## Abstract

We consider a function \(f\in C^{n-1}[a,b]\) and the nodes \(a=x_{0}<x_{1}<\ldots<x_{m}=b\). Given the values \begin{align}f\left( x_{i}\right) =&u_{i}, \quad i=1,…,m \\ f^{\left( k\right) }\left( x_0\right) =&p_{0}^{k},\quad k=1,…,n-1,\end{align} we show that there exists on each interval \(\left[ x_{i-1},x_{i}\right] ,\ i=1,…,m,\) a unique polynomial \(P_{i}\) of degree \(m\) that satisfies \begin{align} P\left( x_{i}\right) =& u_{i}, \\ P_{i}^{\left( k\right) }\left( x_{i}\right) =&P_{i-1}^{\left( k\right) }\left(x_{i}\right) ,\quad k=1,…,n-1,\end{align} i.e. the resulted polynomials are successively joined. In this paper we show how these polynomials may be constructed. The functions \(f\) is therefore approximated by these polynomials.

## Original Title (in French)

## Authors

Ion Păvăloiu – Tiberiu Popoviciu Institute of Numerical Analysis

## Keywords

approximation by polynomials, joined polynomials, Hermite interpolation

## References

[1] Boor Carl de, *Bicubic sþIine interpolation*. Journal of Mathenatics and Physics. **41** (1962) 3.

[2] I959.

## About this paper

##### Cite this paper as:

I. Păvăloiu, *Sur l’intérpolations à l’aide des polynômes raccordées*, Mathematica, **6(27)** (1964) no. 2, pp. 295-299 (in French).

##### Journal

Mathematica

##### Publisher Name

Editura Academiei R.S. Române

##### DOI

Not available yet.

##### Print ISBN

Not available yet.

##### Online ISBN

Not available yet.