Abstract
We consider a function \(f\in C^{n-1}[a,b]\) and the nodes \(a=x_{0}<x_{1}<\ldots<x_{m}=b\). Given the values \begin{align}f\left( x_{i}\right) =&u_{i}, \quad i=1,…,m \\ f^{\left( k\right) }\left( x_0\right) =&p_{0}^{k},\quad k=1,…,n-1,\end{align} we show that there exists on each interval \(\left[ x_{i-1},x_{i}\right] ,\ i=1,…,m,\) a unique polynomial \(P_{i}\) of degree \(m\) that satisfies \begin{align} P\left( x_{i}\right) =& u_{i}, \\ P_{i}^{\left( k\right) }\left( x_{i}\right) =&P_{i-1}^{\left( k\right) }\left(x_{i}\right) ,\quad k=1,…,n-1,\end{align} i.e. the resulted polynomials are successively joined. In this paper we show how these polynomials may be constructed. The functions \(f\) is therefore approximated by these polynomials.
Original Title (in French)
Sur l’intérpolation à l’aide des polynômes raccordées
Authors
Ion Păvăloiu
Tiberiu Popoviciu Institute of Numerical Analysis
Keywords
approximation by polynomials, joined polynomials, Hermite interpolation
Cite this paper as:
I. Păvăloiu, Sur l’intérpolations à l’aide des polynômes raccordées, Mathematica, 6(27) (1964) no. 2, pp. 295-299 (in French).
About this paper
Journal
Mathematica
Publisher Name
Editura Academiei R.S. Române
DOI
Not available yet.
Print ISBN
Not available yet.
Online ISBN
Not available yet.
Google Scholar Profile
References
[1] Boor Carl de, Bicubic spline interpolation. Journal of Mathenatics and Physics. 41 (1962) 3.
[2] I959.