## Abstract

One considers Hermite interpolatory methods, based on two interpolatory nodes which have the same multiplicity order. Duing the efficiency index, defined by A. M. Ostrowski, one determines the method of optimal efficiency index.

## Authors

Ion **Păvăloiu**

”Tiberiu Popoviciu! Institute of Numerical Analysis Romanian Academy, Cluj-Napoca, Romania

## Keywords

?

## Paper coordinates

I. Păvăloiu, *A note on the efficiency index of a class of two step Hermite iterative methods,* Conferences in Analysis, Functional Equations Approximation and Convexity, in honor of prof. Elena Popoviciu, Cluj-Napoca, pp. 228-233 (1999).

## About this paper

##### Journal

##### Publisher Name

##### DOI

##### Print ISSN

##### Online ISSN

google scholar link

[1] R. Breent, S. Winograd, F. Wolfe, Optimal Iterative Processes for Root-Finding, Numer. Math. 20 (1973), pp. 327-341.

[2] Gh. Coman, Some Practical Approximation Methods for Nonlinear Equations, Matematica-Revue d’Analyse Numerique et de Theorie de l’Approximation, T.11, no.1-2 (1982), pp. 41-48.

[3] H.T. Kung, J.F. Traub, Optimal Order and Efficiency for Iterations with Two Evaluations, SIAM J. Numer. Anal., vol. 13, no.1, (1976), pp.84-99.

[4] A. M. Ostrowski, Solution of Equation and Systems of Equations, Academic Press, New York and London (1966).

[5[ I. Păvăloiu, Bilateral Approximations for the Solutions of Scalar Equations, Revue D’Analyse Numerique et de Theorie de l’Approximation, 23 1, (1994), pp. 95=100.

[6] I. Păvăloiu, Optimal Concerning Interpolation Methods of Solutions of Equaitons, Publ. Inst. Math., 52(66) (1992), pp. 113-126.

[7] I. Păvăloiu, Optimal Efficiency Index for Iterat ive Methods of Intyerpolatory Type, Computer Science Journal of Moldova, vol. 5, no.1 (13), (1997), pp. 20-43.

[8] Traub J.F., Iterative methods for solution of equations, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1964.

[9] Turowicz, B.A., Sur les derives d’ordre superieur d’une fonction inverse, Ann. Polon. Math., 8 (1960), pp. 265-269.