Let \(f:I\subset \mathbb{R\rightarrow R}\) be a nonlinear mapping and the equation \(f\left( x\right) =0\) with solution \(x^{\ast}\); consider the equivalent equations \(\varphi_{i}\left( x\right) =x\), \(i=1,…,n+1\). Given \(x_{k}\) an approximation to \(x^{\ast}\), we consider the following nodes for the Hermite interpolation polynomial \[x_{k}^{1}=\varphi_{1}(x_{k}) ,\ \ x_{k}^{2}=\varphi_{2}(x_{k} ^{1}), \ldots, \ \ x_{k}^{n+1}=\varphi_{n+1}(x_{k}^{n}). \] Assume that the nodes \(x_{k}^{i},i=1,…,n+1\) have the multiplicity orders resp. \(\alpha_{i},i=1,…,n+1\). Moreover, the convergence orders of the successive iterations for \(\varphi_{i}\) are resp. \(p_{i},p_{i}\in \mathbb{N},p_{i}\geq1,i=1,…,n+1\). The iterative method obtained from the inverse interpolation Hermite polynomial is a Steffensen type method. If we permute the multiplicity orders of the nodes and the assumed convergence orders, we obtain class of iterative methods. Among this class we determine the methods with the highest convergence orders.
Authors
Crăciun Iancu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Ioan Şerb
(Tiberiu Popoviciu Institute of Numerical Analysis)
Title
Original title (in French)
Méthodes itératives optimales de type Steffensen obtenues par interpolation invèrse
English translation of the title
Optimal Steffensen type iterative methods obtained by inverse interpolation
Keywords
Hermite inverse interpolation; Steffensen type methods; iterative methods; nonlinear equations in R; convergence order
C. Iancu, I. Păvăloiu, I. Şerb, Méthodes itératives optimales de type Steffensen obtenues par interpolation invèrse, Seminar on functional analysis and numerical methods, Preprint no. 1 (1983), pp. 81-88 (in French).
About this paper
Journal
Seminar on functional analysis and numerical methods,
Preprint
Publisher Name
“Babes-Bolyai” University
Faculty of Mathematics and Physics
Research Seminars
DOI
Not available yet.
References
[1] C. Iancu, I. Pavaloiu, La resolution des equations par interpolation inverse de type Hemite. Seminar of Functional and Numerical Methods, “Babes-Bolyai” University, Faculty de Matematica, Research Seminaries, Preprint Nr. 4 (1981), 72-84.
[2] I. Pavaloiu, Rezolvarea ecuatiilor prin interpolare. Editura Dacia, Cluj-Napoca, 1981.
[3] S. Popa, Asupra unei probleme a lui E. Erdos si G. Weiss, Studii si cercetari matematice, 33, 5 (1981), 539-542.
Your feedback will be used to help improve Google Translate
Optimal Steffensen type iterative methods obtained by inverse interpolation
In the work [1] we proceeded to the study of a class of methods for the resolution of questions of the form:
(2)
f(x)=0,f(x)=0,
heyx;x rarrR_(", ")xx ; x \rightarrow R_{\text {, }} x s. xxund fonction réello de vaxiable róello etTTis an interval of the real axis. We arrive at this class of methods using the inverse interpolation method,l^(')l^{\prime}alde of the Hersite interpolation polynomial.
The order of convergence of the methods studied by Dows [1] depends on the number of nodes and their multiplicity orders.
In this work we will demonstrate that in the class of methods studied in [1], a group of Steffensen-type methods stands out for which the order of convergence is the largest. In what follows, the interpolation nodes are no longer chosen arbitrarily, they will be generated on the basis of iterative functions.
Let us designate byvarphi_(1)**I rarr I,1=1,2,dots,n+1,n+1\varphi_{1} * I \rightarrow I, 1=1,2, \ldots, n+1, n+1iterative functions, i.e. functions whose fixed points coincide with the roots of equation (1) in the intervalII.
We also assume that the functionsvarphi_(i);1: bar(1,n+1)\varphi_{i} ; 1: \overline{1, n+1}Andffverify the following conditions:
(2)quad|f(varphi_(i)(x))| <= rho_(i)|f(x)|^(p_(1));i=1,2,dots,n+1\quad\left|f\left(\varphi_{i}(x)\right)\right| \leqq \rho_{i}|f(x)|^{p_{1}} ; i=1,2, \ldots, n+1,
Or
int_(1),i=1,2,dots,n+1," sont des nombres réels et positifs "\int_{1}, i=1,2, \ldots, n+1, \text { sont des nombres réels et positifs }é
Design byu_(0)in Iu_{0} \in I, and an approximation of the racing Ta Ta equation (1). We construct the elaboration nodesx_(1)^(1)x_{1}^{1}, 1. Omega1,2,dots,a+1\Omega 1,2, \ldots, a+1, of the following manner:
(3)
We cany_(i)=y_(i)^(1)~~f(x_(1)^(1)),1=1,2,dots,2dots1y_{i}=y_{i}^{1} \approx f\left(x_{1}^{1}\right), 1=1,2, \ldots, 2 \ldots 1and we damago nons byK_(1),C_(2),dots,C_(n+1),n+1\mathscr{K}_{1}, \mathscr{C}_{2}, \ldots, \mathscr{C}_{n+1}, n+1nomines aature lo donaés, for which
(4)quadalpha_(1)+alpha_(2)+dots+alpha_(n+1)=m+1,quad M inN\quad \alpha_{1}+\alpha_{2}+\ldots+\alpha_{n+1}=m+1, \quad M \in \mathbb{N}.
Now suppose that the anointingL\mathcal{L}, admits inl^(1)l^{1}intores vallo I of the derivatives up to order m +2 y ooupris obI^(')(x)!in0I^{\prime}(x) \notin 0, for eachx in Ix \in I.
In I hypothesize the functionI,I rarr FI, I \rightarrow F, onII s I(I)I(I)is bijective and therefore 11 existsf^(-1);f rarr If^{-1} ; f \rightarrow I. To calculate the successive derivatives of the functionf^(-1)f^{-1}we will use the foxule established in 2nd work [2] ।
(5)quad(f^(-1))^((k))(y)=sum((2k-2-i_(1))I(-1)^(k-1+i_(1)))/(i_(2)1dotsi_(k)I(f^(')(x))^(2k-1))((f^(')(x))/(1!))^(1)dots(f^((k))(x)^(1)k)/(k!)\quad\left(f^{-1}\right)^{(k)}(y)=\sum \frac{\left(2 k-2-i_{1}\right) I(-1)^{k-1+i_{1}}}{i_{2} 1 \ldots i_{k} I\left(f^{\prime}(x)\right)^{2 k-1}}\left(\frac{f^{\prime}(x)}{1!}\right)^{1} \ldots \frac{f^{(k)}(x){ }^{1} k}{k!}
Ory=f(x)y=f(x), and the sum below extends to all integer and non-negative solutions of the system of equations:
(6)
orM=sim_(y in Y)|(x^(oo))(x+1)(y)|M=\operatorname{sim}_{y \in Y}\left|\left(x^{\infty}\right)(x+1)(y)\right|.
In the following we give a description for|omega(0)||\omega(0)|and using (2) from (3). Here are a few:
The taterpolation knotsx_(i)^(k),1= bar(I_(i)) bar(I_(i))+ bar(I_(i))x_{i}^{k}, 1=\overline{I_{i}} \overline{I_{i}}+\overline{I_{i}}which corrogramant an pas pulvant si obtienneat d'une manders analogous to asilo mployon EU promiar pus en employant las relationa :
x_(1)^(5)~~varphi_(3)(u_(i in oo))x_{1}^{5} \approx \varphi_{3}\left(u_{i \in \infty}\right)
1* inverse interpolation goljnóne of Hemitte of the form (7), at the interpolation nodesz_(k_(1))^(1),dots,y_(k_(n+1))^(1)z_{k_{1}}^{1}, \ldots, y_{k_{n+1}}^{1}having the orders of multipl aityalpha_(1)dots,alpha_(1)dots\alpha_{1} \ldots, \alpha_{1} \ldotsrespectively, Using the above notations we consider the following set of iterative methods
To each pair of perautetionsk_(1),k_(2),dots,x_(n+1)k_{1}, k_{2}, \ldots, x_{n+1} at i_(1),j_(2)i_{1}, j_{2} : cdots,j_(n+1)\cdots, j_{n+1}numbers1,2,dots,n+11,2, \ldots, n+1corresponds to a rative method of the form (25) - (27). In this way, we obtain in total(n+1)1(n+1) 1iterative methods of catte fcrme. These methods generally have different ones. Le plus grand ordra de convergenct ec,orive donó per( 76 ). that the following relationships are verified
for each permutation1_(2),j_(2),dots,j_(nt)1_{2}, j_{2}, \ldots, j_{n t}. vades for i pass of numbers ;(X_(2),b_(2)\mathscr{X}_{2}, b_{2} ),on,( X_(n),b_(n)\mathscr{X}_{n}, b_{n}), c'est. - by one man, one pound, one pound, ten pound
(34)
co that he was going to demonstrate the inequality (33) of the demonstration of the above volume is known (33, p. 539) From the above considerations and the volume the result
THEORMAL Of touies10 s(n+1)110 s(n+1) 1iterative methods of forging (25) (27), 90110 for 18que12e we obtain 1 maximum order of con-
yergency is the method obtained by arranging the numbers. D1 in
decreasing order and the numbersalpha_(1)\alpha_{1}in ascending order.
BIBLIOGRAPHIF
[1]. C. IANCU, I. PAVALOIU, La nésolution des équations par integ; polation inverse de type Hermite. Seminar of Functional Analysis and Numerical Methods. "Babes-Bolyai" University, Faculty of Mathematics, Research Seminaries, Preprint No. 4 (1981), 7248,
[2]. I. PAVALOIU, Rezlovarea equaitiolor prin interpolation. Dacia Publishing House, Oluj-Napoca, 1981.
[3]. S. POPA, Asupra unei probleme a lui P. Erdös si G. Wezss, Study 6i Cercetari Matematice, 33, 5 (1981), 539-542.