Matematician, distins membru al Institutului, unde a fost angajat între anii 1970-1987?, şi unde s-a format ca cercetător.

Şi-a continuat cariera la Facultatea de Matematică, Universitatea “Babeş-Bolyai”, unde a ocupat poziţia de conferenţiar.

Principalele domenii de interes se referă la teoria aproximării (module de continuitate, module de netezime).

Este un membru distins al al Scolii clujene de analiză numerică şi teoria aproximării.

Data, locul naşterii: 11 aprilie 1947, Lugoj, jud. Timiş. Părinţii: Ioan şi Maria.

Studii:

  • Şcoala Generală nr. 1, Lugoj
  • Liceul Iulia Haşdeu, Lugoj – absolvit în 1965
  • Facultatea de Matematică, Universitatea Babeş-Bolyai, absolvită în 1970
  • Studii doctorale. Se înscrie la doctorat în 1974, sub conducerea acad. Tiberiu Popoviciu, fiiind transferat după decesul acestuia în 1975, sub conducerea acad. Dimitrie D. Stancu. Susţine în 197? Teza cu titlul “…??”

Cariera profesională:

  • 1970-1987, cercetător, Institutul de Calcul al Academiei Române
  • 1987-?, lector universitar, Facultatea de Matematică, Universitatea Babeş-Bolyai
  • 19?-2012, conferenţiar universitar, Facultatea de Matematică, Universitatea Babeş-Bolyai
  • 2012, pensionar

Papers

  • Hamada, Hidetaka, G. Kohr, P.T. Mocanu, I. Şerb, Convex subordination chains and injective mappings in Cn, J. Math. Anal. Appl. 364 (2010), no. 1, 32–40.
  • G. Kohr, P.T. Mocanu, I. Şerb, Convex and alpha-prestarlike subordination chains, J. Math. Anal. Appl. 332 (2007), no. 1, 463–474.
  • P.T. Mocanu, I.  Şerb, Regular refraction property for a conic lens, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 50(98) (2007), no. 1, 75–87.
  • I. Şerb, On the coefficients of a class of univalent functions, Demonstratio Math. 38 (2005), no. 3, 567–578.
  • I. Şerb, Geometric moduli, type-cotype and superreflexivity of Banach spaces, Proceedings of the VI Annual Conference of the Romanian Society of Mathematical Sciences, Vol. I (Romanian) (Sibiu, 2002), 102–108, Soc. Ştiinţe Mat. România, Bucharest, 2003.
  • V. Anisiu, P.T. Mocanu, I.  Şerb,  Sufficient conditions for starlikeness and strong-starlikeness of a given order, Complex Var. Theory Appl. 48 (2003), no. 2, 131–141.
  • I. Serb, Lipschitz constants of set-valued mappings obtained by intersecting convex sets with balls, Mathematica 44(67) (2002), no. 1, 97–116 (2003).
  • I. Şerb, New variants of Khintchine’s inequality, Collect. Math. 52 (2001), no. 2, 193–203.
  • I. Şerb, Geometric properties of normed spaces and estimates for rectangular modulus, Math. Pannon. 12 (2001), no. 1, 27–38.
  • I. Şerb, Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces, Comment. Math. Univ. Carolin. 40 (1999), no. 1, 107–119.
  • I. Şerb, Rectangular modulus and geometric properties of normed spaces, Math. Pannon. 10 (1999), no. 2, 211–222.
  • I. Şerb, An averaging operator and a subordination problem for convex functions of order α, J. Anal. 6 (1998), 81–89.
  • P.T. Mocanu, I. Şerb, G. Toader, Real star-convex functions, Studia Univ. Babeş-Bolyai Math. 42 (1997), no. 3, 65–80.
  • I. Şerb, A Day-Nordlander theorem for the tangential modulus of a normed space, J. Math. Anal. Appl. 209 (1997), no. 2, 381–391.
  • P.T. Mocanu, I. Şerb, A sharp simple criterion for a subclass of starlike functions, Complex Variables Theory Appl. 32 (1997), no. 2, 161–168.
  • I. Şerb, On the behaviour of the tangential modulus of a Banach space. II, Mathematica 38(61) (1996), no. 1-2, 199–207.
  • I. Şerb, The radius of convexity and starlikeness of a particular function, Math. Montisnigri 7 (1996), 65–69.
  • V. Anisiu, P.T. Mocanu, I. Şerb, A sharp criterion for starlikeness, Indian J. Pure Appl. Math. 27 (1996), no. 11, 1111–1117.
  • V. Anisiu,  P.T. Mocanu, I. Şerb, A sharp sufficient condition for a subclass of starlike functions, Libertas Math. 16 (1996), 55–60.
  • I. Şerb, On the behaviour of the tangential modulus of a Banach space. I, Rev. Anal. Numér. Théor. Approx. 24 (1995), no. 1-2, 241–248.
  • I. Şerb, On a modified modulus of smoothness of a Banach space, Rev. Anal. Numér. Théor. Approx. 22 (1993), no. 2, 217–224.
  • I. Şerb, Some estimates for the modulus of smoothness and convexity of a Banach space, Mathematica (Cluj) 34(57) (1992), no. 1, 61–70.
  • I. Şerb, Banach spaces containing finite-dimensional strongly proximinal subspaces, Seminar on Functional Analysis and Numerical Methods, 111–120, Preprint, 89-1, Univ. „Babeş-Bolyai”, Cluj-Napoca, 1989.
  • P.T. Mocanu, D. Ripeanu, I. Şerb, On an inequality concerning the order of starlikeness of the Libera transform of starlike functions of order α, Seminar on Mathematical Analysis (Cluj-Napoca, 1987–1988), 29–32, Preprint, 88-7, Univ. „Babeş-Bolyai”, Cluj-Napoca, 1988.
  • I. Şerb, On strongly proximinal sets in Banach spaces, Seminar of functional analysis and numerical methods, 143–153, Preprint, 85-1, Univ. „Babeş-Bolyai”, Cluj-Napoca, 1985.
  • I. Şerb, Strongly proximinal sets in abstract spaces, Seminar of functional analysis and numerical methods, 159–168, Preprint, 84-1, Univ. „Babeş-Bolyai”, Cluj-Napoca, 1984.
  • I. Păvăloiu, I.  Şerb, Sur quelques méthodes itératives de type interpolatoire à vitesse de convergence optimale, Anal. Numér. Théor. Approx. 12 (1983), no. 1, 83–88. (in French) [Some iterative interpolatory methods with optimal rate of convergence]
  • P.T. Mocanu, D. Ripeanu,  I. Şerb, The order of starlikeness of certain integral operators, Complex analysis—fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 327–335, Lecture Notes in Math., 1013, Springer, Berlin, 1983.
  • I. Păvăloiu, I. Şerb, Sur des méthodes itératives optimales, Seminar of functional analysis and numerical methods, 175–182, Preprint, 83-1, Univ. „Babeş-Bolyai”, Cluj-Napoca, 1983. (in French) [Some optimal iterative methods]
  • I. Păvăloiu,  I. Şerb, Sur les méthodes itératives de type interpolatoire à vitesse de convergence optimale, Seminar of functional analysis and numerical methods, 167–174, Preprint, 83-1, Univ. „Babeş-Bolyai”, Cluj-Napoca, 1983. (French) [Iterative methods of interpolation type with optimal speed of convergence]
  • P.T. Mocanu, D. Ripeanu, I. Şerb, Sur l’ordre de stellarité d’une certaine classe de fonctions analytiques, Seminar of functional analysis and numerical methods, 89–106, Preprint, 83-1, Univ. „Babeş-Bolyai”, Cluj-Napoca, 1983. (French) [The order of starlikeness of a certain class of analytic functions]
  • I. Şerb, On the multivalued metric projection in normed vector spaces. II, Anal. Numér. Théor. Approx. 11 (1982), no. 1-2, 155–166.
  • I. Şerb, Normed spaces with bounded or compact strongly proximinal sets, Seminar of Functional Analysis and Numerical Analysis, pp. 159–167, Preprint 1981, 4, Univ. „Babeş-Bolyai”, Cluj-Napoca, 1981.
  • I. Şerb, A normed space admitting countable multivalued metric projections, Seminar of Functional Analysis and Numerical Analysis, pp. 155–158, Preprint 1981, 4, Univ. „Babeş-Bolyai”, Cluj-Napoca, 1981.
  • P.T. Mocanu, D. Ripeanu,  I. Şerb,  On the order of starlikeness of the Libera transform of the class of starlike functions of order α, Seminar of Functional Analysis and Numerical Analysis, pp. 85–92, Preprint 1981, 4, Univ. „Babeş-Bolyai”, Cluj-Napoca, 1981.
  • P.T. Mocanu, D. Ripeanu,  I. Şerb, On the order of starlikeness of convex functions of order α, Anal. Numér. Théor. Approx. 10 (1981), no. 2, 195–199.
  • I. Şerb, On the multivalued metric projection in normed vector spaces, Anal. Numér. Théor. Approx. 10 (1981), no. 1, 101–111.
  • P.T. Mocanu, D. Ripeanu, I. Şerb, The order of starlikeness of certain integral operators, Mathematica (Cluj) 23(46) (1981), no. 2, 225–230 (1982).
  • I. Şerb, Critères pour la convexité d’ordre n des fonctions, Rev. Anal. Numér. Théorie Approximation 5 (1976), no. 1, 97–111 (1977).  (in French)
  • I. Şerb, Note concerning the divisors of the values of homogeneous arithmetic functions, Rev. Anal. Numer. Teoria Aproximaţiei 3 (1974), no. 2, 209–213 (1975) (in Romanian).
  • Gh. Cimoca, I. Şerb, On a generalization of the notion of convex function, Rev. Anal. Numer. Teoria Aproximaţiei 2 (1973), 131–136. (in Romanian)
  • I. Serb, On a property of polynomials, Stud. Cerc. Mat. 20 (1968), 1031–1035 (in Romanian).

versiune: 8 mai 2017.