 1 , 2 , , n + 1 1 , 2 , , n + 1 1,2,dots dots,n+11,2, \ldots \ldots, n+11,2,,n+1and renumbering the coordinates of the network nodes so that we have x i = x r i , i = 1 , 2 , , m + 1 , and j = and s j , j = 1 , 2 , , n + 1 x i = x r i , i = 1 , 2 , , m + 1 , and j = and s j , j = 1 , 2 , , n + 1 x_(i)^(')=x_(r_(i)),i=1,2,dots,m+1,y_(j)^(')=y_(s_(j)),j=1,2,dots,n+1x_{i}^{\prime}=x_{r_{i}}, i=1,2, \ldots, m+1, y_{j}^{\prime}=y_{s_{j}}, j=1,2, \ldots, n+1xi=xri,i=1,2,,m+1,andj=andsj,j=1,2,,n+1.
Let's introduce the notations
(1) D in , m i , j [ f ] = [ x in , x in + 1 , , x in + i and m , and m + 1 , , and m + j ; f ] (1) D in , m i , j [ f ] = x in , x in + 1 , , x in + i and m , and m + 1 , , and m + j ; f {:(1)D_(v,mu)^(i,j)[f]=[[x_(v)^(')","x_(v+1)^(')","dots","x_(v+i)^(')],[y_(mu)^(')","y_(mu+1)^(')","dots","y_(mu+j)^(')];f]:}D_{v, \mu}^{i, j}[f]=\left[\begin{array}{l} x_{v}^{\prime}, x_{v+1}^{\prime}, \ldots, x_{v+i}^{\prime} \tag{1}\\ y_{\mu}^{\prime}, y_{\mu+1}^{\prime}, \ldots, y_{\mu+j}^{\prime} \end{array} ; f\right](1)Din,mi,j[f]=[xin,xin+1,,xin+iandm,andm+1,,andm+j;f]
for the differences divided by the points ( x in + a , and m + b x in + a , and m + b x_(v+alpha),y_(mu+beta)x_{v+\alpha}, y_{\mu+\beta}xin+a,andm+b ), a = 0 , 1 , , i a = 0 , 1 , , i alpha=0,1,dots,i\alpha=0,1, \ldots, ia=0,1,,i, b = 0 , 1 , , j b = 0 , 1 , , j beta=0,1,dots,j\beta=0,1, \ldots, jb=0,1,,j, relative to the function f ( x , and ) f ( x , and ) f(x,y)f(x, y)f(x,and).
Dd ( = divided difference or divided differences)
(2) D in , m i , j [ f ] , in = 1 , 2 , , m + 1 i , m = 1 , 2 , , n + 1 j , i = 0 , 1 , , m , j = 0 , 1 , , n (2) D in , m i , j [ f ] , in = 1 , 2 , , m + 1 i , m = 1 , 2 , , n + 1 j , i = 0 , 1 , , m , j = 0 , 1 , , n {:(2){:[D_(v,mu)^(i,j)[f]","v=1","2","dots",",m+1-i","quad mu=1","2","dots","n+1-j","],[i=0",",quad1","dots","m","j=0","1","dots","n]:}:}\begin{array}{cl} D_{v, \mu}^{i, j}[f], v=1,2, \ldots, & m+1-i, \quad \mu=1,2, \ldots, n+1-j, \\ i=0, & \quad 1, \ldots, m, j=0,1, \ldots, n \tag{2} \end{array}(2)Din,mi,j[f],in=1,2,,m+1i,m=1,2,,n+1j,i=0,1,,m,j=0,1,,n
constitutes the dd array corresponding to the permutation
P ( r 1 , r 2 , , r m + 1 ; s 1 , s 2 , , s n + 1 ) P r 1 , r 2 , , r m + 1 ; s 1 , s 2 , , s n + 1 P(r_(1),r_(2),dots,r_(m+1);s_(1),s_(2),dots,s_(n+1))P\left(r_{1}, r_{2}, \ldots, r_{m+1} ; s_{1}, s_{2}, \ldots, s_{n+1}\right)P(r1,r2,,rm+1;s1,s2,,sn+1)
of the network of nodes.
The system ( m + 1 ) ( n + 1 ) ( m + 1 ) ( n + 1 ) (m+1)(n+1)(m+1)(n+1)(m+1)(n+1) d.d.
(3) D 1 , 1 i , j [ f ] , i = 0 , 1 , , m , j = 0 , 1 , , n (3) D 1 , 1 i , j [ f ] , i = 0 , 1 , , m , j = 0 , 1 , , n {:(3)D_(1,1)^(i,j)[f]","quad i=0","1","dots","m","j=0","1","dots","n:}\begin{equation*} D_{1,1}^{i, j}[f], \quad i=0,1, \ldots, m, j=0,1, \ldots, n \tag{3} \end{equation*}(3)D1,1i,j[f],i=0,1,,m,j=0,1,,n
form a chained system of dd
If each term of a chained system of dd belongs to the same array of dd, we will say that the chained system under consideration belongs to this array of dd In particular, the chained system (3) belongs to the array (2). Of course, however, the chained system (3) belongs at the same time to other arrays of dd
In particular, the tableau (2) corresponding to the initial permutation P ( 1 , 2 , , m + 1 ; 1 , 2 , , n + 1 P ( 1 , 2 , , m + 1 ; 1 , 2 , , n + 1 P(1,2,dots dots,m+1;1,2,dots,n+1P(1,2, \ldots \ldots, m+1 ; 1,2, \ldots, n+1P(1,2,,m+1;1,2,,n+1) of the network of nodes, will be called the normal array of dd and any linked system of dd belonging to this array will be called a normal linked system of dd In the case of the initial permutation we have
r i = i , s j = j , D n , n i n ] = [ x n , x n + 1 , , x n + i and m , and m + 1 , , ] r i = i , s j = j , D n , n i n = x n ,      x n + 1 , ,      x n + i and m ,      and m + 1 ,      , {:r_(i)=i,s_(j)=j,D_(nu,nu)^(i)_(nu)]=[[x_(nu)",",x_(nu+1)","dots",",x_(nu+i)],[y_(mu)",",y_(mu+1)",",dots","]]\left.r_{i}=i, s_{j}=j, D_{\nu, \nu}^{i}{ }_{\nu}\right]=\left[\begin{array}{lll} x_{\nu}, & x_{\nu+1}, \ldots, & x_{\nu+i} \\ y_{\mu}, & y_{\mu+1}, & \ldots, \end{array}\right]ri=i,sj=j,Dn,nin]=[xn,xn+1,,xn+iandm,andm+1,,]
for all possible values ​​of i , j , v , μ i , j , v , μ i,j,v,mui, j, v, \mui,j,in,m2.
Permutations P ( r 1 , r 2 , , r m + 1 ; s 1 , s 2 , , s n + 1 ) P r 1 , r 2 , , r m + 1 ; s 1 , s 2 , , s n + 1 P(r_(1),r_(2),dots,r_(m+1);s_(1),s_(2),dots,s_(n+1))P\left(r_{1}, r_{2}, \ldots, r_{m+1} ; s_{1}, s_{2}, \ldots, s_{n+1}\right)P(r1,r2,,rm+1;s1,s2,,sn+1)of the network of nodes, corresponds to the interpolation polynomial of two variables, which in its general form is [2],
(4) L ( x , y ) = i = 0 m j = 0 n i ( x x r 1 ) ( x x r 9 ) ( x x r i ) ( y y s 1 ) × × ( y y s 2 ) ( y y s j ) D 1 , 1 i , j [ f ] (4) L ( x , y ) = i = 0 m j = 0 n i x x r 1 x x r 9 x x r i y y s 1 × × y y s 2 y y s j D 1 , 1 i , j [ f ] {:[(4)L(x","y)=sum_(i=0)^(m)sum_(j=0)^(n_(i))(x-x_(r_(1)))(x-x_(r_(9)))dots(x-x_(r_(i)))(y-y_(s_(1)))xx],[xx(y-y_(s_(2)))dots(y-y_(sj))D_(1,1)^(i,j)[f]]:}\begin{gather*} L(x, y)=\sum_{i=0}^{m} \sum_{j=0}^{n_{i}}\left(x-x_{r_{1}}\right)\left(x-x_{r_{9}}\right) \ldots\left(x-x_{r_{i}}\right)\left(y-y_{s_{1}}\right) \times \tag{4}\\ \times\left(y-y_{s_{2}}\right) \ldots\left(y-y_{s j}\right) D_{1,1}^{i, j}[f] \end{gather*}(4)L(x,and)=i=0mj=0ni(xxr1)(xxr9)(xxri)(andands1)××(andands2)(andandsj)D1,1i,j[f]
where 0 n i n , i = 0 , 1 , , m 0 n i n , i = 0 , 1 , , m 0 <= n_(i) <= n,i=0,1,dots,m0 \leqq n_{i} \leqq n, i=0,1, \ldots, m0nin,i=0,1,,mand for i = 0 i = 0 i=0i=0i=0respectively j = 0 j = 0 j=0j=0j=0the product ( x x r 1 ) ( x x r 2 ) ( x x r i ) x x r 1 x x r 2 x x r i (x-x_(r_(1)))(x-x_(r_(2)))dots(x-x_(r_(i)))\left(x-x_{r_{1}}\right)\left(x-x_{r_{2}}\right) \ldots\left(x-x_{r_{i}}\right)(xxr1)(xxr2)(xxri)respectively ( y y s 1 ) ( y y s 2 ) × × ( y y s j ) y y s 1 y y s 2 × × y y s j (y-y_(s_(1)))(y-y_(s_(2)))dots xx xx(y-y_(sj))\left(y-y_{s_{1}}\right)\left(y-y_{s_{2}}\right) \ldots \times \times\left(y-y_{s j}\right)(andands1)(andands2)××(andandsj)is replaced by 1.
On a given interpolation point ( x , y ) ( x , y ) (x,y)(x, y)(x,and), determining an approximate value for f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,and)with the help of the polynomial (4), requires the calculation of the numerical value of this polynomial. This calculation is made by executing, exactly or approximately, a certain sequence of elementary operations: additions, subtractions, multiplications and divisions. Since the operations are generally executed approximately, a calculation error will result that depends on the precision with which the calculations were executed as well as, of course, on the order of performing these calculations, that is, on the program on the basis of which they were executed. We will not take into account the errors that may affect the data of the problem, so the coordinates of the nodes and the values ​​of the function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,and)on these nodes.
3. To calculate the numerical value of the polynomial (4), it may also be useful to modify its expression, putting
X 0 = 1 , X i = x x r i k i , Y 0 = 1 , Y j = y y s j l j , X 0 = 1 , X i = x x r i k i , Y 0 = 1 , Y j = y y s j l j , X_(0)=1,X_(i)=(x-x_(r_(i)))/(k_(i)),Y_(0)=1,Y_(j)=(y-y_(s_(j)))/(l_(j)),X_{0}=1, X_{i}=\frac{x-x_{r_{i}}}{k_{i}}, Y_{0}=1, Y_{j}=\frac{y-y_{s_{j}}}{l_{j}},X0=1,Xi=xxriki,AND0=1,ANDj=andandsjlj,
E i , j = k 0 k 1 k i l 0 l 1 l j D 1 , 1 i 1 , j [ f ] , i = 0 , 1 , , m , j = 0 , 1 , , n E i , j = k 0 k 1 k i l 0 l 1 l j D 1 , 1 i 1 , j [ f ] , i = 0 , 1 , , m , j = 0 , 1 , , n E_(i,j)=k_(0)k_(1)dotsk_(i)l_(0)l_(1)dotsl_(j)D_(1,1)^(i_(1),j)[f],i=0,1,dots,m,j=0,1,dots,nE_{i, j}=k_{0} k_{1} \ldots k_{i} l_{0} l_{1} \ldots l_{j} D_{1,1}^{i_{1}, j}[f], i=0,1, \ldots, m, j=0,1, \ldots, nANDi,j=k0k1kil0l1ljD1,1i1,j[f],i=0,1,,m,j=0,1,,n, where k 0 ( = 1 ) , k 1 , k 2 , , k m , l 0 ( = 1 ) , l 1 , l 2 , , l n k 0 ( = 1 ) , k 1 , k 2 , , k m , l 0 ( = 1 ) , l 1 , l 2 , , l n k_(0)(=1),k_(1),k_(2),dots,k_(m),l_(0)(=1),l_(1),l_(2),dots,l_(n)k_{0}(=1), k_{1}, k_{2}, \ldots, k_{m}, l_{0}(=1), l_{1}, l_{2}, \ldots, l_{n}k0(=1),k1,k2,,km,l0(=1),l1,l2,,lnare some given numbers, different from 0. We then have
L ( x , y ) = i = 0 m j = 0 n i X 0 X 1 X i Y 0 Y 1 , Y j E i , j L ( x , y ) = i = 0 m j = 0 n i X 0 X 1 X i Y 0 Y 1 , Y j E i , j L(x,y)=sum_(i=0)^(m)sum_(j=0)^(n_(i))X_(0)X_(1)dotsX_(i)Y_(0)Y_(1)dots,Y_(j)E_(i,j)L(x, y)=\sum_{i=0}^{m} \sum_{j=0}^{n_{i}} X_{0} X_{1} \ldots X_{i} Y_{0} Y_{1} \ldots, Y_{j} E_{i, j}L(x,and)=i=0mj=0niX0X1XiAND0AND1,ANDjANDi,j
which is usually calculated by adding
(5) i = 0 m X 0 X 1 X i A i , (5) i = 0 m X 0 X 1 X i A i , {:(5)sum_(i=0)^(m)X_(0)X_(1)dotsX_(i)A_(i)",":}\begin{equation*} \sum_{i=0}^{m} X_{0} X_{1} \ldots X_{i} A_{i}, \tag{5} \end{equation*}(5)i=0mX0X1XiAi,
having previously calculated the amounts
(6) A i = j = 0 n i Y 0 Y 1 Y j E i , j i = 0 , 1 , , m . (6) A i = j = 0 n i Y 0 Y 1 Y j E i , j i = 0 , 1 , , m . {:(6)A_(i)=sum_(j=0)^(n_(i))Y_(0)*Y_(1)dotsY_(j)E_(i,j)i=0","1","dots","m.:}\begin{equation*} A_{i}=\sum_{j=0}^{n_{i}} Y_{0} \cdot Y_{1} \ldots Y_{j} E_{i, j} i=0,1, \ldots, m . \tag{6} \end{equation*}(6)Ai=j=0niAND0AND1ANDjANDi,ji=0,1,,m.
Each of the sums (5), (6) is of the form
(7) c 0 C 0 + c 0 c 1 C 1 + + c 0 c 1 c α C α . (7) c 0 C 0 + c 0 c 1 C 1 + + c 0 c 1 c α C α . {:(7)c_(0)C_(0)+c_(0)c_(1)C_(1)+dots+c_(0)c_(1)dotsc_(alpha)C_(alpha).:}\begin{equation*} c_{0} C_{0}+c_{0} c_{1} C_{1}+\ldots+c_{0} c_{1} \ldots c_{\alpha} C_{\alpha} . \tag{7} \end{equation*}(7)c0C0+c0c1C1++c0c1caCa.
Let us assume that additions and subtractions do not involve errors (they are performed exactly or, in any case, with some errors that can be neglected). Then if we calculate the sum (7) based on the scheme
(8) c 0 ( C 0 + c 1 ( C 1 + + c α 1 ( C α 1 + c α C α ) ) ) , (8) c 0 C 0 + c 1 C 1 + + c α 1 C α 1 + c α C α , {:(8)c_(0)(C_(0)+c_(1)(C_(1)+dots+c_(alpha-1)(C_(alpha-1)+c_(alpha)C_(alpha))dots))",":}\begin{equation*} c_{0}\left(C_{0}+c_{1}\left(C_{1}+\ldots+c_{\alpha-1}\left(C_{\alpha-1}+c_{\alpha} C_{\alpha}\right) \ldots\right)\right), \tag{8} \end{equation*}(8)c0(C0+c1(C1++ca1(Ca1+caCa))),
as is usually done, the profit comes only from the performance of the α + 1 α + 1 alpha+1\alpha+1a+1 inmulțiri successive cu c α , c α 1 , , c 0 cu c α , c α 1 , , c 0 cuc_(alpha),c_(alpha-1),dots,c_(0)\mathrm{cu} c_{\alpha}, c_{\alpha-1}, \ldots, c_{0}withca,ca1,,c0respectively. It is easy to see that if these multiplications are performed with an absolute error, at most equal to ε ε epsi\varepsilone, the approximate result obtained will have an absolute error ε ( 1 + i = 0 α 1 | c 0 c 1 c i | ) , ( = ε ε 1 + i = 0 α 1 c 0 c 1 c i , ( = ε <= epsi(1+sum_(i=0)^(alpha-1)|c_(0)c_(1)dotsc_(i)|),(=epsi\leqq \varepsilon\left(1+\sum_{i=0}^{\alpha-1}\left|c_{0} c_{1} \ldots c_{i}\right|\right),(=\varepsilone(1+i=0a1|c0c1ci|),(=eif α = 0 ) α = 0 ) alpha=0)\alpha=0)a=0)In the cases that we will actually consider, multiplication by c 0 c 0 c_(0)c_{0}c0does not contain errors (we will always have c 0 = 1 c 0 = 1 c_(0)=1c_{0}=1c0=1). In this case the absolute error of the result is ε i = 0 α 1 | c 0 c 1 c i | , ( 0 ε i = 0 α 1 c 0 c 1 c i , ( 0 <= epsisum_(i=0)^(alpha-1)|c_(0)c_(1)dotsc_(i)|,(0\leqq \varepsilon \sum_{i=0}^{\alpha-1}\left|c_{0} c_{1} \ldots c_{i}\right|,(0ei=0a1|c0c1ci|,(0if α = 0 ) α = 0 ) alpha=0)\alpha=0)a=0).
Let us apply this calculation scheme to the sums (5), (6). The sum (6) is of the form (7), where we put
α = n i , c v = Y v , C v = E i , v , v = 0 , 1 , , n i . α = n i , c v = Y v , C v = E i , v , v = 0 , 1 , , n i . alpha=n_(i),quadc_(v)=Y_(v),quadC_(v)=E_(i,v),quad v=0,1,dots,n_(i).\alpha=n_{i}, \quad c_{v}=Y_{v}, \quad C_{v}=E_{i, v}, \quad v=0,1, \ldots, n_{i} .a=ni,cin=ANDin,Cin=ANDi,in,in=0,1,,ni.
So if we perform the calculations based on scheme (8), the multiplications being performed with an absolute error ε ε <= epsi\leqq \varepsilone, the result obtained A ~ i A ~ i widetilde(A)_(i)\widetilde{A}_{i}A~iis with an absolute error ε j = 0 i 1 | Y 0 Y 1 Y j | , ( = 0 ε j = 0 i 1 Y 0 Y 1 Y j , = 0 <= epsisum_(j=0)^(i^(-)-1)|Y_(0)Y_(1)dotsY_(j)|,(=0:}\leqq \varepsilon \sum_{j=0}^{i^{-}-1}\left|Y_{0} Y_{1} \ldots Y_{j}\right|,\left(=0\right.ej=0i1|AND0AND1ANDj|,(=0, if n i = 0 ) n i = 0 {:n_(i)=0)\left.n_{i}=0\right)ni=0)It follows that the approximation of the sum (б),
(9) i = 0 m X 0 X 1 X i A ~ i (9) i = 0 m X 0 X 1 X i A ~ i {:(9)sum_(i=0)^(m)X_(0)X_(1)dotsX_(i) widetilde(A)_(i):}\begin{equation*} \sum_{i=0}^{m} X_{0} X_{1} \ldots X_{i} \widetilde{A}_{i} \tag{9} \end{equation*}(9)i=0mX0X1XiA~i
has an absolute error ε i = 0 m | X 0 X 1 X i | ( j = 0 n i 1 | Y 0 Y 1 Y j | ) ε i = 0 m X 0 X 1 X i j = 0 n i 1 Y 0 Y 1 Y j <= epsisum_(i=0)^(m)|X_(0)X_(1)dotsX_(i)|(sum_(j=0)^(n_(i)-1)|Y_(0)Y_(1)dotsY_(j)|)\leqq \varepsilon \sum_{i=0}^{m}\left|X_{0} X_{1} \ldots X_{i}\right|\left(\sum_{j=0}^{n_{i}-1}\left|Y_{0} Y_{1} \ldots Y_{j}\right|\right)ei=0m|X0X1Xi|(j=0ni1|AND0AND1ANDj|)
The sum (9) is also of the form
α = m , c v = X v , C v = A ~ v , v = 0 , 1 , , m . α = m , c v = X v , C v = A ~ v , v = 0 , 1 , , m . alpha=m,quadc_(v)=X_(v),quadC_(v)= widetilde(A)_(v),quad v=0,1,dots,m.\alpha=m, \quad c_{v}=X_{v}, \quad C_{v}=\widetilde{A}_{v}, \quad v=0,1, \ldots, m .a=m,cin=Xin,Cin=A~in,in=0,1,,m.
So if we perform the calculations here based on scheme (8), the multiplications being performed with an absolute error ε ε <= epsi\leqq \varepsilone, the approximate value obtained by pentium (9) will have an absolute error at most equal to
ε i = 0 m 1 | X 0 X 1 X i | ( = 0 , dacă m = 0 ) ε i = 0 m 1 X 0 X 1 X i ( = 0 ,  dacă  m = 0 ) epsisum_(i=0)^(m-1)|X_(0)X_(1)dotsX_(i)|(=0," dacă "m=0)\varepsilon \sum_{i=0}^{m-1}\left|X_{0} X_{1} \ldots X_{i}\right|(=0, \text { dacă } m=0)ei=0m1|X0X1Xi|(=0, if m=0)
Ultimately, therefore, making the calculations based on the indicated scheme, we obtain for L ( x , y ) L ( x , y ) L(x,y)L(x, y)L(x,and)an approximate value with an absolute error ε M ε M <= epsi M\leqq \varepsilon MeM, where
M = i = 0 m | X 0 X 1 X i | ( j = 0 n i 1 | Y 0 Y 1 Y j | ) + i = 0 m 1 | X 0 X 1 X i | M = i = 0 m X 0 X 1 X i j = 0 n i 1 Y 0 Y 1 Y j + i = 0 m 1 X 0 X 1 X i M=sum_(i=0)^(m)|X_(0)X_(1)dotsX_(i)|(sum_(j=0)^(n_(i)-1)|Y_(0)Y_(1)dotsY_(j)|)+sum_(i=0)^(m-1)|X_(0)X_(1)dotsX_(i)|M=\sum_{i=0}^{m}\left|X_{0} X_{1} \ldots X_{i}\right|\left(\sum_{j=0}^{n_{i}-1}\left|Y_{0} Y_{1} \ldots Y_{j}\right|\right)+\sum_{i=0}^{m-1}\left|X_{0} X_{1} \ldots X_{i}\right|M=i=0m|X0X1Xi|(j=0ni1|AND0AND1ANDj|)+i=0m1|X0X1Xi|.
4. We can set ourselves the problem of finding, for the given interpolation point ( x , y ) ( x , y ) (x,y)(x, y)(x,and), exchange that P ( r 1 , r 2 , , r m + 1 ; s 1 , s 2 , , s n + 1 ) P r 1 , r 2 , , r m + 1 ; s 1 , s 2 , , s n + 1 P(r_(1),r_(2),dots,r_(m+1);s_(1),s_(2),dots,s_(n+1))P\left(r_{1}, r_{2}, \ldots, r_{m+1} ; s_{1}, s_{2}, \ldots, s_{n+1}\right)P(r1,r2,,rm+1;s1,s2,,sn+1)of the network of nodes for which the number given by formula (10) is the smallest possible. If this condition is met, we will consider that polynomial (4) is the most advantageous for numerical calculations (made based on the indicated scheme).
Both the amounts
(11) B ı = j = 0 n i 1 | Y 0 Y 1 Y j | , i = 0 , 1 , m (11) B ı = j = 0 n i 1 Y 0 Y 1 Y j , i = 0 , 1 , m {:(11)B_(ı)=sum_(j=0)^(n_(i)-1)|Y_(0)Y_(1)dotsY_(j)|","quad i=0","1","dots m:}\begin{equation*} B_{\imath}=\sum_{j=0}^{n_{i}-1}\left|Y_{0} Y_{1} \ldots Y_{j}\right|, \quad i=0,1, \ldots m \tag{11} \end{equation*}(11)BI=j=0ni1|AND0AND1ANDj|,i=0,1,m
and the sum (10) are of the form
(12) S 0 + s ν 1 S 1 + s ν 1 s ν 2 S 2 + + s ν 1 s ν 2 s ν α S α , (12) S 0 + s ν 1 S 1 + s ν 1 s ν 2 S 2 + + s ν 1 s ν 2 s ν α S α , {:(12)S_(0)+s_(nu_(1))S_(1)+s_(nu_(1))s_(nu_(2))S_(2)+dots+s_(nu_(1))s_(nu_(2))dotss_(nu_(alpha))S_(alpha)",":}\begin{equation*} S_{0}+s_{\nu_{1}} S_{1}+s_{\nu_{1}} s_{\nu_{2}} S_{2}+\ldots+s_{\nu_{1}} s_{\nu_{2}} \ldots s_{\nu_{\alpha}} S_{\alpha}, \tag{12} \end{equation*}(12)S0+sn1S1+sn1sn2S2++sn1sn2snaSa,
where S 0 , S 1 , , S α S 0 , S 1 , , S α S_(0),S_(1),dots,S_(alpha)S_{0}, S_{1}, \ldots, S_{\alpha}S0,S1,,Saare positive numbers, and S v 1 , S v 2 , , S v α S v 1 , S v 2 , , S v α S_(v_(1)),S_(v_(2)),dots,S_(v_(alpha))S_{v_{1}}, S_{v_{2}}, \ldots, S_{v_{\alpha}}Sin1,Sin2,,Sinais a permutation of a string s 1 , s 2 , , s α s 1 , s 2 , , s α s_(1),s_(2),dots,s_(alpha)s_{1}, s_{2}, \ldots, s_{\alpha}s1,s2,,saof positive numbers.
The string (11) is of the form (12), where
α = n i 1 , s j = | y y j | , v j = s j , S j = 1 | l 0 l 1 l i | j = 1 , 2 , , n i 1 , S 0 = 1 α = n i 1 , s j = y y j , v j = s j , S j = 1 l 0 l 1 l i j = 1 , 2 , , n i 1 , S 0 = 1 {:[alpha=n_(i)-1","s_(j)=|y-y_(j)|","v_(j)=s_(j)","S_(j)=(1)/(|l_(0)l_(1)cdotsl_(i)|)],[j=1","2","dots","n_(i)-1","quadS_(0)=1]:}\begin{gathered} \alpha=n_{i}-1, s_{j}=\left|y-y_{j}\right|, v_{j}=s_{j}, S_{j}=\frac{1}{\left|l_{0} l_{1} \cdots l_{i}\right|} \\ j=1,2, \ldots, n_{i}-1, \quad S_{0}=1 \end{gathered}a=ni1,sj=|andandj|,inj=sj,Sj=1|l0l1li|j=1,2,,ni1,S0=1
and the sum (10) is of the form (12), where
α = m , s i = | x x i | , v i = r i , S i = 1 | k 0 k 1 k i | ( 1 + i = 0 π i 1 | Y 0 Y 1 Y j | ) , α = m , s i = x x i , v i = r i , S i = 1 k 0 k 1 k i 1 + i = 0 π i 1 Y 0 Y 1 Y j , alpha=m,s_(i)=|x-x_(i)|,quadv_(i)=r_(i),quadS_(i)=(1)/(|k_(0)k_(1)dotsk_(i)|)(1+sum_(i=0)^(pi_(i)-1)|Y_(0)Y_(1)dotsY_(j)|),\alpha=m, s_{i}=\left|x-x_{i}\right|, \quad v_{i}=r_{i}, \quad S_{i}=\frac{1}{\left|k_{0} k_{1} \ldots k_{i}\right|}\left(1+\sum_{i=0}^{\pi_{i}-1}\left|\mathbf{Y}_{0} \mathbf{Y}_{1} \ldots \mathbf{Y}_{j}\right|\right),a=m,si=|xxi|,ini=ri,Si=1|k0k1ki|(1+i=0pi1|AND0AND1ANDj|),
i = 0 , 1 , , m 1 , S m = 1 | k 0 k 1 k m | ( j = 0 n m 1 | Y 0 Y 1 Y j | ) , ν m = r m i = 0 , 1 , , m 1 , S m = 1 k 0 k 1 k m j = 0 n m 1 Y 0 Y 1 Y j , ν m = r m i=0,1,dots,m-1,S_(m)=(1)/(|k_(0)k_(1)dotsk_(m)|)(sum_(j=0)^(n_(m)-1)|Y_(0)Y_(1)dotsY_(j)|),nu_(m)=r_(m)i=0,1, \ldots, m-1, S_{m}=\frac{1}{\left|k_{0} k_{1} \ldots k_{m}\right|}\left(\sum_{j=0}^{n_{m}-1}\left|Y_{0} Y_{1} \ldots Y_{j}\right|\right), \nu_{m}=r_{m}i=0,1,,m1,Sm=1|k0k1km|(j=0nm1|AND0AND1ANDj|),nm=rm.

We now have the following

Lemma. The sum (12) reaches its smallest value if the sequence s v 1 , s v 2 , , s v α s v 1 , s v 2 , , s v α s_(v_(1)),s_(v_(2)),dots,s_(v_(alpha))s_{v_{1}}, s_{v_{2}}, \ldots, s_{v_{\alpha}}sin1,sin2,,sinais non-decreasing (in other words, for a non-decreasing permutation of the string s 1 , s 2 , , s α s 1 , s 2 , , s α s_(1),s_(2),dots,s_(alpha)s_{1}, s_{2}, \ldots, s_{\alpha}s1,s2,,sa ).
The proof is straightforward. It is easy to see that the minimum is reached only for non-decreasing permutations of the sequence s 1 , s 2 , , s α s 1 , s 2 , , s α s_(1),s_(2),dots,s_(alpha)s_{1}, s_{2}, \ldots, s_{\alpha}s1,s2,,sa. From the previous lemma then follows the following
THEOREM. If the permutation P ( r 1 , r 2 , , r m + 1 ; s 1 , s 2 , , s n + 1 ) P r 1 , r 2 , , r m + 1 ; s 1 , s 2 , , s n + 1 P(r_(1),r_(2),dots,r_(m+1);s_(1),s_(2),dots,s_(n+1))P\left(r_{1}, r_{2}, \ldots, r_{m+1} ; s_{1}, s_{2}, \ldots, s_{n+1}\right)P(r1,r2,,rm+1;s1,s2,,sn+1)it is so that the strings
| x x r 1 | , | x x r 2 | , , | x x r m | ; | y y ε 1 | , | y y s 2 | , , | y y s n 1 | x x r 1 , x x r 2 , , x x r m ; y y ε 1 , y y s 2 , , y y s n 1 |x-x_(r_(1))|,|x-x_(r_(2))|,dots,|x-x_(r_(m))|;|y-y_(epsi_(1))|,|y-y_(s_(2))|,dots,|y-y_(s_(n-1))|\left|x-x_{r_{1}}\right|,\left|x-x_{r_{2}}\right|, \ldots,\left|x-x_{r_{m}}\right| ;\left|y-y_{\varepsilon_{1}}\right|,\left|y-y_{s_{2}}\right|, \ldots,\left|y-y_{s_{n-1}}\right||xxr1|,|xxr2|,,|xxrm|;|andande1|,|andands2|,,|andandsn1|
to be non-decreasing, the number M reaches its smallest value.
5. It follows from the preceding that if the sequences
(13) | x x r 1 | , | x x r 2 | , , | x x r m + 1 | ; | y y s 1 | | y y s 2 | , , | y y s n + 1 | (13) x x r 1 , x x r 2 , , x x r m + 1 ; y y s 1 y y s 2 , , y y s n + 1 {:[(13)|x-x_(r_(1))|","|x-x_(r_(2))|","dots","|x-x_(r_(m+1))|;|y-y_(s_(1))|],[|y-y_(s_(2))|","dots","|y-y_(s_(n+1))|]:}\begin{gather*} \left|x-x_{r_{1}}\right|,\left|x-x_{r_{2}}\right|, \ldots,\left|x-x_{r_{m+1}}\right| ;\left|y-y_{s_{1}}\right| \tag{13}\\ \left|y-y_{s_{2}}\right|, \ldots,\left|y-y_{s_{n+1}}\right| \end{gather*}(13)|xxr1|,|xxr2|,,|xxrm+1|;|andands1||andands2|,,|andandsn+1|
non-decreasing int, polynomial (4) is the most advantageous for calculating an approximate value of f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,and)In this case, based on a previous result [1], the permutation r 1 , r 2 , , r m + 1 r 1 , r 2 , , r m + 1 r_(1),r_(2),dots,r_(m+1)r_{1}, r_{2}, \ldots, r_{m+1}r1,r2,,rm+1must be consecutive to the permutation 1 , 2 , , m + 1 1 , 2 , , m + 1 1,2,dots,m+11,2, \ldots, m+11,2,,m+1and the permutation s 1 , s 2 , , s n + 1 s 1 , s 2 , , s n + 1 s_(1),s_(2),dots,s_(n+1)s_{1}, s_{2}, \ldots, s_{n+1}s1,s2,,sn+1consecutive permutations 1 , 2 , , n + 1 1 , 2 , , n + 1 1,2,dots,n+11,2, \ldots, n+11,2,,n+1This means that for any t t ttt, ( t = 1 , 2 , , m + 1 ( t = 1 , 2 , , m + 1 (t=1,2,dots,m+1(t=1,2, \ldots, m+1(t=1,2,,m+1, respectively t = 1 , 2 , , n + 1 ) t = 1 , 2 , , n + 1 ) t=1,2,dots,n+1)t=1,2, \ldots, n+1)t=1,2,,n+1), the strings r 1 , r 2 , , r t r 1 , r 2 , , r t r_(1),r_(2),dots,r_(t)r_{1}, r_{2}, \ldots, r_{t}r1,r2,,rtand s 1 , s 2 , , s t s 1 , s 2 , , s t s_(1),s_(2),dots,s_(t)s_{1}, s_{2}, \ldots, s_{t}s1,s2,,stare made up of how many t t tttconsecutive natural numbers (in a certain order).
When the sequences (13) are non-decreasing, and in this case the polynomial (4) is advantageous for calculations in the sense shown above, the corresponding chained dd system is a normal chained system. It is therefore sufficient to use the normal dd tableau, in order to be able to construct all the advantageous polynomials (4), according to the different positions of the interpolation point.
We can, as in the case of a single variable [1], study particular cases differently. If the interpolation point is in the vicinity of one of the extreme nodes ( x 1 , y 1 ) , ( x 1 , y n + 1 ) , ( x n + 1 , y 1 ) , ( x n + 1 , y n + 1 ) x 1 , y 1 , x 1 , y n + 1 , x n + 1 , y 1 , x n + 1 , y n + 1 (x_(1),y_(1)),(x_(1),y_(n+1)),(x_(n+1),y_(1)),(x_(n+1),y_(n+1))\left(x_{1}, y_{1}\right),\left(x_{1}, y_{n+1}\right),\left(x_{n+1}, y_{1}\right),\left(x_{n+1}, y_{n+1}\right)(x1,and1),(x1,andn+1),(xn+1,and1),(xn+1,andn+1), we find that the most advantageous polynomials ordered by ascending and descending differences in relation to x , y x , y x,yx, yx,and, so those for which the chained system (3) corresponds to the permutations P ( 1 , 2 , , m + 1 ; 1 , 2 , , n + 1 P ( 1 , 2 , , m + 1 ; n + 1 , n , , 1 ) , P ( m + 1 , m , , 1 ; 1 , 2 , , n + 1 P ( m + 1 , m , , 1 ; n + 1 , n , , 1 ) P ( 1 , 2 , , m + 1 ; 1 , 2 , , n + 1 P ( 1 , 2 , , m + 1 ; n + 1 , n , , 1 ) , P ( m + 1 , m , , 1 ; 1 , 2 , , n + 1 P ( m + 1 , m , , 1 ; n + 1 , n , , 1 ) P(1,2,dots,m+1;1,2,dots,n+1P(1,2,dots,m+1;n+1,n,dots,1),P(m+1,m,dots,1;1,2,dots,n+1P(m+1,m,dots,1;n+1,n,dots,1)P(1,2, \ldots, m+1 ; 1,2, \ldots, n+1 P(1,2, \ldots, m+1 ; n+1, n, \ldots, 1), P(m+1, m, \ldots, 1 ; 1,2, \ldots, n+1 P(m+1, m, \ldots, 1 ; n+1, n, \ldots, 1)P(1,2,,m+1;1,2,,n+1P(1,2,,m+1;n+1,n,,1),P(m+1,m,,1;1,2,,n+1P(m+1,m,,1;n+1,n,,1)If the points x 4 x 4 x_(4)x_{4}x4and y j y j y_(j)y_{j}andjare respectively equidistant, so if x i = x 1 + ( i 1 ) h , i = 1 , 2 x i = x 1 + ( i 1 ) h , i = 1 , 2 x_(i)=x_(1)+(i-1)h,i=1,2x_{i}=x_{1}+(i-1) h, i=1,2xi=x1+(i1)h,i=1,2, , m + 1 , y j = y 1 + ( j 1 ) h , j = 1 , 2 , , n + 1 , ( h , h > 0 ) , m + 1 , y j = y 1 + ( j 1 ) h , j = 1 , 2 , , n + 1 , h , h > 0 dots,m+1,y_(j)=y_(1)+(j-1)h^('),j=1,2,dots,n+1,(h,h^(') > 0)\ldots, m+1, y_{j}=y_{1}+(j-1) h^{\prime}, j=1,2, \ldots, n+1,\left(h, h^{\prime}>0\right),m+1,andj=and1+(j1)h,j=1,2,,n+1,(h,h>0)and if the interpolation point is in the vicinity of the center of the node network, the central differences in relation to x x xxxand y y yyand.
Finally, we note that, instead of the normal array of dd, we can use the array formed with the numbers k 0 k 1 k j l 0 l 1 l j D v , μ i , j [ f ] k 0 k 1 k j l 0 l 1 l j D v , μ i , j [ f ] k_(0)k_(1)dotsk_(j)l_(0)l_(1)dotsl_(j)D_(v,mu)^(i,j)[f]k_{0} k_{1} \ldots k_{j} l_{0} l_{1} \ldots l_{j} D_{\mathrm{v}, \mu}^{i, j}[f]k0k1kjl0l1ljDin,mi,j[f], dd being related to the initial permutation of the network of nodes. If we take k i = i h , l j = j h k i = i h , l j = j h k_(i)=ih,l_(j)=jh^(')k_{i}=i h, l_{j}=j h^{\prime}ki=ih,lj=jh, for anything i , j 1 i , j 1 i,j >= 1i, j \geq 1i,j1, the numbers considered are reduced to the differences Δ h , h i , j f ( x , y ) Δ h , h i , j f ( x , y ) Delta_(h,h^('))^(i,j)f(x,y)\Delta_{h, h^{\prime}}^{i, j} f(x, y)Dh,hi,jf(x,and)of the function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,and)The normal table of differences can then be replaced by the table of differences, the formation of which is very simple because it only requires successive subtractions.
Finally, the previous considerations can be extended to the case of more than two independent variables.

ON THE ACCURACY OF NUMERICAL CALCULATION IN INTERPOLATION BY POLYNOMIALS OF TWO VARIABLES

PEBIOME

Calculation of the value of the interpolation polynomial (4) for given x , y x , y x,yx, yx,andis carried out by calculating the sum (5), where the numbers A i A i A_(i)A_{i}Aiare given by relation (6). Here the numbers X i , Y j , E i , j X i , Y j , E i , j X_(i),Y_(j),E_(i,j)X_{i}, Y_{j}, E_{i, j}Xi,ANDj,ANDi,jare given in the work and are related to the function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,and)through divided differences ( 3 ), corresponding to the permutation ( x r i , y s j x r i , y s j x_(r_(i)),y_(s_(j))x_{r_{i}}, y_{s_{j}}xri,andsj) interpolation nodes. Sums (5), (6) have the form (7). The calculation of such a sum is carried out using the scheme (8), where only multiplications by c α , c α 1 , , c 0 c α , c α 1 , , c 0 c_(alpha),c_(alpha-1),dots,c_(0)c_{\alpha}, c_{\alpha-1}, \ldots, c_{0}ca,ca1,,c0are associated with errors smaller than the number є in absolute value. Then the most convenient polynomials for calculation (4) are those for which the sequences (13) are non-decreasing. Thus, we arrive at a theoretical justification for the practical use of the most well-known interpolation formulas, such as those of Newton, Stirling, Bessel, etc.

L'TISRECISION DREAMS

summary

The calculation of the value of the interpolation polynomial (4), in the case of x , y x , y x,yx, yx,andgiven, is done by calculating the sum (5) where the numbers A i A i A_(i)A_{i}Aiare given by the relation (6). The numbers X i , Y j , E i . ; X i , Y j , E i . ; X_(i),Y_(j),E_(i.;)X_{i}, Y_{j}, E_{i . ;}Xi,ANDj,ANDi.;are given liff the text and are linked to the function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,and)through the intervised nodes (3) corresponding to a permutation ( x r i , y s i x r i , y s i x_(r_(i)),y_(s_(i))x_{r_{i}}, y_{s_{i}}xri,andsi) of such a sum. The sums (5), (6) are of the form (7). The calculation is carried out using scheme (8) or only absolute multi-value sums to the number 2 2 ^(2){ }^{2}2in this case the polynomials (4) which are advantageous for calculations are those for which the sequences (13) are decrossing. We thus arrive at a theoretical justification for the use and practice of well-known interpolation formulas, such as those of Newton, Stirling, Bessel, etc.

BIBLIOGRAPHY

  1. Popovicus T., Theoretical considerations on the practical use of some interpolation formulas. Scientific Bulletin. Acad. RPR, Section of Mathematical and Physical Sciences, III,
441 449 ( 1951 ) 441 449 ( 1951 ) 441-449(1951)441-449(1951)441449(1951)
  1. STEFFENSEN J. F., Interpolation. New York, 1950.
Received on 3.XII.1959
1960

Related Posts