Analysis of some neutral delay differential equations

Abstract

The paper is devoted to the study of the neutral differential equation with delay \(\backslash(x^{\prime})t=f(t,x\left( t\right) ,(\theta \left(t\right) ),x^{\prime}(\theta \left( t\right) )).\) Our analysis is concerned with existence, uniqueness and monotone iterative approximation of the nondecreasing global solutions of the initial-value problem. We use fixed point theorems (Schauder, Krasnoselskii, Leray-Schauder) and monotone iterative tehniques.

Authors

Radu Precup
Babeş-Bolyai University, Cluj-Napoca, Romania

Keywords

Paper coordinates

R. Precup, Analysis of some neutral delay differential equations, Studia Univ. Babes-Bolyai Math. 44, no.3 (1999), 67-84

PDF

About this paper

Journal

Studia Universitatis Babeş-Bolyai Mathematica

Publisher Name

Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca

Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile

References

[1] D.D. Blecher, V.I. Paulsen, Tensor products of operator spaces,  J. Funct. Anal. 99 (1991), 262-292.
[2] I. Golhberg, M. Krein, Introduction on the theory of the linear, non-adjoint operators on Hilbert space,  Nauka, Moscow, 1965, (in Russian(.
[3] V.I. Paulsen,  Completely bounded maps and dilations,  Pitman Research Notes in Mathematics,  Longmans, London, 1986.
[4] V.I. Paulsen,  Representation of function algebras, abstract operator spaces and Banach space geometry,  J. Funct. anal. 109 (1992), 113-129.
[5] G. Pisier,.  Operator spaces and similarity problems,  Documenta Math. (I.C.M. 1998) I-429-452.
[6] N. Salinas, Symmetric norm ideals and relative conjucate ideals,  Trans. A.M.S. 188 (1974), 213-240.
[7] R. Schatten, Norm ideals of completely continuousoperatros, Berlin-Gottingen-Heidelberg,1960.
[8] N. Tita, Operators of  σ_{p}-class on non-Hilbert spaces, Studii Cercet. Mat. 23 (1971), 467-487 (in Romanian).
[9] N. Tita, On a class of  l_{?,p}operators, Collect.Math.32(1981),257-279.
[10] N. Tita, Some inequalities for the approximation numbers of tensor product operators, Anal.St.Univ.”Al. I. Cuza” Iași 40 (1994), 329-331.
[11] N. Tita, S-numbers operator ideals, Ed. Univ. Transilvania, Brașov.

Related Posts