Abstract
In this paper we deal with iterative methods of interpolatory type, for solving nonlinear equations in Banach spaces. We show that the convergence order of the iterations may considerably grow if the nodes are properly controlled.
Author
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Keywords
nonlinear equations in Banach spaces; interpolatory method.
PDF-LaTeX file (on the journal website).
Cite this paper as:
I. Păvăloiu, Accelerating the convergence of the iterative methods of interpolatory type, Rev. Anal. Numér. Théor. Approx., 34 (2005) no. 2, pp. 169-173. https://doi.org/10.33993/jnaat342-803
About this paper
Publisher Name
Print ISSN
1222-9024
Online ISSN
2457-8126
References
Argyros, I., Polynomial Operator Equations in Abstract Spaces and Applications, CRC Press, LLC, 1998.
Ostrowski, A.M., Solution of Equations and Systems of Equations, Academic Press, New York, 1960.
Păvăloiu, I., Interpolation dans des éspaces linéaires normèes et applications, Mathematica, 12 (35), no. 1, pp. 149-150, 1970.
Păvăloiu, I., Introduction to the Theory of Approximating the Solutions of Equations, Ed. Dacia, Cluj-Napoca, Romania, 1976 (in Romanian).
Păvăloiu, I., On the convergence order of some Aitken-Steffensen-type methods, Rev. Anal. Numér. Théor. Approx., 32, no. 2, pp. 193-202, 2003, https://ictp.acad.ro/jnaat/journal/article/view/2003-vol32-no2-art8
Păvăloiu, I., Local convergence of general Steffensen type methods, Rev. Anal. Numér. Théor. Approx., 33, no. 1, pp. 79-86, 2004, https://ictp.acad.ro/jnaat/journal/article/view/2004-vol33-no1-art10