Ulam stability for a delay differential equation

Abstract

We study the Ulam–Hyers stability and generalized Ulam–Hyers–Rassias stability for a delay differential equation. Some examples are given.

Authors

D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

V.A. Ilea
(Babes Bolyai Univ.)

Keywords

Ulam–Hyers stability, Ulam–Hyers–Rassias stability, delay differential equation

Cite this paper as:

D. Otrocol, V. Ilea, Ulam stability for a delay differential equation, Cent. Eur. J. Math., Vol. 11(7) (2013), pp. 1296-1303, doi: 10.2478/s11533-013-0233-9

PDF

About this paper

Journal

Central European Journal of Mathematics

Publisher Name

Versita, Warsaw, Poland

Print ISSN

1895-1074

Online ISSN
MR

MR3047057

ZBL

Google Scholar

References

Paper in html format

References

[1] Bota-Boriceanu M.F., Petrușel A., Ulam–Hyers stability for operatorial equations, An. Știinţ. Univ. Al.I. Cuza Iași. Mat. (N.S.), 2011, 57(suppl. 1), 65–74

[2] Castro L.P., Ramos A., Hyers–Ulam–Rassias stability for a class of nonlinear Volterra integral equations, Banach J. Math. Anal., 2009, 3(1), 36–43

[3] Guo D., Lakshmikantham V., Liu X., Nonlinear Integral Equations in Abstract Spaces, Math. Appl., 373, Kuwer, Dordrecht, 1996

[4] Hyers D.H., Isac G., Rassias Th.M., Stability of Functional Equations in Several Variables, Progr. Nonlinear Differential Equations Appl., 34, Birkhäuser, Boston, 1998

[5] Jung S.-M., A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory Appl., 2007, # 57064

[6] Kolmanovskiı V., Myshkis A., Applied Theory of Functional-Differential Equations, Math. Appl. (Soviet Ser.), 85, Kluwer, Dordrecht, 1992

[7] Otrocol D., Ulam stabilities of differential equation with abstract Volterra operator in a Banach space, Nonlinear Funct. Anal. Appl., 2010, 15(4), 613–619

[8] Petru T.P., Petrușel A., Yao J.-C., Ulam–Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math., 2011, 15(5), 2195–2212

[9] Radu V., The fixed point alternative and the stability of functional equations, Fixed Point Theory, 2003, 4(1), 91–96

[10] Rassias Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72(2), 297–300

[11] Rus I.A., Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001

[12] Rus I.A., Gronwall lemmas: ten open problems, Sci. Math. Jpn., 2009, 70(2), 221–228

[13] Rus I.A., Ulam stability of ordinary differential equations, Stud. Univ. Babeș-Bolyai Math., 2009, 54(4), 125–133

[14] Rus I.A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 2009, 10(2), 305–320

[15] Ulam S.M., A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience, New York–London, 1960

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Fill out this field
Fill out this field
Please enter a valid email address.

Menu