On optimal iterative methods

Abstract

Let \(\left( X,\rho \right)\) be a complete matrix space, the nonlinear mapping \(\varphi:I\subset X\rightarrow X\) and the equation \(x=\varphi \left(x\right) \) with solution \(x^{\ast}\). We consider another application, \(F:X^{k}\rightarrow X\) for which we assume the diagonal coincides with \(\varphi\):  \(F(x,…,x)=\varphi(x)\). In order to solve the mentioned equation we consider the iterative method \[x_{n+1}=F\left(x_{n},x_{n-1},\cdots,x_{n-k+1}\right),\] \(n=k-1,k,…\) Let \(i_{0},i_{1},….,i_{k-1}\) be a permutation of the numbers \(0,1,…,k-1\) and therefore \(i_{0}-n-k-1,~i_{1}+n-k+1,…,i_{k-1}+n-k+1\) a  permutation of the numbers \(n-k+1,\ n-k+2,…,n\). Among the class of methods given by \[x_{n+1}=F\left( x_{i_{0}+n-k+1},x_{i_{1}+n-k+1},…,x_{i_{k-1}+n-k+1}\right) \] we determine the method for which the difference \(\mathcal{\rho}\left( x^{\ast},x_{n+1}\right)\) is the smallest.

Authors

Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)

Ioan Şerb
(Tiberiu Popoviciu Institute of Numerical Analysis)

Title

Original title (in French)

Sur des méthodes itératives optimales

English translation of the title

On optimal iterative methods

Keywords

multistep successive approximations; optimal iterative methods

PDF

Cite this paper as:

I. Păvăloiu, I. Şerb, Sur des méthodes itératives optimales, Seminar on functional analysis and numerical methods, Preprint no. 1 (1983), pp. 175-182 (in French).

About this paper

Journal
Seminar on Functional Analysis and Numerical Methods
Preprint
Publisher Name
“Babes-Bolyai” University
Faculty of Mathematics and Physics
Research Seminars
DOI

Not available yet.

References

[1] I. Pavaloiu, Introducere in teoria aproximarii solutiilor ecuatiilor, Ed. Dacia,  Cluj-Napoca, 1976.

[2] I. Pavaloiu, Rezolvarea ecuatiilor prin interpolare, Ed. Dacia, Cluj-Napoca, 1981.

[3] Weinischke, J. H., Uber eine Klasse von Iterationsverfahren, Num. Math., 6 (1964), 395–404.

Paper (preprint) in HTML form

"Babeş-Bolyai" University

Faculty of Mathematics and Physics

Research Seminars

Seminar on Functional Analysis and Numerical Methods

Preprint Nr.1, 1983, pp. 175-182


On Optimal Iterative Methods

by
Ion Pavaloiu and Ioan Serb

In this work we study iterative methods for solving the equation:

(1) x=f(x),

Orf:IXis a given application and(X,r)is a complete metric space.

A l’application fwe will attach an applicationF:XkX, which has the following property:

(2) F(x,x,,x)=f(x),xX.

To solve equation ( 1 ) we consider the multi-step iterative method, of the form:

(3) xn+1=F(xn,xn1,,xnk+1),n=k1,k,k+1,

Andi0,i1,,ik1is a permutation of numbers0,1,,k1, SOi0+nk+1,i1+nk+1,,ik1+nk+1will be a permutation that matches the numbersnk+1,nk+2,,n.

For such a permutation we obtain a new multi-step iterative method:

(4) xn+1=F(xi0+nk+1,xi1+nk+1,,xik1+nk+1),

Orn=k1,k,

In this way, from the given applicationF, we obtain k!iterative methods, which are generally distinct.

If under certain conditions imposed on the applicationF, all these k!iterative methods converge to a solution of equation ( 1 ), the problem arises of choosing the method for which the best error bound is obtained.

In the following we will assume thatFverifies the following relationship:

(5) r(F(in1,in2,,ink),F(in1,in2,,ink))(i=1kair(ini,ini)b)1b,

whatever the elementsin1,in2,,ink,in1,in2,,inkX, Orai0Andb>0are given and0<i=1kai<1.

We note that ifFverifies conditions ( 2 ) and ( 5 ) thenfchecks the condition:

r(f(x),f(and)) =r(F(x,x,,x),F(and,and,,and))
(i=1kair(x,and)b)1b=(i=1kai)1br(x,and),

and the fact that0<i=1kai<1, it follows thatfis a contraction, that is, equation ( 1 ) has only one solution.

On the other hand, if we designate byb(a1,a2,,ak)all functionsFverifying conditions ( 2 ) and ( 5 ), then ifb<bit resultsb(a1,a2,,ak)b(a1,a2,ak).

Forb<bwe deduce from Hölder's inequality:

(i=1kair(ini,ini)b)1b =[i=1k(aibbr(ini,ini)b)ai1bb]1b
(i=1kair(ini,ini)b)1b[i=1k(ai1bb)bbb]bbbb
=(i=1kair(ini,ini)b)1b(i=1kai)bbbb
<(i=1kair(ini,ini)b)1b

SOb(a1,a2,,ak)b(a1,a2,,ak).

Let's consider the numbersaii=1,2,,k, which verify the relations:

(6) a1a2ak1ak0,

And

(6) 0<i=1kai<1.

We now consider the equations

(7) P(in)=inka1ink1ak1inak=0,
(8) Q(in)=inkakink1a2ina1=0,

And

(9) R(in)=inkai1ink1aik1inaik=0,

Ori1,i2,,ikis any permutation of the numbers 1,2,,k.

LEMME.

Anda1,a2,,akverify the conditions ( 6 ) and ( 6 ) then each equation of the form ( 9 ) has a single positive root. If we denote by a the positive root of equation ( 7 ) and bybthe positive root of equation ( 8 ), then the positive root cof equation ( 9 ) verifies the following inequalities:

(10) 0<acb<1.
Demonstration.

Eitheri1,i2,,ika permutation of numbers1,2,,kand eithersthe biggest clue for whichais0.

We obviously haveais+1=ais+2==aik=0Andais0.

Consider the functionψ(in)=R(in)/inks. SOψ(0)=ais<0And ψ(1)=R(1)=1ai1aik1aik=1a1ak>0.

SOψ(in)has a positive root in the interval (0,1). It follows thatR(in)=inksψ(in)has a root in the interval(0,1).

The uniqueness of this root follows immediately by considering the equationf(in)=inkR(1/in)=0, for whichf(in)>0andin>0Andf(0)=1.

To prove inequality ( 10 ) it suffices to show that R(a)R(c)=0AndR(b)R(c)=0. In fact, we have:

R(a)= akai1ak1aik1aaik
= (a1ai1)ak1+(a2ai2)ak2++akaik
= (a1)(a1ai1)ak2+(a1+a2ai1ai2)ak3++
+(a1+a2++ak2ai1ai2aik2)a+
+(a1+a2++ak1ai1ai2aik1)0,

because0<a<1and from ( 6 ) it follows that

a1+a2++asai1ai2ais0;

for eachs=1,2,,k1.

Similarly, we show thatR(b)0,Q.AND.D.

Now we sort the coefficientsaifrom ( 5 ) in descending order, that is:

(11) ai1ai2aik0,

and we write

(11) as=ais,s=1,2,,k.

We consider the applicationG:XkX, given by the relation

(12) G(in1,in2,,ink)=F(ini1,ini2,,inik),

Ori1,i2,,ikis the permutation of numbers 1,2,,kwhich corresponds to the relation ( 11 ). We then obtain from ( 5 ), forG, the condition

(13) r(G(in1,in2,,ink),G(in1,in2,,ink))(i=1kair(ini,ini)b)1b,

whatever the elementsin1,in2,,ink,in1,in2,,inkX,Or

a1a2ak0,b>0.0<i=1kai<1.

To solve equation ( 1 ) we consider the following iterative method:

(14) xn+1=G(xn,xn1,,xnk+1),n=k1,k,

Orx0,x1,,xk1X.

If we writeqi=r(xi,xi+1),i=0,1,, then from ( 13 ) and ( 14 ) we obtain

(15) qi=(s=1kasqisb)1b,i=k,k+1,.

If in equation ( 7 )a1,a2,,ak are given by ( 11 ) and ifais the positive root of equation ( 7 ), thena1b(0,1).

EitherCa positive constant such that:

qsCas/b Fors=0,1,,k1.

From ( 15 ) we obtain:

qi (s=1kasqisb)1b(Cs=1kasais)ib
=Ca(ik)/b(s=1kasaks)1b=Ca(ik)/bak/b=Cai/b,

i=k,k+1,,. Sincea1/b(0,1)it follows that the following(xn)n=0is fundamental. Let us designate byx¯its limit. It is obvious that x¯is the unique solution of equation ( 1 ) and

(16) r(x¯,xn)Can/b1a1/b.

So, using the lemma we obtain the following theorem:

THEOREM .

Let's suppose thatFb(a1,a2,,ak)and that we give thek!iterative methods of the form ( 4 ), attached toF.

The iterative method for which the best error bound is obtained is that given by ( 14 ), withGdefined by ( 12 ) and which corresponds to the decreasing order of the sequence of coefficientsai,i=1,2,,k,from ( 5 ).

Remarks .

1) Because, from theFb(a1,a2,,ak)it follows thatfis a contraction, with the Lipschitz constant(i=1kai)1/b, it is clear that the iterative method

(17) xn+1=f(xn),x0X,n=0,1,

converges to the solutionx¯from equation ( 1 ). Furthermore, we have

(18) r(x¯,xn)C1(i=1kai)n/b1(i=1kai)1/b.

We will demonstrate thati=1kaia, where a is the solution to equation ( 7 ), withas,s=1,2,,k given by the formula ( 11 ).

On a:

P(i=1kai)=
=(i=1kai)ka1(i=1kai)k1a2(i=1kai)k2ak1(i=1kai)ak
(i=1kai)kai(i=1kai)k1a2(i=1kai)k1ak1(i=1kai)k1ak(i=1kai)k1
=(i=1kai)k(i=1kai)k=0,

from which it follows thati=1kaia.

Be it nowFb(a1,a2,,ak)Andf(x)=F(x,x,,x). Formulas ( 16 ) and ( 18 ) valid for any metric and for each pair(F,f),with the above properties, show us that for the iterative method ( 17 ) we obtain a better error delimitation than in the case of other methods of the form ( 4 ). This does not mean that for each choice of the initial points and each applicationF,method ( 17 ) converges faster than all iterative methods of the form ( 4 ).

For example,X=, r=||,f(x)=14sinx, F(x,and)=12sinx2cosand2. On a

|F(x1,and1)F(x2,and2)|14|x1x2|+14|and1and2|,

for eachx1,x2,and1,and2; F1(14,14)AndF(x,x)=f(x).

We consider the following iterative methods:

(19) xn+1=14sinxn,n=0,1,,x0=p2,
(20) xn+2=12sinxn+12cosxn2,n=0,1,,x0=p2,x1=0,
(21) xn+2=12cosxn+12sinxn2,n=0,1,,x0=p2,x1=0.

In this case the sequence ( 20 ) converges faster than the sequence ( 19 ) or the sequence ( 21 ).

2) There exist iterative methods of the form ( 4 ) respectively ( 17 ), for which the bounds ( 16 ) respectively ( 18 ) cannot improve, i.e.:

limn¯r(x¯,xn)1/n=a1/b,

respectively

limn¯r(x¯,xn)1/n=(i=1kai)1/b.
Example .

EitherX=,r=||,f(x)=56x,

F(x,and) =12x+13and,
F(x,x) =f(x),
|F(x1,and1)F(x2,and2)| 12|x1x2|+13|and1and2|,b=1.

Either

(22) xn+1=56xn,n=0,1,,x0=1.
(23) xn+2=12xn+1+13xn,n=0,1,,x0=1,x1=1.
(24) xn+2=13xn+1+12xn,n=0,1,<x0=1,x1=1.

In this case we obtain the formulas:

(22) limn(xn)1n=56=12+13,
(23) limnxn1/n=a,

where a is the positive root of the equationx212x13=0, that's to saya=3+5712. In the same way we obtain

(24) limnxn1/n=b,

orbis the positive root of the characteristic equation x213x12=0that's to sayb=1+196. It is clear that56<3+5712<1+196.

Bibliography

1983

Related Posts