A mixed finite element discretization scheme for a concrete carbonation model with concentration-dependent porosity

Abstract

We investigate a prototypical reaction–diffusion-flow problem in saturated/unsaturated porous media. The special features of our problem are twofold: the reaction produces water and therefore the flow and transport are coupled in both directions and moreover, the reaction may alter the microstructure. This means we have a variable porosity in our model.

For the spatial discretization we propose a mass conservative scheme based on the mixed finite element method (MFEM). The scheme is semi-implicit in time. Error estimates are obtained for some particular cases. We apply our finite element methodology for the case of concrete carbonation—one of the most important physico-chemical processes affecting the durability of concrete.

Authors

Florin A. Radu

Adrian Muntean

Iuliu S. Pop

Nicolae Suciu

Olaf Kolditz

Keywords

Coupled reactive transport; Convergence analysis; Carbonation

Cite this paper as:

F.A. Radu, A. Muntean, I.S. Pop, N. Suciu, O. Kolditz (2013), A mixed finite element discretization scheme for a concrete carbonation model with concentration-dependent porosity, J. Comput. Appl. Math., 246, 74-85, doi: 10.1016/j.cam.2012.10.017

References

PDF

About this paper

Journal

Journal of Computational and Applied Mathematics

Publisher Name

Elsevier

Print ISSN

0377-0427

Online ISSN

Not available yet.

Google Scholar Profile

[1] S.A. Meier, M.A. Peter, A. Muntean, M. Böhm, Dynamics of the internal reaction layer arising during carbonation of concrete, Chem. Eng. Sci. 62 (2007) 1125–1137.
CrossRef (DOI)

[2] M.A. Peter, A. Muntean, S.A. Meier, M. Böhm, Competition of several carbonation reactions in concrete: a parametric study, Cem. Concr. Res. 38 (2008) 1385–1393.
CrossRef (DOI)

[3] G. Auchmuty, J. Chadam, E. Merino, P. Ortoleva, E. Ripley, The structure and stability of propagating redox fronts, SIAM J. Appl. Math. 46 (1986) 588–604.
CrossRef (DOI)

[4] P. Ortoleva, Geochemical Self-Organization, in: Oxford Monographs on Geology and Geophysics, vol. 23, Oxford University Press, NY, Oxford, 1994.

[5] S. Bauer, C. Beyer, O. Kolditz, Assesing measurement uncertainty of first-order degradation rates in heterogenous aquifers, Water Resour. Res. 42 (2006)
CrossRef (DOI)

[6] K. Kumar, T.L. van Noorden, I.S. Pop, Effective dispersion equations for reactive flows involving free boundaries at the micro-scale, Multiscale Model. Simul. 9 (2011) 29–58.
CrossRef (DOI)

[7] T.L. van Noorden, Crystal precipitation and dissolution in a porous medium: effective equations and numerical experiments, Multiscale Model. Simul. 7 (2008) 1220–1236.
CrossRef (DOI)

[8] T.L. van Noorden, I.S. Pop, A Stefan problem modelling dissolution and precipitation, IMA J. Appl. Math. 73 (2008) 393–411.
CrossRef (DOI)

[9] T.L. van Noorden, I.S. Pop, A. Ebigbo, R. Helmig, An upscaled model for biofilm growth in a thin strip, Water Resour. Res. 46 (2010) W06505.
CrossRef (DOI)

[10] P. Knabner, Mathematische Modelle für Transport und Sorption gelöster Stoffe in porösen Medien, Habilitationsschrift, Universität Augsburg, Germany, 1990.

[11] R. Mose, P. Siegel, P. Ackerer, G. Chavent, Application of the mixed hybrid finite element approximation in a groundwater flow model: luxury or necessity? Water Resour. Res. 30 (1994) 3001–3012.
CrossRef (DOI)

[12] J.W. Barrett, P. Knabner, Finite element approximation of the transport of reactive solutes in porous media, part 1: error estimates for nonequilibrium adsorption processes, SIAM J. Numer. Anal. 34 (1997) 201–227.
CrossRef (DOI)

[13] M. Bause, P. Knabner, Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping, Comput. Vis. Sci. 7 (2004) 61–78.
CrossRef (DOI)

[14] R. Klöfkorn, D. Kröner, M. Ohlberger, Local adaptive methods for convection dominated problems, Int. J. Numer. Methods Fluids 40 (2002) 79–91.
CrossRef (DOI)

[15] M. Ohlberger, C. Rohde, Adaptive finite volume approximations of weakly coupled convection dominated problems, IMA J. Numer. Anal. 22 (2002) 253–280.
CrossRef (DOI)

[16] B. Riviere, M.F. Wheeler, Discontinuous Galerkin methods for flow and transport problems in porous media, Comm. Numer. Methods Engrg. 18 (2002) 63–68.
CrossRef (DOI)

[17] J. Kačur, R. van Keer, Solution of contaminant transport with adsorption in porous media by the method of characteristics, M2AN 35 (2001) 981–1006.
CrossRef (DOI)

[18] F.A. Radu, M. Bause, A. Prechtel, S. Attinger, A mixed hybrid finite element discretization scheme for reactive transport in porous media, in: K. Kunisch, G. Of, O. Steinbach (Eds.), Numerical Mathematics and Advanced Applications, Springer Verlag, 2008, pp. 513–520.
CrossRef (DOI)

[19] F.A. Radu, I.S. Pop, S. Attinger, Analysis of an Euler implicit—mixed finite element scheme for reactive solute transport in porous media, Numer. Methods Partial Differential Equations 26 (2009) 320–344.
CrossRef (DOI)

[20] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.

[21] T. Arbogast, M.F. Wheeler, N.Y. Zhang, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal. 33 (1996) 1669–1687.
CrossRef (DOI)

[22] R.A. Klausen, F.A. Radu, G.T. Eigestad, Convergence of MPFA on triangulations and for Richards’ equation, Int. J. Numer. Methods Fluids 58 (2008) 1327–1351.
CrossRef (DOI)

[23] C. Woodward, C. Dawson, Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media, SIAM J. Numer. Anal. 37 (2000) 701–724.
CrossRef (DOI)

[24] F.A. Radu, I.S. Pop, P. Knabner, Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation, SIAM J. Numer. Anal. 42 (2004) 1452–1478.
CrossRef (DOI)

[25] F.A. Radu, I.S. Pop, P. Knabner, Error estimates for a mixed finite element discretization of some degenerate parabolic equations, Numer. Math. 109 (2008) 285–311.
CrossRef (DOI)

[26] F.A. Radu, W. Wang, Convergence analysis for a mixed finite element scheme for flow in strictly unsaturated porous media, Nonlinear Anal. Serie B: Real World Applications (2011)
CrossRef (DOI)

[27] P. Knabner, C.J. van Duijn, S. Hengst, An analysis of crystal dissolution fronts in flows through porous media—part 1: compatible boundary conditions, Adv. Water Resour. 18 (1995) 171–185.
CrossRef (DOI)

[28] C.J. van Duijn, I.S. Pop, Crystal dissolution and precipitation in porous media: pore scale analysis, J. Reine Angew. Math. 577 (2004) 171–211. F.A. Radu et al. / Journal of Computational and Applied Mathematics 246 (2013) 74–85 85
CrossRef (DOI)

[29] J. Bear, Y. Bachmat, Introduction to Modelling of Transport Phenomena in Porous Media, Kluwer Academic, Dordrecht, 1991.

[30] M. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44 (1980) 892–898.
CrossRef (DOI)

[31] Y. Mualem, A new model for predicting hydraulic conductivity of unsaturated porous media, Water Resour. Res. 12 (1976) 513–522.
CrossRef (DOI)

[32] W.K. Lewis, W.G. Whitman, Principles of gas absorption, Ind. Eng. Chem. Res. 16 (1924) 1215–1220.

[33] X. Chen, J. Chadam, A reaction infiltration problem, part 1—existence, uniqueness, regularity and singular limit in one space dimension, Nonlinear Anal. TMA 27 (1996) 463-491.
CrossRef (DOI)

[34] H.W. Alt, S. Luckhaus, Quasilinear elliptic–parabolic differential equations, Math. Z. 183 (1983) 311–341.

[35] T. Arbogast, M. Obeyesekere, M.F. Wheeler, Numerical methods for the simulation of flow in root-soil systems, SIAM J. Numer. Anal. 30 (1993), 1677–1702.
CrossRef (DOI)

[36] P. Bastian, K. Birken, K. Johanssen, S. Lang, N. Neuss, H. Rentz-Reichert, C. Wieners, UG—a flexible toolbox for solving partial differential equations, Comput. Vis. Sci. 1 (1997) 27–40.
CrossRef (DOI)

[37] T. Seidman, Interface conditions for a singular reaction–diffusion system, DCDS B 2 (2009) 631–643.
CrossRef (DOI)

2013

Related Posts