A K-monotone best approximation operator which is neither monotone and (essentially) nor (o)-monotone

Abstract

??

Authors

Radu Precup
Liceul de Informatica Cluj-Napoca

Keywords

??

PDF

Cite this paper as:

R. Precup, A K-monotone best approximation operator which is neither monotone and (essentially) nor (O)-monotone, Anal. Numer. Theor. Approx., 15 (1986) no. 2, pp. 153-162.

About this paper

Journal
Mathematica – Revue d’Analyse Numerique et de la Theorie de l’Approximation
L’Analyse Numérique et la Théorie de l’Approximation
Publisher Name

?

Print ISSN

Not available yet.

Online ISSN

Not available yet.

MR: 88h:41046.

Google Scholar citations

References

[1] Browder, Felix E. Problèmes nonlinéaires. (French) Séminaire de Mathématiques Supérieures, No. 15 (Été, 1965) Les Presses de l’Université de Montréal, Montreal, Que. 1966, 153 pp., MR0250140.

[2] Pascali, Dan, Sburlan, Silviu, Nonlinear mappings of monotone type. Martinus Nijhoff Publishers, The Hague; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978. x+341 pp. ISBN: 90-286-0118-*,MR0531036.

[3] Precup, R., O generalizare a noţiunii de monotonie în sensul lui Minty-Browder, Lucrările seminarului itinerant de ecuaţii funcţionale, aproximare şi convexitate, Cluj-Napoca, 54-64 (1978).

[4] Precup, R., Proprietăţi de alură şi unele aplicaţii ale lor, Dissertation, Cluj-Napoca, 1985.

1986

Related Posts