Abstract
We introduce a new method for solving nonlinear equations in R, which uses three function evaluations at each step and has convergence order four, being, therefore, optimal in the sense of Kung and Traub:
\begin{align*}
y_{n} & =x_{n}-\frac{f\left( x_{n}\right) }{f^{\prime}\left( x_{n}\right)
}\label{f.1.10}\\
x_{n+1} & =y_{n}-\frac{\left[ x_{n},x_{n},y_{n};f\right] f^{2}\left(
x_{n}\right) }{\left[ x_{n},y_{n};f\right] ^{2}f^{\prime}\left(
x_{n}\right) },\ \; \; \; \;n=0,1,\ldots
\end{align*}
The method is based on the Hermite inverse interpolatory polynomial of degree two.
Under certain additional assumptions, we obtain convergence domains (sided intervals) larger than the usual ball convergence sets, and, moreover, with monotone convergence of the iterates. The method has larger convergence domains than of the methods which use intermediate points of the type \(y_n=x_n+f(x_n)\) (as the later may not yield convergent iterates when \(|f|\) grows fast near the solution).
Authors
Ion Păvăloiu
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy
Emil Cătinaș
“Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy
Keywords
Nonlinear equations in R; inverse interpolation; Hermite-Steffensen type method; computational convergence order.
Paper coordinates
I. Păvăloiu, E. Cătinaș, A new optimal method of order four of Hermite-Steffensen type, Mediterr. J. Math. 19 (2022), art. no. 147.
https://doi.org/10.1007/s00009-022-02030-5
??
About this paper
Journal
Mediterranean Journal Matematics
Publisher Name
Springer
Print ISSN
16605454
Online ISSN
16605446
google scholar link
[1] Amat, S., Blanda, J., Busquier, S., A Steffensen type method with modified functions. Riv. Mat. Univ. Parma 7, 125–133 (2007)
[2] Argyros, I.K., A new convergence theorem for the Steffensen method in Banach space and applications, Rev. Anal. Num´er. Th´eor. Approx., 29 (2000) no. 1, 119–127. accessed online: https://ictp.acad.ro/jnaat/journal/article/view/2000-vol29-no2-art1 on May 1st, 2017
[3] Argyros, I.K., A. Alberto Magrenan, On the convergence of an optimal fourth order family of methods and its dynamics. Appl. Math. Comput. 252, 336–346 (2015). https://doi.org/10.1016/j.amc.2014.11.074
[4] Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017). https://doi.org/10.1137/141000671
[5] Catinas, E., On some Steffensen-type iterative method for a class of nonlinear equations, Rev. Anal. Num´er. Th´eor. Approx., 24 (1995) no. 1-2, 37–43. accessed online: https://ictp.acad.ro/jnaat/journal/article/view/1994-vol23-no1-art4 on May 1st, 2017
[6] Catinas, E., A survey on the high convergence orders and computational convergence orders of sequences. Appl. Math. Comput. 343, 1–20 (2019). https://doi.org/10.1016/j.amc.2018.08.006
[7] Catinas, E., How many steps still left to x∗? SIAM Rev. 63(3), 585–624 (2021), https://doi.org/10.1137/19M1244858
[8] Chun, C., Certain improvements of Chebyshev-Halley methods with accelerated fourth-order convergence. Appl. Math. Comput. 189(1), 597–601 (2007). https://doi.org/10.1016/j.amc.2006.11.118
[9] Kanwar, V., Ramandeep Behl, Kapil K. Sharma .: Simply constructed family of a Ostrowski’s method with optimal order of convergence. Comput. Math. Appl. 62, 4021–4027 (2011). https://doi.org/10.1016/j.camwa.2011.09.039
[10] Pavaloiu, I., Approximation of the root of equations by Aitken-Steffensen-type monotonic sequences. Calcolo 32(1–2), 69–82 (1995). https://doi.org/10.1007/bf02576543
[11] Pavaloiu, I., Catinas, E., Bilateral approximation for some Aitken-Steffensen-Hermite type method of order three. Appl. Math. Comput. 217(12), 5838–5846 (2011). https://doi.org/10.1016/j.amc.2010.12.067
[12] Pavaloiu, I., Catinas, E., On an Aitken-Newton type method. Numer. Algor. 62(2), 253–260 (2013). https://doi.org/10.1007/s11075-012-9577-7
[13] Pavaloiu, I., Catinas, E., On a robust Aitken-Newton method based on the Hermite polynomial. Appl. Math. Comput. 287–288, 224–231 (2016). https://doi.org/10.1016/j.amc.2016.03.036
[14] Petkovic, M.S., On a general class of multipoint root-finding methods of high computational efficiency. SIAM J. Numer. Anal. 47(6), 4402–4414 (2010). https://doi.org/10.1137/090758763
[15] Petkovic, M.S., Neta, B., Petkovic, L.D., Dzunic, J.: Multipoint Methods For Solving Nonlinear Equations. Academic Press, New York (2013)
[16] Ren, H., Wu, Q., Bi, W., A class of two-step Steffensen type methods with fourth-order convergence. Appl. Math. Comput. 209, 206–210 (2009). https://doi.org/10.1016/j.amc.2008.12.039
[17] Sharma, J.R., Guha, R.K., Second-derivative free methods of third and fourth order for solving nonlinear equations. Int. J. Comput. Math. 88(1), 163–170 (2011). https://doi.org/10.1080/00207160903365875
[18] Turowicz, B.A.: Sur le derivees d’ordre superieur d’une fonction inverse. Ann. Polon. Math. 8, 265–269 (1960)
[19] Liu, Zhongli, Zheng, Quan, Zhao, Peng, A variant of Steffensen’s method of fourth-order convergence and its applications. Appl. Math. Comput. 216, 1978–1983 (2010). https://doi.org/10.1016/j.amc.2010.03.028