A planning algorithm for correction therapies after allogeneic stem cell transplantation

Abstract

In this paper we continue the investigation of a basic mathematical model describing the dynamics of three cell lines after allogeneic stem cell transplantation: normal host cells, leukemic host cells and donor cells, whose evolution ultimately lead either to the normal hematopoietic state achieved by the expansion of the donor cells and the elimination of the host cells, or to the leukemic hematopoietic state characterized by the proliferation of the cancer line and the suppression of the other cell lines. A theoretical basis for the control of post-transplant evolution is provided. We describe several scenarios of change of system parameters by which a bad post-transplant evolution can be corrected and turned into a good one and we propose therapy planning algorithms for guiding the correction treatment.

Authors

Radu Precup
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania

Marcel-Adrian Şerban
Department of Mathematics, University “Babeş-Bolyai”, Cluj, Romania

Damian Trif
Department of Mathematics, University “Babeş-Bolyai”, Cluj, Romania

Andrei Cucuian
Department of Hematology, University of Medicine and Pharmacy “Iuliu Haţieganu”, Cluj, Romania

Keywords

Mathematical modeling; Dynamic system; Numerical simulation; Algorithm; Stem cell transplantation; Acute myeloid leukemia.

Paper coordinates

R. Precup, M.-A. Șerban, D. Trif, A. Cucuianu, A planning algorithm for correction therapies after allogeneic stem cell transplantation, J. Math. Model. Algor. 11 (2012) no. 3, 309-323, https://doi.org/10.1007/s10852-012-9187-3

PDF

??

About this paper

Journal

Journal of Mathematical Modelling and Algorithms

Publisher Name

Springer

Print ISSN

1570-1166

Online ISSN

1572-9214

google scholar link

[1] Barrett, A.J.: Understanding and harnessing the graft-versus-leukaemia effect. Br. J. Haematol. 142(6), 877–888 (2008) Article Google Scholar
[2] Cucuianu, A., Precup, R.: A hypothetical-mathematical model of acute myeloid leukemia pathogenesis. Comput. Math. Methods Med. 11, 49–65 (2010) MathSciNet MATH Article Google Scholar
[3] Dingli, D., Michor, F.: Successful therapy must eradicate cancer stem cells. Stem. Cells 24, 2603–2610 (2006) Article Google Scholar
[4] Drobyski, W.R., Gendelman, M., Vodanovic-Jankovic, S., Gorski, J.: Elimination of leukemia in the absence of lethal graft-versus-host disease after allogenic bone marrow transplantation. J. Immunol. 70, 3046–3053 (2003) Google Scholar
[5] Gyurkocza, B., Rezvani, A., Storb, R.F.: Allogeneic hematopoietic cell transplantation: the state of the art. Expert. Rev. Hematol. 3, 285–299 (2010) Article Google Scholar
[6] Hamadani, M., Mohty, M., Kharfan-Dabaja, M.A.: Reduced-intensity conditioning allogeneic hematopoietic cell transplantation in adults with acute myeloid leukemia. Cancer Control 18(4), 237–245 (2011) Google Scholar
[7] Keil, F., Prinz, E., Kalhs, P., Lechner, K., K. Moser, et al.: Treatment of leukemic relapse after allogeneic stem cell transplantation with cytotoreductive chemotherapy and/or immunotherapy or second transplants. Leukemia 15, 355–361 (2001) Article Google Scholar
[8] Luger, S.M., Ringdén, O., Zhang, M.J., Pérez, W.S., Bishop, M.R., et al.: Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transpl. 47, 203–211 (2012) Article Google Scholar
[9] Nishiwaki, S., Miyamura, K., Kato, C., Terakura, S., Ohashi, K., Sakamaki, H., Nakao, S., Harigae, H., Kodera, Y.: Impact of post-transplant imatinib administration on Philadelphia chromosome-positive acute lymphoblastic leukaemia. Anticancer Res. 30, 2415–2418 (2010), Google Scholar
[10] Precup, R., Arghirescu, S., Cucuianu, A., Serban, M.: Mathematical modeling of cell dynamics after allogeneic bone marrow transplantation. Int. J. Biomath. 5(2), 1250026 (18 pages) (2012). doi:10.1142/S1793524511001684, Article Google Scholar
[11] Precup, R., Serban, M.-A., Trif, D.: Asymptotic stability for a model of cell dynamics after allogeneic bone marrow transplantation. Nonlinear Dyn. Syst. Theory (2012, in press)
[12] Precup, R., Trif, D., Serban, M.-A., Cucuianu, A.: A mathematical approach to cell dynamics before and after allogeneic bone marrow transplantation. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 8, 167–175 (2010) MathSciNet MATH Google Scholar
[13] Ruggeri, A., Ciceri, F., Gluckman, E., Labopin, M., Rocha, V.: Alternative donors hematopoietic stem cells transplantation for adults with acute myeloid leukemia: umbilical cord blood or haploidentical donors? Best Pract. Res. Clin. Haematol. 23, 207–216 (2010), Article Google Scholar
[14] Saber, W., Opie, S. , J.D. Rizzo, M.J. Zhang, M.M. Horowitz, J. Schriber, Outcomes after matched unrelated donor vs. identical sibling hematopoietic cell transplantation (HCT) in adults with acute myelogenous leukemia (AML). Blood (2012). doi:10.1182/blood-2011-09-381699, Google Scholar
[15] Slavin, S.: Graft-versus-host disease, the graft-versus-leukemia effect, and mixed chimerism following nonmyeloablative stem cell transplantation. Int. J. Hematol. 78, 195–207 (2003)
Article Google Scholar
[16] Sprangers, B., Fevery, S., Van Wijmeersch, B., De Somer, L., Waer, M., Billiau, A.D.: Can graft-versus-leukemia reactivity be dissociated from graft-versus-host disease? Front. Biosci. 12, 4568–4594 (2007), Google Scholar
[17] Suciu, S., Mandelli, F., de Witte, T. et al.: Allogeneic compared with autologous stem cell transplantation in the treatment of patients younger than 46 years with acute myeloid leukemia (AML) in first complete remission (CR1): an intention-to treat analysis of the EORTC/GIMEMAAML-10 trial. Blood 102(4), 1232 (2003), Article Google Scholar

2012

Related Posts