Accelerating the convergence of the iterative methods of interpolatory type

Abstract

In this paper we deal with iterative methods of interpolatory type, for solving nonlinear equations in Banach spaces. We show that the convergence order of the iterations may considerably grow if the nodes are properly controlled.

Author

Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)

Keywords

nonlinear equations in Banach spaces; interpolatory method.

PDF

PDF-LaTeX file (on the journal website).

Cite this paper as:

I. Păvăloiu, Accelerating the convergence of the iterative methods of interpolatory type, Rev. Anal. Numér. Théor. Approx., 34 (2005) no. 2, pp. 169-173. https://doi.org/10.33993/jnaat342-803

About this paper

Print ISSN

1222-9024

Online ISSN

2457-8126

References

Argyros, I., Polynomial Operator Equations in Abstract Spaces and Applications, CRC Press, LLC, 1998.

Ostrowski, A.M., Solution of Equations and Systems of Equations, Academic Press, New York, 1960.

Păvăloiu, I., Interpolation dans des éspaces linéaires normèes et applications, Mathematica, 12 (35), no. 1, pp. 149-150, 1970.

Păvăloiu, I., Introduction to the Theory of Approximating the Solutions of Equations, Ed. Dacia, Cluj-Napoca, Romania, 1976 (in Romanian).

Păvăloiu, I., On the convergence order of some Aitken-Steffensen-type methods, Rev. Anal. Numér. Théor. Approx., 32, no. 2, pp. 193-202, 2003, https://ictp.acad.ro/jnaat/journal/article/view/2003-vol32-no2-art8

Păvăloiu, I., Local convergence of general Steffensen type methods, Rev. Anal. Numér. Théor. Approx., 33, no. 1, pp. 79-86, 2004, https://ictp.acad.ro/jnaat/journal/article/view/2004-vol33-no1-art10

2005

Related Posts