A generalization of Durrmeyer-type polynomials and their approximation




Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania



Paper coordinates

O. Agratini, A generalization of Durrmeyer-type polynomials and their approximation, Applications of Fibonacci Numbers, Proceedings of the tenth international research conference on Fibonacci numbers and their applications, 9 (2004), pp. 9-18.


About this paper



Publisher Name
Print ISSN


Online ISSN

google scholar link

[1] Abramowitz, M., Stefun, I.A., Handbook of Mathematical Funcitons with Formuls,  Graphs and Mathematical Tables,  National Bureau of Standards Applied Mathematics Series, vol. 55, Issued June, 1964.
[2] Altomare, F., Campiti, M., Korovkin-type Approximation Theory and its Applicaitons, de Gruyer Studies in Mathematics, vol. 17 de Gruyter, Berlin, New York, 1964.
[3] Cmpiti, M., Metafune, G., Approximation Properties of Recursively Defined Bernstein-Type Operators,  J. Approx. Theory, vol. 87 (1996), pp., 243-269.
[4] Derriennic, M.M., Sur l’approximation de fonctions integrables sur [0,1] par des polynomes de Bernstein modifies, J. Approx. Theory, vol. 31 (1981), pp. 325-343.
[5] Durrmeyer, J.L., Une formule d’inversion de la transformee de Laplace: Applications a la theorie des moments, These de 3e cycle, Faculte des Sciiences de l’Universite de Paris, 1967.
[6] Jurkat, W.B., Lorentz, G.G., Uniform approximation by Polynomials with Positive Coefficients, Duke Math. J., vol. 28(1961), pp. 463-474.

Related Posts