Abstract
A lower and upper solution method is introduced for control problems related to abstract operator equations. The method is illustrated on a control problem for the Lotka–Volterra model with seasonal harvesting and applied to a control problem of cell evolution after bone marrow transplantation.
Authors
Lorand Gabriel Parajdi
Department of Mathematics West Virginia University P.O. Box 6201, Morgantown, WV 26506, USA e-mail: lorand.parajdi@mail.wvu.edu
Department of Mathematics Babes–Bolyai University M. Kogalniceanu, Cluj-Napoca, Romania
Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
Ioan-Stefan Haplea
Department of Internal Medicine Iuliu Hatieganu University of Medicine and Pharmacy Victor Babes Street, Cluj-Napoca, Romania
Keywords
control problem, lower and upper solutions, fixed point, approximation algorithm, numerical solution, medical application.
Paper coordinates
L.G. Parajdi, R. Precup, I.-S. Haplea, A method of lowert and upper solutions for control problems and application to a model of bone Marrow transplantation, Int. J. Appl. Math. Comput. Sci., 33 (2023) no. 3, 409–418, http://doi.org/10.34768/amcs-2023-0029
About this paper
Journal
Int. J. Appl. Math. Comput. Sci.
Publisher Name
Sciendo (Walter de Gruyter)
Print ISSN
1641876X
Online ISSN
google scholar link
[1] Barbu, V. (2016). Differential Equations, Springer, Cham.
[2] Coron, J.-M. (2007). Control and Nonlinearity, Mathematical Surveys and Monographs, Vol. 136, American Mathematical Society, Providence.
[3] DeConde, R., Kim, P.S., Levy, D. and Lee, P.P. (2005). Post-transplantation dynamics of the immune response to chronic myelogenous leukemia, Journal of Theoretical Biology 236(1): 39–59.
[4] Foley, C. and Mackey, M.C. (2009). Dynamic hematological disease: A review, Journal of Mathematical Biology 58(1): 285–322.
[5] Haplea, I. ¸S., Parajdi, L.G. and Precup, R. (2021). On the controllability of a system modeling cell dynamics related to leukemia, Symmetry 13(10): 1867.
[6] Kelley, C.T. (1995). Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia.
[7] Kim, P.S., Lee, P.P. and Levy, D. (2007). Mini-transplants for chronic myelogenous leukemia: A modeling perspective, in I. Queinnec (Ed.), Biology and Control Theory: Current Challenges, Lecture Notes in Control and Information Sciences, Vol. 357, Springer, Berlin, pp. 3–20.
[8] Langtangen, H.P. and Mardal, K.A. (2019). Introduction to Numerical Methods for Variational Problems, Springer, Cham.
[9] Parajdi, L.G. (2020). Stability of the equilibria of a dynamic system modeling stem cell transplantation, Ricerche di Matematica 69(2): 579–601.
[10] Parajdi, L.G., Patrulescu, F.-O., Precup, R. and Haplea, I. ¸S. (2023). Two numerical methods for solving a nonlinear system of integral equations of mixed Volterra-Fredholm type arising from a control problem related to leukemia, Journal of Applied Analysis & Computation, DOI:10.11948/20220197, (online first).
[11] Precup, R. (2002). Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht.
[12] Precup, R. (2022). On some applications of the controllability principle for fixed point equations, Results in Applied Mathematics 13: 100236.
[13] Precup, R., Dima, D., Tomuleasa, C., ¸Serban, M.-A. and Parajdi, L.-G. (2018). Theoretical models of hematopoietic cell dynamics related to bone marrow transplantation, in Atta-ur-Rahman and S. Anjum (Eds.), Frontiers in Stem Cell and Regenerative Medicine Research, Vol. 8, Bentham Science Publishers, Sharjah, pp. 202–241.
[14] Precup, R., ¸Serban, M.-A. and Trif, D. (2013). Asymptotic stability for a model of cell dynamics after allogeneic bone marrow transplantation, Nonlinear Dynamics and Systems Theory 13(1): 79–92.
[15] Precup, R., ¸Serban, M.-A., Trif, D. and Cucuianu, A. (2012). A planning algorithm for correction therapies after allogeneic stem cell transplantation, Journal of Mathematical Modelling and Algorithms 11(3): 309–323.
[16] Precup, R., Trif, D., ¸Serban, M.-A. and Cucuianu, A. (2010). A mathematical approach to cell dynamics before and after allogeneic bone marrow transplantation, Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity 8: 167–175.
[17] Rahmani Doust, M.H. (2015). The efficiency of harvested factor: Lotka–Volterra predator-prey model, Caspian Journal of Mathematical Sciences 4(1): 51–59.