A Schechter type critical point result in annular conical domains of a Banach space and applications

Abstract

Using Ekeland’s variational principle we obtain a critical point theorem of Schechter type for extrema of a functional in an annular conical domain of a Banach space. The result can be seen as a variational analogue of Krasnoselskii’s fixed point theorem in cones and can be applied for the existence, localization and multiplicity of the positive solutions of variational problems.The result is then applied to p-Laplace equations, where the geometric condition on the boundary of the annular conical domain is established via a weak Harnack type inequality given in terms of the energetic norm. This method can be applied also to other homogeneous operators in order to obtain existence, multiplicity or infinitely many solutions for certain classes of quasilinear equations.

Authors

Hannelore Lisei
Babes-Bolyai University, Cluj-Napoca, Romania

Radu Precup
Babes-Bolyai University, Cluj-Napoca, Romania

Csaba Varga
Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

weak Harnack inequality; Ekeland’s variational principle; p-Laplacian; Critical point; extremum point; Palais-Smale condition.

Paper coordinates

H. Lisei, R. Precup, C. Varga, A Schechter type critical point result in annular conical domains of a Banach space and applications, Discrete Contin. Dyn. Syst. 36 (2016), 3775-3789, http://dx.doi.org/10.3934/dcds.2016.36.3775

PDF

About this paper

Journal

Discrete Continuous Dynamical

Publisher Name

American Institute of Mathematical Sciences

 

Print ISSN

1937-1632

Online ISSN

1937-1179

google scholar link

[1] G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., (2009), Art. ID 670675, 20pp.

[2] M. Belloni, V. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys., 54 (2003), 771-783. doi: 10.1007/s00033-003-3209-y.

[3] F. Della Pietra and N. Gavitone, Anisotropic elliptic problems involving Hardy-type potential, J. Math. Anal. Appl., 397 (2013), 800-813. doi: 10.1016/j.jmaa.2012.08.008.

[4] G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with pp-Laplacian, Port. Math. (N.S.)58 (2001), 339-378.

[5] J. Diestel, Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics, Vol. 485. Springer-Verlag, Berlin-New York, 1975.

[6] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.)1 (1979), 443-474. doi: 10.1090/S0273-0979-1979-14595-6.

[7] F. Faraci and A. Kristály, One-dimensional scalar field equations involving an oscillatory nonlinear term, Discrete Contin. Dyn. Syst., 18 (2007), 107-120. doi: 10.3934/dcds.2007.18.107.

[8] V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253. doi: 10.1090/S0002-9939-08-09554-3.

[9] M. Frigon, On a new notion of linking and application to elliptic problems at resonance, J. Differential Equations153 (1999), 96-120. doi: 10.1006/jdeq.1998.3540.

[10] N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire6 (1989), 321-330.

[11] R. Glowinski and A. Marrocco, Sur l’approximation par éléments finis d’ordre un et la resolution par penalisation-dualité d’une classe de problemes de Dirichlet non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér.9 (1975), 41-76.

[12] D. Guo, J. Sun and G. Qi, Some extensions of the mountain pass lemma, Differential Integral Equations1 (1988), 351-358

[13] M. A. Krasnoselskii, Positive Solutions of Operator Equations, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron, P. Noordhoff Ltd., Groningen 1964.

[14] A. Kristály, Infinitely many solutions for a differential inclusion problem in RN, J. Differential Equations220 (2006), 511-530. doi: 10.1016/j.jde.2005.02.007.

[15] L. Ma, Mountain pass on a closed convex set, J. Math. Anal. Appl., 205 (1997), 531-536. doi: 10.1006/jmaa.1997.5227.

[16] S. A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the pp-Laplacian, J. Differential Equations182 (2002), 108-120. doi: 10.1006/jdeq.2001.4092.

[17] M. Marcus and V. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal., 33 (1979), 217-229. doi: 10.1016/0022-1236(79)90113-7.

[18] R. Precup, The Leray-Schauder boundary condition in critical point theory, Nonlinear Anal.71 (2009), 3218-3228. doi: 10.1016/j.na.2009.01.195.

[19] R. Precup, On a bounded critical point theorem of Schechter, Stud. Univ. Babeş-Bolyai Math., 58 (2013), 87-95.

[20] R. Precup, Critical point localization theorems via Ekeland’s variational principle, Dynam. Systems Appl.22 (2013), 355-370.

[21] P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations60 (1985), 142-149. doi: 10.1016/0022-0396(85)90125-1.

[22] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math.113 (2000), 401-410. doi: 10.1016/S0377-0427(99)00269-1.

[23] B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the pp-Laplacian, Bull. London Math. Soc.33 (2001), 331-340. doi: 10.1017/S0024609301008001.

[24] J. Saint Raymond, On the multiplicity of solutions of the equation ),−Δu=λf(u), −Δu=λf(u), J. Differential Equations180 (2002), 65-88. doi: 10.1006/jdeq.2001.4057.

[25] M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc.331 (1992), 681-703. doi: 10.1090/S0002-9947-1992-1064270-1.

[26] M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4612-1596-7

Lucrare in format HTML

A Schechter type critical point result in annular conical domains of a Banach space and applications

Hannelore Lisei, Radu Precup and Csaba Varga Babeş-Bolyai University
Faculty of Mathematics and Computer Science
Str. Kogălniceanu nr. 1
RO – 400084 Cluj-Napoca
Romania
hanne@math.ubbcluj.ro r.precup@math.ubbcluj.ro csvarga@cs.ubbcluj.ro
Abstract.

Using Ekeland’s variational principle we obtain a critical point theorem of Schechter type for extrema of a functional in an annular conical domain of a Banach space. The result can be seen as a variational analogue of Krasnoselskii’s fixed point theorem in cones and can be applied for the existence, localization and multiplicity of the positive solutions of variational problems. The result is then applied to pp-Laplace equations, where the geometric condition on the boundary of the annular conical domain is established via a weak Harnack type inequality given in terms of the energetic norm. This method can be applied also to other homogeneous operators in order to obtain existence, multiplicity or infinitely many solutions for certain classes of quasilinear equations.

Mathematics Subject Classification (2010): 47J30, 58E05, 34B15.

Key words: Critical point, extremum point, Palais-Smale condition, Ekeland’s variational principle, p{p}-Laplacian, weak Harnack inequality.

1. Introduction

The bounded critical point method is a very useful tool to study the existence and localization of solutions of nonlinear equations. Some references are as follows [9], [10], [12], [15], [21]. We particularly mention Schechter’s theory [25], [26] which yields critical points of a C1C^{1} functional in a ball of a Hilbert space, by taking into account boundary conditions of Leray-Schauder type. A result of this type is the following:

Theorem 1.1 (Schechter).

If XX is a Hilbert space with inner product ,\left\langle\cdot,\cdot\right\rangle and norm ,\left\|\cdot\right\|, R>0R>0 and F:XF:X\rightarrow\mathbb{R} be a lower semicontinuous functional bounded from below. Then given ε>0,\varepsilon>0, there exists a point xMx\in M such that

F(x)infF(M)+ε,F\left(x\right)\leq\inf F\left(M\right)+\varepsilon,
(1.1) F(x)F(y)+εd(x,y)for all yM.F\left(x\right)\leq F\left(y\right)+\varepsilon d\left(x,y\right)\ \ \ \text{for all \ }y\in M.

2. Main abstract result

Let XX be a real Banach space, XX^{\ast} its dual, ,\langle\cdot,\cdot\rangle denotes the duality between XX^{\ast} and X,X, and let the norms on XX and XX^{\ast} be denoted by the same symbol .\|\cdot\|.

We shall denote by JJ the duality mapping corresponding to the normalization function φ(t):=tp1(t+),\varphi\left(t\right):=t^{p-1}\ \left(t\in\mathbb{R}_{+}\right), where p>1,p>1, i.e. the set-valued operator J:X𝒫(X)J:X\rightarrow{\mathcal{P}}(X^{\ast}) defined by

Jx={xX:x,x=xp,x=xp1},xX.Jx=\{x^{\ast}\in X^{\ast}:\ \langle x^{\ast},x\rangle=\|x\|^{p},\ \|x^{\ast}\|=\|x\|^{p-1}\},\quad x\in X.

Obviously,

J(λx)=|λ|p2λJxJ\left(\lambda x\right)=\left|\lambda\right|^{p-2}\lambda Jx

for every xXx\in X and λ.\lambda\in\mathbb{R}.

It is known, see [5, Theorem 3, p. 31], that if that XX^{\ast} is strictly convex, then JJ is single-valued and so

Jx,x=xp,Jx=xp1.\langle Jx,x\rangle=\|x\|^{p},\ \ \ \|Jx\|=\|x\|^{p-1}.

Also, if in addition XX is reflexive and locally uniformly convex, then JJ is demicontinuous and bijective and its inverse J¯\bar{J} is bounded, continuous and monotone. In what follows we shall assume that the following condition holds:

Assumption (A1): XX and XX^{\ast} are locally uniformly convex reflexive Banach spaces and JJ is locally strongly monotone, i.e., there is β>1\beta>1 such that for each ρ>0\rho>0 there exists a constant a=a(ρ)>0a=a\left(\rho\right)>0 with

(2.1) JxJy,xyaxyβ\left\langle Jx-Jy,x-y\right\rangle\geq a\left\|x-y\right\|^{\beta}

for all x,yXx,y\in X satisfying xρ\left\|x\right\|\leq\rho and yρ.\left\|y\right\|\leq\rho.\vskip 6.0pt plus 2.0pt minus 2.0pt

Let KK be a wedge of the Banach space X,X, i.e. a closed convex subset of XX such that K{0}K\neq\{0\} and λKK\lambda K\subset K for every λ+.\lambda\in\mathbb{R}_{+}. Notice that KK can be a cone, i.e. may have the property K(K)={0},K\cap(-K)=\{0\}, and also can be the whole space X.X.

We shall localize critical points xx of FF by means of a functional GG which verifies suitable assumptions (see for instance assumption (A2)). More exactly, for two fixed numbers r,Rr,R with 0<r<R,0<r<R, we shall look for xKx\in K such that F(x)=0F^{\prime}\left(x\right)=0 and rG(x)R.r\leq G\left(x\right)\leq R. Hence we seek critical points of FF in the annular conical set

Kr,R:={xK:rG(x)R}.K_{r,R}:=\{x\in K:r\leq G(x)\leq R\}.

Denote by

Nr={xK:G(x)=r},NR={xK:G(x)=R}N_{r}=\{x\in K:G\left(x\right)=r\},\ \ \ N_{R}=\{x\in K:G\left(x\right)=R\}

the two parts of the boundary of Kr,RK_{r,R} which are assumed non-void. Our second assumption is as follows:

Assumption (A2): G:XG:X\rightarrow\mathbb{R} is a C1C^{1} functional such that GG^{\prime} maps bounded sets into bounded sets,

(2.2) the set {xK:G(x)R} is bounded\text{the set \ }\left\{x\in K:G\left(x\right)\leq R\right\}\text{ \ is bounded}

and

(2.3) infxNrNRG(x),x>0.\inf_{x\in N_{r}\cup N_{R}}\langle G^{\prime}(x),x\rangle>0.

As for the functional F,F, we shall assume:

Assumption (A3): F:XF:X\rightarrow\mathbb{R} is a C1C^{1} functional which is bounded from below on Kr,R,K_{r,R}, and FF^{\prime} maps bounded sets into bounded sets.

We introduce some auxiliary mappings:

D:NRNrX,D(x):=F(x)F(x),xG(x),xG(x),D:N_{R}\cup N_{r}\rightarrow X^{\ast},\quad D(x):=F^{\prime}(x)-\frac{\langle F^{\prime}(x),x\rangle}{\langle G^{\prime}(x),x\rangle}G^{\prime}(x)\,,
E:NRNrX,E(x):=J¯(μJx)J¯(μJxDx)λx,E:N_{R}\cup N_{r}\rightarrow X,\quad E(x):=\bar{J}\left(\mu Jx\right)-\bar{J}\left(\mu Jx-Dx\right)-\lambda x,

where μ\mu will be chosen in a suitable way (see (2.9)) and λ\lambda is such that

(2.4) G(x),E(x)=0.\left\langle G^{\prime}\left(x\right),E\left(x\right)\right\rangle=0.
Lemma 2.1.

Assume that (A1), (A2) and (A3) are satisfied. For every xNRNr,x\in N_{R}\cup N_{r}, one has

(2.5) D(x),x=0\left\langle D\left(x\right),x\right\rangle=0

and there exists a=a(R)>0a=a\left(R\right)>0 such that

F(x),E(x)aJ¯(μJx)J¯(μJxDx)β,\langle F^{\prime}(x),E(x)\rangle\geq a\left\|\bar{J}\left(\mu Jx\right)-\bar{J}\left(\mu Jx-Dx\right)\right\|^{\beta},

for all xNRNr.x\in N_{R}\cup N_{r}.

Proof.

Let xNRNrx\in N_{R}\cup N_{r} be arbitrary. A direct computation gives

D(x),x=F(x)F(x),xG(x),xG(x),x=0.\langle D(x),x\rangle=\langle F^{\prime}(x)-\frac{\langle F^{\prime}(x),x\rangle}{\langle G^{\prime}(x),x\rangle}G^{\prime}(x),\ x\rangle=0.

Next, from (2.4), (2.5) and (2.1),

F(x),E(x)\displaystyle\langle F^{\prime}(x),E(x)\rangle =D(x),E(x)=D(x),J¯(μJx)J¯(μJxDx)\displaystyle=\left\langle D\left(x\right),E\left(x\right)\right\rangle=\left\langle D\left(x\right),\bar{J}\left(\mu Jx\right)-\bar{J}\left(\mu Jx-Dx\right)\right\rangle
aJ¯(μJx)J¯(μJxDx)β.\displaystyle\geq a\left\|\bar{J}\left(\mu Jx\right)-\bar{J}\left(\mu Jx-Dx\right)\right\|^{\beta}.

Notice that (2.1) applied since both J¯(μJx),J¯(μJxDx)\bar{J}\left(\mu Jx\right),\ \bar{J}\left(\mu Jx-Dx\right) are bounded independently on xNRNrx\in N_{R}\cup N_{r} as a consequence of (2.2), (2.3) and of the fact that J,J¯,FJ,\bar{J},F^{\prime} and GG^{\prime} map bounded sets into bounded sets. ∎

Lemma 2.2.

Assume that (A1), (A2) and (A3) are satisfied. Let xKx\in K and zXz\in X be such that

(2.6) y:=xtzKfor all t>0sufficiently small.y:=x-tz\in K\ \ \ \text{for\ all\ \ }t>0\ \ \text{sufficiently small.}

Then yKr,Ry\in K_{r,R} for t>0t>0 small enough, in each of the following situations:

(a) r<G(x)<R;r<G\left(x\right)<R;

(b) xNRx\in N_{R} and G(x),z>0;\langle G^{\prime}(x),z\rangle>0;

(c) xNrx\in N_{r} and G(x),z<0.\langle G^{\prime}(x),z\rangle<0.

Proof.

In case (a), the conclusion follows from (2.6), the continuity of G,G, and the strict inequalities r<G(x)<R.r<G\left(x\right)<R. Assume now that condition (b) holds. From the definition of the Fréchet derivative of G,G, for each ε>0,\varepsilon>0, there exists δε>0\delta_{\varepsilon}>0 such that for each t(0,δε)t\in(0,\delta_{\varepsilon}) we have

(2.7) εtG(xtz)G(x)+G(x),tzεt.-\varepsilon t\leq G(x-tz)-G(x)+\langle G^{\prime}(x),tz\rangle\leq\varepsilon t.

Hence

RεttG(x),zG(xtz)R+εttG(x),zfor t(0,δε).R-\varepsilon t-t\langle G^{\prime}(x),z\rangle\leq G(x-tz)\leq R+\varepsilon t-t\langle G^{\prime}(x),z\rangle\ \ \ \text{for \ }t\in(0,\delta_{\varepsilon}).

Since G(x),z>0,\langle G^{\prime}(x),z\rangle>0, we may take ε:=G(x),z\varepsilon:=\langle G^{\prime}(x),z\rangle to obtain

R2tG(x),zG(xtz)Rfor t(0,δε).R-2t\langle G^{\prime}(x),z\rangle\leq G(x-tz)\leq R\ \ \ \text{for\ \ }t\in(0,\delta_{\varepsilon}).

Hence, for tt sufficiently small such that rR2tG(x),zr\leq R-2t\langle G^{\prime}(x),z\rangle and t(0,δε),t\in(0,\delta_{\varepsilon}), we have rG(xtz)R.\ r\leq G(x-tz)\leq R. This together with (2.6) shows that yKr,Ry\in K_{r,R} for t>0t>0 small enough. Finally, if (c) holds, then (2.7) gives

rεttG(x),zG(xtz)r+εttG(x),zfor t(0,δε).r-\varepsilon t-t\langle G^{\prime}(x),z\rangle\leq G(x-tz)\leq r+\varepsilon t-t\langle G^{\prime}(x),z\rangle\ \ \ \text{for \ }t\in(0,\delta_{\varepsilon}).

In this case we may take ε:=G(x),z\varepsilon:=-\langle G^{\prime}(x),z\rangle and obtain

rG(xtz)r2tG(x),zfor t(0,δε).r\leq G(x-tz)\leq r-2t\langle G^{\prime}(x),z\rangle\ \ \ \text{for\ \ }t\in(0,\delta_{\varepsilon}).

Hence, for tt sufficiently small such that r2tG(x),zRr-2t\langle G^{\prime}(x),z\rangle\leq R and t(0,δε),t\in(0,\delta_{\varepsilon}), we have rG(xtz)R,\ r\leq G(x-tz)\leq R, that is the desired conclusion. ∎

The next lemma is about the condition (2.6). It requires some compatibility conditions with respect to the wedge K.K.

Assumption (A4): One has

(2.8) J¯(JxF(x))K,\bar{J}\left(Jx-F^{\prime}\left(x\right)\right)\in K,

for all xK,x\in K, and for each ρ>0,\rho>0, there exists μρ>0\mu_{\rho}>0 such that if xKx\in K and xρ,\left\|x\right\|\leq\rho, then

(2.9) J¯(μJxD(x))K\bar{J}\left(\mu Jx-D\left(x\right)\right)\in K

for some μ\mu (depending on xx) with |μ|μρ.\left|\mu\right|\leq\mu_{\rho}.\vskip 6.0pt plus 2.0pt minus 2.0pt

Notice that (A4) is trivially satisfied in case that KK is the whole space X.X.

Lemma 2.3.

Assume that (A1), (A2), (A3) and (A4) hold. Let xK.x\in K.

  • (i)

    One has that xt[xJ¯(JxF(x))]Kr,Rx-t\left[x-\bar{J}\left(Jx-F^{\prime}\left(x\right)\right)\right]\in K_{r,R} for all t>0t>0 sufficiently small, in each of the following conditions:

    • (i1)

      r<G(x)<R;r<G\left(x\right)<R;\

    • (i2)

      xNRx\in N_{R} and G(x),xJ¯(JxF(x))>0;\langle G^{\prime}(x),x-\bar{J}\left(Jx-F^{\prime}\left(x\right)\right)\rangle>0;

    • (i3)

      xNrx\in N_{r} and G(x),xJ¯(JxF(x))<0.\langle G^{\prime}(x),x-\bar{J}\left(Jx-F^{\prime}\left(x\right)\right)\rangle<0.

  • (ii)

    If xNR,x\in N_{R}, then for every ε>0,\varepsilon>0, one has xt(εx+E(x))Kr,Rx-t\left(\varepsilon x+E\left(x\right)\right)\in K_{r,R} for all t>0t>0 sufficiently small.

  • (iii)

    If xNr,x\in N_{r}, then for every ε>0,\varepsilon>0, one has xt(εx+E(x))Kr,Rx-t\left(-\varepsilon x+E\left(x\right)\right)\in K_{r,R} for all t>0t>0 sufficiently small.

Proof.

(i) First note that using (2.8), the representation

xt[xJ¯(JxF(x))]=(1t)x+tJ¯(JxF(x))x-t\left[x-\bar{J}\left(Jx-F^{\prime}\left(x\right)\right)\right]=\left(1-t\right)x+t\bar{J}\left(Jx-F^{\prime}\left(x\right)\right)

and the convexity of KK yield that xt[xJ¯(JxF(x))]Kx-t\left[x-\bar{J}\left(Jx-F^{\prime}\left(x\right)\right)\right]\in K\ for every t(0,1).t\in\left(0,1\right). Then the conclusion of (i) follows from Lemma 2.2.

(ii) According to Lemma 2.2 (b), we first check that G(x),z>0,\langle G^{\prime}(x),z\rangle>0, where z:=εx+E(x).z:=\varepsilon x+E\left(x\right). Indeed, using (2.4) and (2.3), we can see that

G(x),z=G(x),εx+E(x)=εG(x),xεinfuNRG(u),u>0.\left\langle G^{\prime}\left(x\right),z\right\rangle=\langle G^{\prime}(x),\varepsilon x+E\left(x\right)\rangle=\varepsilon\left\langle G^{\prime}\left(x\right),x\right\rangle\geq\varepsilon\inf_{u\in N_{R}}\langle G^{\prime}(u),u\rangle>0.

Next we need to check (2.6). One has

(2.10) y:=xt(εx+E(x))=tJ¯(μJxD(x))+(1tμ|μ|2pp1tε+tλ)x,y:=x-t\left(\varepsilon x+E\left(x\right)\right)=t\bar{J}\left(\mu Jx-D\left(x\right)\right)+\left(1-t\mu\left|\mu\right|^{\frac{2-p}{p-1}}-t\varepsilon+t\lambda\right)x,

where μ=μ(x)\mu=\mu\left(x\right) is as in (2.9), assumed to be nonzero. Clearly, for small t,t, 1tμ|μ|2pp1tε+tλ>0,1-t\mu\left|\mu\right|^{\frac{2-p}{p-1}}-t\varepsilon+t\lambda>0, and thus (2.10) together with (2.9) shows that yKy\in K for all small enough t>0.t>0. The conclusion now follows from Lemma 2.2 (b). The case μ=0\mu=0 is investigated similarly.

(iii) We proceed as at the case (ii) and find that

G(x),εx+E(x)=εG(x),xεinfuNRG(u),u<0.\langle G^{\prime}(x),-\varepsilon x+E\left(x\right)\rangle=-\varepsilon\left\langle G^{\prime}\left(x\right),x\right\rangle\leq-\varepsilon\inf_{u\in N_{R}}\langle G^{\prime}(u),u\rangle<0.

Hence, if z:=εx+E(x),z:=-\varepsilon x+E\left(x\right), then G(x),z<0.\langle G^{\prime}(x),z\rangle<0. Furthermore

y:=xt(εx+E(x))=tJ¯(μJxD(x))+(1tμ|μ|2pp1+tε+tλ)x,y:=x-t\left(-\varepsilon x+E\left(x\right)\right)=t\bar{J}\left(\mu Jx-D\left(x\right)\right)+\left(1-t\mu\left|\mu\right|^{\frac{2-p}{p-1}}+t\varepsilon+t\lambda\right)x,

and we obtain as above that yKy\in K for all small enough t>0.t>0.

Now we are ready to state and prove our main result of this section.

Theorem 2.4.

Assume that (A1), (A2), (A3) and (A4) are satisfied. Then there exists a sequence (xn)Kr,R(x_{n})\subset K_{r,R} such that

(2.11) F(xn)infF(Kr,R)as n,F(x_{n})\rightarrow\inf F(K_{r,R})\ \ \ \text{as\ \ }n\rightarrow\infty,

and one of the following statements holds:

(a) xnJ¯(JxnF(xn))0x_{n}-\bar{J}\left(Jx_{n}-F^{\prime}\left(x_{n}\right)\right)\rightarrow 0 as n;n\rightarrow\infty;

(b) for each n1,n\geq 1, G(xn)=R,G(x_{n})=R, G(xn),xnJ¯[JxnF(xn)]0\langle G^{\prime}(x_{n}),x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\rangle\leq 0 and

(2.12) J¯(μnJxn)J¯(μnJxnDxn)0as n,\bar{J}\left(\mu_{n}Jx_{n}\right)-\bar{J}\left(\mu_{n}Jx_{n}-Dx_{n}\right)\rightarrow 0\,\ \ \ \text{as\ \ }n\rightarrow\infty,

where μn=μ(xn)\mu_{n}=\mu\left(x_{n}\right) is chosen accordingly to (2.9);

(c) for each n1,n\geq 1, G(xn)=r,G(x_{n})=r, G(xn),xnJ¯[JxnF(xn)]0\langle G^{\prime}(x_{n}),x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\rangle\geq 0 and (2.12) holds.

If in addition, FF satisfies a Palais-Smale type compactness condition guarantying that any sequence as above has a convergent subsequence, and the following boundary conditions hold

(2.13) F(x)+ηG(x)0for all η>0,xNR,F^{\prime}(x)+\eta G^{\prime}(x)\neq 0\quad\text{for all\ \ }\eta>0,\,x\in N_{R},
(2.14) F(x)+ηG(x)0for all η<0,xNr,F^{\prime}(x)+\eta G^{\prime}(x)\neq 0\quad\text{for all\ \ }\eta<0,\,x\in N_{r},

then there exists xKr,Rx\in K_{r,R} such that

F(x)=infF(Kr,R)and F(x)=0.F(x)=\inf F(K_{r,R})\ \ \ \text{and\ \ \ }F^{\prime}(x)=0.
Proof.

We shall apply Ekeland’s variational principle for M:=Kr,RM:=K_{r,R} (we use here that KK is closed and GG is continuous, hence Kr,RK_{r,R} is a closed subset of the Banach space XX) endowed with the metric d(x,y):=xy,d(x,y):=\|x-y\|, for the function FF (which from (A3) is C1C^{1} and bounded from below), and for ε:=1n\varepsilon:=\frac{1}{n} (n{0}).\left(n\in\mathbb{N}\setminus\left\{0\right\}\right). It follows that there exists a sequence (xn)(x_{n}) in Kr,RK_{r,R} such that

(2.15) F(xn)infF(Kr,R)+1nF(x_{n})\leq\inf F(K_{r,R})+\frac{1}{n}

and

(2.16) F(xn)F(y)+1nxnyfor every yKr,R.F(x_{n})\leq F(y)+\frac{1}{n}\|x_{n}-y\|\ \ \ \text{for every\ \ }y\in K_{r,R}.

Clearly (2.15) implies (2.11).

Since (xn)(x_{n}) belongs to Kr,R,K_{r,R}, we distinguish three cases:

Case 1: There exists a subsequence of (xn),(x_{n}), still denoted by (xn),(x_{n}), in one of the following situations: (i1) r<G(xn)<Rr<G(x_{n})<R for all n;n; (i2) xnNRx_{n}\in N_{R} and G(xn),xnJ¯[JxnF(xn)]>0\langle G^{\prime}(x_{n}),x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\rangle>0 for all n;n; (i3) xnNrx_{n}\in N_{r} and G(xn),xnJ¯[JxnF(xn)]<0\langle G^{\prime}(x_{n}),x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\rangle<0\ for all n.n.

Case 2: There exists a subsequence of (xn),(x_{n}), still denoted by (xn),(x_{n}), such that xnNRx_{n}\in N_{R} and G(xn),xnJ¯[JxnF(xn)]0\langle G^{\prime}(x_{n}),x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\rangle\leq 0\ for all n.n.

Case 3: There exists a subsequence of (xn),(x_{n}), still denoted by (xn),(x_{n}), such that xnNrx_{n}\in N_{r} and G(xn),xnJ¯[JxnF(xn)]0\langle G^{\prime}(x_{n}),x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\rangle\geq 0\ for all n.n.

Assume Case 1. According to Lemma 2.3 (i), for each n,n, we have y:=xnt(xnJ¯[JxnF(xn)])Kr,R,y:=x_{n}-t\left(x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\right)\in K_{r,R}, for all t>0t>0 sufficiently small. Thus we may apply (2.16) and deduce

tF(xn),xnJ¯[JxnF(xn)]+o(t)+tnxnJ¯[JxnF(xn)]0.-t\left\langle F^{\prime}\left(x_{n}\right),x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\right\rangle+o\left(t\right)+\frac{t}{n}\left\|x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\right\|\geq 0.

Divide by tt and let tt go to zero to obtain

F(xn),xnJ¯[JxnF(xn)]+1nxnJ¯[JxnF(xn)]0.-\left\langle F^{\prime}\left(x_{n}\right),x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\right\rangle+\frac{1}{n}\left\|x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\right\|\geq 0.

It follows that

(2.17) F(xn),xnJ¯[JxnF(xn)]1nxnJ¯[JxnF(xn)].\left\langle F^{\prime}\left(x_{n}\right),x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\right\rangle\leq\frac{1}{n}\left\|x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\right\|.

Then from (2.1),

F(xn),xnJ¯[JxnF(xn)]\displaystyle\left\langle F^{\prime}\left(x_{n}\right),x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\right\rangle =\displaystyle= F(xn),J¯JxnJ¯[JxnF(xn)]\displaystyle\left\langle F^{\prime}\left(x_{n}\right),\bar{J}Jx_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\right\rangle
\displaystyle\geq axnJ¯[JxnF(xn)]β.\displaystyle a\left\|x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\right\|^{\beta}.

Using these equality in (2.17) we deduce that

axnJ¯[JxnF(xn)]β11n.a\|x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\|^{\beta-1}\leq\frac{1}{n}.

Hence xnJ¯[JxnF(xn)]0x_{n}-\bar{J}\left[Jx_{n}-F^{\prime}(x_{n})\right]\rightarrow 0 as nn\rightarrow\infty and so, property (a) holds in Case 1.

Assume Case 2. Now Lemma 2.3 (ii) guarantees that for each nn and any ε>0,\varepsilon>0,\ y:=xnt(εxn+E(xn))Kr,Ry:=x_{n}-t\left(\varepsilon x_{n}+E\left(x_{n}\right)\right)\in K_{r,R} for all t>0t>0 sufficiently small. Then (2.16) implies

F(xn),εxn+E(xn)1nεxn+E(xn).\langle F^{\prime}(x_{n}),\varepsilon x_{n}+E(x_{n})\rangle\leq\frac{1}{n}\|\varepsilon x_{n}+E(x_{n})\|.

Letting ε0\varepsilon\rightarrow 0 and using Lemma 2.1 we deduce

(2.18) aJ¯(μnJxn)J¯(μnJxnDxn)βF(xn),E(xn)1nE(xn).a\left\|\bar{J}\left(\mu_{n}Jx_{n}\right)-\bar{J}\left(\mu_{n}Jx_{n}-Dx_{n}\right)\right\|^{\beta}\leq\langle F^{\prime}(x_{n}),E(x_{n})\rangle\leq\frac{1}{n}\|E(x_{n})\|.

Let us consider the continuous linear operator

Pn:XX,Pnx:=xG(xn),xG(xn),xnxn.P_{n}:X\rightarrow X,\ \ \ P_{n}x:=x-\frac{\langle G^{\prime}(x_{n}),x\rangle}{\langle G^{\prime}(x_{n}),x_{n}\rangle}\,x_{n}.

Since (xn)NR(x_{n})\subset N_{R} and the level set NRN_{R} is bounded, it follows that (xn)(x_{n}) is a bounded sequence. By the assumption on GG^{\prime} it follows that (G(xn))(G^{\prime}(x_{n})) is also bounded. In addition

G(xn),xninfuNRG(u),u:=bR>0.\langle G^{\prime}(x_{n}),x_{n}\rangle\geq\inf_{u\in N_{R}}\langle G^{\prime}(u),u\rangle:=b_{R}>0.

We have

Pnxx+G(xn)xbRxn=(1+G(xn)xnbR)x,xX.\|P_{n}x\|\leq\|x\|+\frac{\|G^{\prime}(x_{n})\|\|x\|}{b_{R}}\,\|x_{n}\|=\left(1+\frac{\|G^{\prime}(x_{n})\|\|x_{n}\|}{b_{R}}\right)\,\|x\|,\ \ \ x\in X.

Hence there exists αR>0\alpha_{R}>0 (independent on nn) such that

PnxαRx,for all xX and n1.\|P_{n}x\|\leq\alpha_{R}\|x\|,\ \ \ \text{for all\ }x\in X\text{ and }n\geq 1.

For x:=J¯(μnJxn)J¯(μnJxnDxn),x:=\bar{J}\left(\mu_{n}Jx_{n}\right)-\bar{J}\left(\mu_{n}Jx_{n}-Dx_{n}\right), one has Pnx=E(xn)P_{n}x=E(x_{n}) and thus

E(xn)αRJ¯(μnJxn)J¯(μnJxnDxn).\|E(x_{n})\|\leq\alpha_{R}\|\bar{J}\left(\mu_{n}Jx_{n}\right)-\bar{J}\left(\mu_{n}Jx_{n}-Dx_{n}\right)\|.

Then by (2.18),

aJ¯(μnJxn)J¯(μnJxnDxn)βαRnJ¯(μnJxn)J¯(μnJxnDxn).a\left\|\bar{J}\left(\mu_{n}Jx_{n}\right)-\bar{J}\left(\mu_{n}Jx_{n}-Dx_{n}\right)\right\|^{\beta}\leq\frac{\alpha_{R}}{n}\|\bar{J}\left(\mu_{n}Jx_{n}\right)-\bar{J}\left(\mu_{n}Jx_{n}-Dx_{n}\right)\|.

Since β>1,\beta>1, this yields J¯(μnJxn)J¯(μnJxnDxn)0\bar{J}\left(\mu_{n}Jx_{n}\right)-\bar{J}\left(\mu_{n}Jx_{n}-Dx_{n}\right)\rightarrow 0\ as n,n\rightarrow\infty, that is (2.12) holds.

Finally, in Case 3 we proceed similarly by using Lemma 2.3 (iii) and taking in (2.16) y:=xnt(εxn+E(xn)).y:=x_{n}-t\left(-\varepsilon x_{n}+E\left(x_{n}\right)\right). The conclusion is the same, namely (2.12) holds.

Assume now that the additional hypotheses of the theorem are satisfied. The (PS) condition guarantees the existence of a subsequence of (xn),\left(x_{n}\right), which is still denoted by (xn),\left(x_{n}\right), such that xnxx_{n}\rightarrow x as n,n\rightarrow\infty, for some element xKr,R.x\in K_{r,R}. Clearly, (2.11) gives F(x)=infF(Kr,R).F(x)=\inf F(K_{r,R}). In case of the property (a), if we denote yn:=xnJ¯(JxnF(xn)),y_{n}:=x_{n}-\bar{J}\left(Jx_{n}-F^{\prime}\left(x_{n}\right)\right), then yn0y_{n}\rightarrow 0 as n,n\rightarrow\infty, and from

J(xnyn)=JxnF(xn),J\left(x_{n}-y_{n}\right)=Jx_{n}-F^{\prime}\left(x_{n}\right),

letting nn\rightarrow\infty and using the continuity of FF^{\prime} and the demicontinuity of J,J, we obtain F(x)=0F^{\prime}\left(x\right)=0 and the proof is finished. Assume that the property (b) holds. Then, if we pass to the limit we obtain

(2.19) G(x)=R,G(x),xJ¯[JxF(x)]0G(x)=R,\ \ \ \langle G^{\prime}(x),x-\bar{J}\left[Jx-F^{\prime}(x)\right]\rangle\leq 0

and

(2.20) J¯(μJx)J¯(μJxDx)=0,\bar{J}\left(\mu Jx\right)-\bar{J}\left(\mu Jx-Dx\right)=0,

where μ\mu is the limit of some convergent subsequence of (μn).\left(\mu_{n}\right). Notice that such a subsequence exists since according to (A4), |μn|μρ,\left|\mu_{n}\right|\leq\mu_{\rho}, where ρ\rho is a bound for the sequence (xn).\left(\left\|x_{n}\right\|\right). Next from (2.20)

Dx=0,Dx=0,

that is

(2.21) F(x)+ηG(x)=0,F^{\prime}\left(x\right)+\eta G^{\prime}\left(x\right)=0,

where

η:=F(x),xG(x),x.\eta:=-\frac{\langle F^{\prime}(x),x\rangle}{\langle G^{\prime}(x),x\rangle}.

In case that η=0,\eta=0, (2.21) shows that F(x)=0F^{\prime}\left(x\right)=0 and we are done. Assume η0.\eta\neq 0. From (2.21),

(2.22) F(x),xJ¯[JxF(x)]=ηG(x),xJ¯[JxF(x)].\left\langle F^{\prime}\left(x\right),x-\bar{J}\left[Jx-F^{\prime}(x)\right]\right\rangle=-\eta\left\langle G^{\prime}\left(x\right),x-\bar{J}\left[Jx-F^{\prime}(x)\right]\right\rangle.

This together with (2.19) gives

0G(x),xJ¯[JxF(x)]=1ηF(x),J¯JxJ¯[JxF(x)].0\geq\langle G^{\prime}(x),x-\bar{J}\left[Jx-F^{\prime}(x)\right]\rangle=-\frac{1}{\eta}\langle F^{\prime}(x),\bar{J}Jx-\bar{J}\left[Jx-F^{\prime}(x)\right]\rangle.

Since

F(x),J¯JxJ¯[JxF(x)]aJ¯JxJ¯[JxF(x)]β0,\langle F^{\prime}(x),\bar{J}Jx-\bar{J}\left[Jx-F^{\prime}(x)\right]\rangle\geq a\left\|\bar{J}Jx-\bar{J}\left[Jx-F^{\prime}(x)\right]\right\|^{\beta}\geq 0,

we may infer that η>0.\eta>0. Then

xNR,η>0and F(x)+ηG(x)=0,x\in N_{R},\ \ \eta>0\ \ \text{and\ \ }F^{\prime}\left(x\right)+\eta G^{\prime}\left(x\right)=0,

which contradicts (2.13). Thus the case η0\eta\neq 0 can not occur.

The case of the property (c) is similar. ∎

3. Application

In this section we present an application of Theorem 2.4 for the localization in annular conical domains of the positive solutions of the two-point boundary value problem

(3.1) {(|u|p2u)(t)=f(u(t)),t[0,1]u(0)=u(1)=0,\left\{\begin{array}[]{l}-\left(\left|u^{\prime}\right|^{p-2}u^{\prime}\right)^{\prime}\left(t\right)=f\left(u\left(t\right)\right),\ \ t\in\left[0,1\right]\\ u\left(0\right)=u\left(1\right)=0,\end{array}\right.

where p>1,p>1, ff is a continuous function on ,\mathbb{R}\mathbf{,} which is nonnegative and nondecreasing on +.\mathbb{R}_{+}. Hence all possible nonnegative solutions are concave functions on [0,1].\left[0,1\right]. We seek symmetric solutions with respect to the middle of the interval [0,1],\left[0,1\right], that is with the property

u(1t)=u(t)for every t[0,12].u\left(1-t\right)=u\left(t\right)\ \ \ \text{for every\ \ }t\in\left[0,\frac{1}{2}\right].

Consider the Banach space X:=W01,p(0,1)X:=W_{0}^{1,p}\left(0,1\right) endowed with the energetic norm u1,p=(01|u(t)|p𝑑t)1/p\left\|u\right\|_{1,p}=\left(\int_{0}^{1}\left|u^{\prime}\left(t\right)\right|^{p}dt\right)^{1/p} and define the functional

F:W01,p(0,1),F(u)=01(1p|u(t)|pg(u(t)))𝑑t,F:W_{0}^{1,p}\left(0,1\right)\rightarrow\mathbb{R}\mathbf{,\ \ }F\left(u\right)=\int_{0}^{1}\left(\frac{1}{p}\left|u^{\prime}\left(t\right)\right|^{p}-g\left(u\left(t\right)\right)\right)dt,

where g(τ)=0τf(s)𝑑s.g\left(\tau\right)=\int_{0}^{\tau}f\left(s\right)ds. Clearly, FF is a C1C^{1}-functional and

(3.2) F(u)=(|u|p2u)f(u).F^{\prime}\left(u\right)=-\left(\left|u^{\prime}\right|^{p-2}u^{\prime}\right)^{\prime}-f\left(u\right).

Hence the solutions of (3.1) are critical points of F.F.

Let G:W01,p(0,1)G:W_{0}^{1,p}(0,1)\rightarrow\mathbb{R} be given by G(u)=1pu1,pp.G(u)=\frac{1}{p}\|u\|_{1,p}^{p}. It is known that the functional GG is continuously Fréchet differentiable on W01,p(0,1)W_{0}^{1,p}(0,1) and G(u)=(|u|p2u).G^{\prime}\left(u\right)=-\left(\left|u^{\prime}\right|^{p-2}u^{\prime}\right)^{\prime}. The operator (|u|p2u)-\left(\left|u^{\prime}\right|^{p-2}u^{\prime}\right)^{\prime} is in fact the duality mapping J:W01,p(0,1)W1,q(0,1)J:W_{0}^{1,p}(0,1)\rightarrow W^{-1,q}(0,1) (1/p+1/q=1)\left(1/p+1/q=1\right) corresponding to the normalization function φ(t)=tp1,\varphi(t)=t^{p-1}, t+t\in\mathbb{R}_{+} (see, e.g. [4, Theorem 7 and Theorem 9, pp. 348-350]). Hence, in our case

G(u)=J(u)=(|u|p2u).G^{\prime}\left(u\right)=J\left(u\right)=-\left(\left|u^{\prime}\right|^{p-2}u^{\prime}\right)^{\prime}.

In this specific case, assumption (A1) holds. Indeed, it is well-known that W01,p(0,1)W_{0}^{1,p}\left(0,1\right) and its dual W1,q(0,1)W^{-1,q}\left(0,1\right) are locally uniformly convex reflexive Banach spaces, while the second requirement in (A1) is a consequence of the following result due to Glowinski and Marrocco [11] (which also holds in higher dimension):

(i) If p(1,2],p\in(1,2], then

(u1,p+v1,p)2pJuJv,uvuv1,p2for all u,vW01,p(0,1);\left(\left\|u\right\|_{1,p}+\left\|v\right\|_{1,p}\right)^{2-p}\left\langle Ju-Jv,\ u-v\right\rangle\geq\left\|u-v\right\|_{1,p}^{2}\ \ \ \text{for all }u,v\in W_{0}^{1,p}\left(0,1\right);

(ii) If p(2,),p\in(2,\infty), then there exists a constant c(p)>0c\left(p\right)>0 such that

JuJv,uvc(p)uv1,ppfor all u,vW01,p(0,1).\left\langle Ju-Jv,\ u-v\right\rangle\geq c\left(p\right)\left\|u-v\right\|_{1,p}^{p}\ \ \ \text{for all\ }u,v\in W_{0}^{1,p}\left(0,1\right).

Thus (2.1) is true for a(ρ)=(2ρ)p2a\left(\rho\right)=\left(2\rho\right)^{p-2} and β=2,\beta=2, if p2,p\leq 2, and for a(ρ)=c(p)a\left(\rho\right)=c\left(p\right) and β=p,\beta=p, if p>2.p>2.

Let us consider the cone of all nonnegative functions in W01,p(0,1)W_{0}^{1,p}(0,1) which are symmetric with respect to the middle of the interval [0,1],\left[0,1\right], namely

K:={uW01,p(0,1):u0, u(t)=u(1t) for all t[0,1/2]}.K:=\left\{u\in W_{0}^{1,p}(0,1):u\geq 0,\text{ }u\left(t\right)=u\left(1-t\right)\text{ for all }t\in\left[0,1/2\right]\right\}.

We can immediately see that the assumption (A2) holds. As concerns assumption (A3), note that FF is bounded from below on the intersection of KK with each ball of W01,p(0,1).W_{0}^{1,p}(0,1). Indeed, if uKu\in K and u1,pρ,\left\|u\right\|_{1,p}\leq\rho, then

(3.3) 0u(t)=0tu(s)𝑑s(011q𝑑s)1/q(01|u(s)|p𝑑s)1/p=u1,pρ0\leq u\left(t\right)=\int_{0}^{t}u^{\prime}\left(s\right)ds\leq\left(\int_{0}^{1}1^{q}ds\right)^{1/q}\left(\int_{0}^{1}\left|u^{\prime}\left(s\right)\right|^{p}ds\right)^{1/p}=\left\|u\right\|_{1,p}\leq\rho

for all t[0,1],t\in\left[0,1\right], where 1/p+1/q=1.1/p+1/q=1. Next, since ff is nonnegative on +,\mathbb{R}_{+}\mathbf{,} gg is nondecreasing on +\mathbb{R}_{+} and thus

F(u)01g(u(t))𝑑tg(ρ).F\left(u\right)\geq-\int_{0}^{1}g\left(u\left(t\right)\right)dt\geq-g\left(\rho\right).

Hence the assumption (A3) also holds.

In order to check assumption (A4), we first show that the condition (2.8) is satisfied. Indeed, if uKu\in K and we let v:=J¯(JuF(u)),v:=\bar{J}\left(Ju-F^{\prime}\left(u\right)\right), then Jv=JuJu+f(u),Jv=Ju-Ju+f\left(u\right), that is Jv=f(u).Jv=f\left(u\right). Since f(u)0,f\left(u\right)\geq 0, one has v0.v\geq 0. On the other hand, the symmety of uu with respect to 1/21/2 is obviously passed to f(u),f\left(u\right), and then to v.v. The last assertion follows from the fact that if hh is symmetric with respect to 1/2,1/2, and v(t)v\left(t\right) solves Jv=h,Jv=h, then by a direct computation, we have that v(1t)v\left(1-t\right) also solves it. Then, the uniqueness of the solution yields v(t)=v(1t),v\left(t\right)=v\left(1-t\right), i.e. vv is symmetric with respect to 1/2.1/2. Therefore vKv\in K as desired.

Next we show that the condition (2.9) holds for

μ=1+η,where η=η(u):=F(u),uG(u),u.\mu=1+\eta,\ \ \ \text{where\ \ \ }\eta=\eta\left(u\right):=-\frac{\langle F^{\prime}(u),u\rangle}{\langle G^{\prime}(u),u\rangle}.

Indeed, if uKu\in K and we denote v:=J¯(μJuD(u)),v:=\bar{J}\left(\mu Ju-D\left(u\right)\right), then

Jv\displaystyle Jv =\displaystyle= μJuD(u)=μJuF(u)ηJu\displaystyle\mu Ju-D\left(u\right)=\mu Ju-F^{\prime}(u)-\eta Ju
=\displaystyle= μJuJu+f(u)ηJu=f(u).\displaystyle\mu Ju-Ju+f\left(u\right)-\eta Ju=f\left(u\right).

which as above yields the conclusion vK.v\in K. On the other hand, for each ρ>0,\rho>0, there is c(ρ)>0c\left(\rho\right)>0 with |η(u)|c(ρ)\left|\eta\left(u\right)\right|\leq c\left(\rho\right) for every uKu\in K with u1,pρ.\left\|u\right\|_{1,p}\leq\rho. Then |μ|=|1+η(u)|1+c(ρ)=:μρ\left|\mu\right|=\left|1+\eta\left(u\right)\right|\leq 1+c\left(\rho\right)=:\mu_{\rho} for all uKu\in K with u1,pρ.\left\|u\right\|_{1,p}\leq\rho. Thus, assumption (A4) is satisfied.

Before we state and proof the main result of existence and localization for the problem (3.1), we give the weak Harnack type inequality for pp-superharmonic symmetric functions on [0,1],\left[0,1\right], which is essential for the estimations from below on the part G(u)=rG\left(u\right)=r of the boundary of Kr,R.K_{r,R}.

Lemma 3.1.

For every function uKu\in K with JuC([0,1];+)Ju\in C\left(\left[0,1\right];\mathbb{R}_{+}\right) nondecreasing, the following inequality holds

(3.5) u(t)t(12t)1p1u1,pu\left(t\right)\geq t\left(1-2t\right)^{\frac{1}{p-1}}\left\|u\right\|_{1,p}

for all t(0,1/2).t\in\left(0,1/2\right).

Proof.

Let uKu\in K with JuC([0,1];+),Ju\in C\left(\left[0,1\right];\mathbb{R}_{+}\right), and let t(0,1/2)t\in\left(0,1/2\right) be any number. From Ju0Ju\geq 0 on [0,1],\left[0,1\right], one has that uu is concave and so uu^{\prime} is decreasing, while from JuC[0,1],Ju\in C\left[0,1\right], we obtain uW2,(0,1).u\in W^{2,\infty}\left(0,1\right). Now the symmetry of uu guarantees u(s)0u^{\prime}\left(s\right)\geq 0 on [0,1/2]\left[0,1/2\right] and u(1/2)=0.u^{\prime}\left(1/2\right)=0. Furthermore,

(3.6) u(t)=0tu(s)𝑑stu(t),u\left(t\right)=\int_{0}^{t}u^{\prime}\left(s\right)ds\geq tu^{\prime}\left(t\right),

and it is not difficult to prove the following inequality

(3.7) u(t)(12t)1p1u(0).u^{\prime}\left(t\right)\geq\left(1-2t\right)^{\frac{1}{p-1}}u^{\prime}\left(0\right).

Indeed, if we let ϕ(s)=u(s)p1(12s)u(0)p1\phi\left(s\right)=u^{\prime}\left(s\right)^{p-1}-\left(1-2s\right)u^{\prime}\left(0\right)^{p-1} for s[0,1/2],s\in\left[0,1/2\right], then

ϕ(s)\displaystyle\phi^{\prime}\left(s\right) =\displaystyle= (|u(s)|p2u(s))+2u(0)p1\displaystyle\left(\left|u^{\prime}\left(s\right)\right|^{p-2}u^{\prime}\left(s\right)\right)^{\prime}+2u^{\prime}\left(0\right)^{p-1}
=\displaystyle= (Ju)(s)+2u(0)p1.\displaystyle-\left(Ju\right)\left(s\right)+2u^{\prime}\left(0\right)^{p-1}.

Hence ϕ\phi^{\prime} is decreasing, and consequently ϕ\phi is concave. In addition, ϕ(0)=ϕ(1/2)=0.\phi\left(0\right)=\phi\left(1/2\right)=0. Hence ϕ(s)0\phi\left(s\right)\geq 0 for all s[0,1/2],s\in\left[0,1/2\right], i.e. (3.7) is true. Another remark is that

u1,pp=01|u(s)|p𝑑s=2012u(s)p𝑑tu(0)p,\left\|u\right\|_{1,p}^{p}=\int_{0}^{1}\left|u^{\prime}\left(s\right)\right|^{p}ds=2\int_{0}^{\frac{1}{2}}u^{\prime}\left(s\right)^{p}dt\leq u^{\prime}\left(0\right)^{p},

whence

(3.8) u(0)u1,p.u^{\prime}\left(0\right)\geq\left\|u\right\|_{1,p}.

Now (3.6), (3.7) and (3.8) give (3.5). ∎

Now we are ready to state the main existence and localization result for the problem (3.1).

Theorem 3.2.

Let f:f:\mathbb{R}\mathbf{\rightarrow}\mathbb{R} be a continuous function, nonnegative and nondecreasing on +.\mathbb{R}_{+}. Assume that there are numbers 0<r<R0<r<R and a(0,1/2)a\in\left(0,1/2\right) such that

(3.9) f(a(12a)1p1(pr)1p)(pr)p1pa(12a)pp1,f\left(a\left(1-2a\right)^{\frac{1}{p-1}}\left(pr\right)^{\frac{1}{p}}\right)\geq\frac{\left(pr\right)^{\frac{p-1}{p}}}{a\left(1-2a\right)^{\frac{p}{p-1}}},
(3.10) f((pR)1p)(pR)p1p.f\left(\left(pR\right)^{\frac{1}{p}}\right)\leq\left(pR\right)^{\frac{p-1}{p}}.

Then (3.1) has a positive, concave and symmetric solution uu which minimizes FF on the set of all functions vKv\in K satisfying (pr)1/pv1,p(pR)1/p.\left(pr\right)^{1/p}\leq\left\|v\right\|_{1,p}\leq\left(pR\right)^{1/p}.

Proof.

We shall apply Theorem 2.4. As shown before, the assumptions (A1)-(A4) hold. Thus it remains to check the boundary conditions (2.13), (2.14) and the Palais-Smale type compactness condition.

First we check (2.13). Assume that (2.13) does not hold. Then there is uKu\in K with u1,pp/p=R\left\|u\right\|_{1,p}^{p}/p=R and η>0\eta>0 such that F(u)+ηG(u)=0.F^{\prime}\left(u\right)+\eta G^{\prime}\left(u\right)=0. Hence f(u)=(1+η)|u|p2u,f\left(u\right)=-\left(1+\eta\right)\left|u^{\prime}\right|^{p-2}u^{\prime}, that is

(3.11) (|u|p2u)(t)=11+ηf(u(t))on [0,1]and u(0)=u(1)=0.-\left(\left|u^{\prime}\right|^{p-2}u^{\prime}\right)^{\prime}\left(t\right)=\frac{1}{1+\eta}f\left(u\left(t\right)\right)\ \ \text{on\ }\left[0,1\right]\ \text{and\ }u\left(0\right)=u\left(1\right)=0.

If we multiply by u(t),u\left(t\right), we integrate over [0,1],\left[0,1\right], and we take into account (3.3) and the monotony of f,f, we obtain

pR\displaystyle pR =\displaystyle= u1,pp=11+η01f(u(t))u(t)𝑑t<01f(u(t))u(t)𝑑t\displaystyle\left\|u\right\|_{1,p}^{p}=\frac{1}{1+\eta}\int_{0}^{1}f\left(u\left(t\right)\right)u\left(t\right)dt<\int_{0}^{1}f\left(u\left(t\right)\right)u\left(t\right)dt
\displaystyle\leq f(u1,p)u1,p=f((pR)1p)(pR)1p,\displaystyle f\left(\left\|u\right\|_{1,p}\right)\left\|u\right\|_{1,p}=f\left(\left(pR\right)^{\frac{1}{p}}\right)\left(pR\right)^{\frac{1}{p}},

which contradicts (3.10). Hence (2.13) holds.

Next assume that the boundary condition (2.14) does not hold. Then, for some uKu\in K with u1,pp/p=r\left\|u\right\|_{1,p}^{p}/p=r and η<0,\eta<0, we have F(u)+ηG(u)=0,F^{\prime}\left(u\right)+\eta G^{\prime}\left(u\right)=0, that is f(u)=(1+η)(|u|p2u).f\left(u\right)=-\left(1+\eta\right)\left(\left|u^{\prime}\right|^{p-2}u^{\prime}\right)^{\prime}. The case 1+η01+\eta\leq 0 is not possible since it would imply that uu is convex, whence since u(0)=u(1)=0,u\left(0\right)=u\left(1\right)=0, u=0,u=0, which is excluded by u1,pp/p=r>0.\left\|u\right\|_{1,p}^{p}/p=r>0. Hence 1+η>0,1+\eta>0, and we have (3.11), where this time 11+η>1.\frac{1}{1+\eta}>1. As above, after multiplication and integration, we obtain

pr\displaystyle pr =\displaystyle= u1,pp=11+η01f(u(t))u(t)𝑑t>01f(u(t))u(t)𝑑t\displaystyle\left\|u\right\|_{1,p}^{p}=\frac{1}{1+\eta}\int_{0}^{1}f\left(u\left(t\right)\right)u\left(t\right)dt>\int_{0}^{1}f\left(u\left(t\right)\right)u\left(t\right)dt
=\displaystyle= 2012f(u(t))u(t)𝑑t2a12f(u(t))u(t)𝑑t\displaystyle 2\int_{0}^{\frac{1}{2}}f\left(u\left(t\right)\right)u\left(t\right)dt\geq 2\int_{a}^{\frac{1}{2}}f\left(u\left(t\right)\right)u\left(t\right)dt
\displaystyle\geq 2(12a)u(a)f(u(a)).\displaystyle 2\left(\frac{1}{2}-a\right)u\left(a\right)f\left(u\left(a\right)\right).

This together of (3.5) implies

pr>a(12a)pp1(pr)1pf(a(12a)1p1(pr)1p),pr>a\left(1-2a\right)^{\frac{p}{p-1}}\left(pr\right)^{\frac{1}{p}}f\left(a\left(1-2a\right)^{\frac{1}{p-1}}\left(pr\right)^{\frac{1}{p}}\right),

that is

f(a(12a)1p1(pr)1p)<(pr)p1pa(12a)pp1,f\left(a\left(1-2a\right)^{\frac{1}{p-1}}\left(pr\right)^{\frac{1}{p}}\right)<\frac{\left(pr\right)^{\frac{p-1}{p}}}{a\left(1-2a\right)^{\frac{p}{p-1}}},

which contradicts (3.9). Thus, the conditions (2.13) and (2.14) hold.

Finally, we have to check the Palais-Smale compactness condition. The key property is the complete continuity of the operator J¯\bar{J} from C[0,1]C\left[0,1\right] to W01,p(0,1).W_{0}^{1,p}\left(0,1\right). Assume that the sequence (un)\left(u_{n}\right) guaranteed by Theorem 2.4 is in Case (a), i.e. vn:=v_{n}:= unJ¯(JunF(un))0u_{n}-\bar{J}\left(Ju_{n}-F^{\prime}\left(u_{n}\right)\right)\rightarrow 0 as n.n\rightarrow\infty. Since F(un)=Junf(un),F^{\prime}\left(u_{n}\right)=Ju_{n}-f\left(u_{n}\right), we have un=vn+J¯f(un).u_{n}=v_{n}+\bar{J}f\left(u_{n}\right). Being the sequences (vn)\left(v_{n}\right) and (J¯f(un))\left(\bar{J}f\left(u_{n}\right)\right) relatively compact, it follows that the sequence (un)\left(u_{n}\right) is relatively compact too. Hence the Palais-Smale type condition holds in case (a). Assume now that (un)\left(u_{n}\right) satisfies one of the cases (b) and (c). Hence, passing to the limit for nn\rightarrow\infty, we have

(3.12) J¯(μnJun)J¯(μnJunDun)=J¯(μnJun)J¯f(un)0,\bar{J}\left(\mu_{n}Ju_{n}\right)-\bar{J}\left(\mu_{n}Ju_{n}-Du_{n}\right)=\bar{J}\left(\mu_{n}Ju_{n}\right)-\bar{J}f\left(u_{n}\right)\rightarrow 0\,,

where

μn=1F(un),unG(un),un.\mu_{n}=1-\frac{\langle F^{\prime}(u_{n}),u_{n}\rangle}{\langle G^{\prime}(u_{n}),u_{n}\rangle}.

Since (μn)\left(\mu_{n}\right) is bounded, passing eventually to a subsequence, we may assume that μnμ\mu_{n}\rightarrow\mu as n.n\rightarrow\infty. The case μ=0\mu=0 is not possible. Indeed, otherwise, F(un),unG(un),un1,\frac{\langle F^{\prime}(u_{n}),u_{n}\rangle}{\langle G^{\prime}(u_{n}),u_{n}\rangle}\rightarrow 1, whence f(un),un0.\left\langle f\left(u_{n}\right),u_{n}\right\rangle\rightarrow 0. However, using the behavior of un,u_{n}, the monotonicity of ff and (3.5), we have

f(un),un\displaystyle\left\langle f\left(u_{n}\right),u_{n}\right\rangle =\displaystyle= 01f(un(t))un(t)𝑑ta1/2f(un(t))un(t)𝑑t\displaystyle\int_{0}^{1}f\left(u_{n}\left(t\right)\right)u_{n}\left(t\right)dt\geq\int_{a}^{1/2}f\left(u_{n}\left(t\right)\right)u_{n}\left(t\right)dt
\displaystyle\geq (12a)f(un(a))un(a)c>0,\displaystyle\left(\frac{1}{2}-a\right)f\left(u_{n}\left(a\right)\right)u_{n}\left(a\right)\geq c>0,

where cc depends only on rr and R,R, respectively, being independent on n.n. It follows the contradiction 0c>0.0\geq c>0. Hence μ0.\mu\neq 0. Since from (3.12), (J¯(μnJun))\left(\bar{J}\left(\mu_{n}Ju_{n}\right)\right) is compact, and J¯(μnJun)=|μn|2pp1μnun,\bar{J}\left(\mu_{n}Ju_{n}\right)=\left|\mu_{n}\right|^{\frac{2-p}{p-1}}\mu_{n}u_{n}, we derive that (un)\left(u_{n}\right) is compact as desired.

Therefore all the assumptions of Theorem 2.4 hold. ∎

In the next corollary we give conditions on the function ff which assure the existence of the numbers rr and RR having the properties (3.9), (3.10).

Corollary 3.3.

Let f:+f:\mathbb{R}\mathbf{\rightarrow}\mathbb{R}_{+} be a continuous function, nonnegative and nondecreasing on +.\mathbb{R}_{+}. If for some a(0,1/2),a\in\left(0,1/2\right),

(3.13) limsupτ0f(τ)τp1>1ap(12a)1p1,\text{\emph{limsup}}_{\tau\rightarrow 0}\frac{f\left(\tau\right)}{\tau^{p-1}}>\frac{1}{a^{p}\left(1-2a\right)^{\frac{1}{p-1}}},
(3.14) liminfτf(τ)τp1<1,\text{\emph{liminf}}_{\tau\rightarrow\infty}\frac{f\left(\tau\right)}{\tau^{p-1}}<1,

then (3.1) has at least one nontrivial positive, concave and symmetric solution.

Proof.

From (3.13), we can find a number r>0r>0 sufficiently small, such that (3.9) holds. Also, from (3.14), it can be found a large enough R>rR>r with the property (3.10). Thus we can apply Theorem 3.2. ∎

Finally we note that Theorem 2.4 in the abstract setting and Theorem 3.2 for the considered concrete application, immediately yield multiplicity results of solutions if their hypotheses are satisfied for several finitely or infinitely many pairs of numbers r,R.r,R. Thus, Theorem 3.2 gives the following multiplicity result for (3.1).

Theorem 3.4.

Assume that f:+f:\mathbb{R}\mathbf{\rightarrow}\mathbb{R}_{+} is a continuous function, nonnegative and nondecreasing on +.\mathbb{R}_{+}.

(i) Let (rj)1jk,(Rj)1jk\left(r_{j}\right)_{1\leq j\leq k},\left(R_{j}\right)_{1\leq j\leq k} (k)\left(k\leq\infty\right) be increasing finite or infinite sequences with rj<Rj<rj+1<Rj+1r_{j}<R_{j}<r_{j+1}<R_{j+1} for 1jk1,1\leq j\leq k-1, and let (aj)1jk\left(a_{j}\right)_{1\leq j\leq k} with aj(0,1/2)a_{j}\in\left(0,1/2\right) for all j.j. If

(3.15) f(aj(12aj)1p1(prj)1p)(prj)p1paj(12aj)pp1,f\left(a_{j}\left(1-2a_{j}\right)^{\frac{1}{p-1}}\left(pr_{j}\right)^{\frac{1}{p}}\right)\geq\frac{\left(pr_{j}\right)^{\frac{p-1}{p}}}{a_{j}\left(1-2a_{j}\right)^{\frac{p}{p-1}}},
(3.16) f((pRj)1p)(pRj)p1p,f\left(\left(pR_{j}\right)^{\frac{1}{p}}\right)\leq\left(pR_{j}\right)^{\frac{p-1}{p}},

for all j,j, then (3.1)\left(\ref{p}\right) has kk (respectively, when k=,k=\infty, an infinite sequence of) distinct positive, concave and symmetric solutions uj(1jk),u_{j}\ \left(1\leq j\leq k\right), such that for each j,j, uju_{j} minimizes FF on the set of all functions vKv\in K satisfying (prj)1/pv1,p(pRj)1/p.\left(pr_{j}\right)^{1/p}\leq\left\|v\right\|_{1,p}\leq\left(pR_{j}\right)^{1/p}.

(ii) Let (rj)j1,(Rj)j1\left(r_{j}\right)_{j\geq 1},\left(R_{j}\right)_{j\geq 1} be decreasing infinite sequences such that Rj+1<rj<RjR_{j+1}<r_{j}<R_{j} for j1,j\geq 1, and let (aj)j1\left(a_{j}\right)_{j\geq 1} be a sequence of numbers from the interval (0,1/2)\left(0,1/2\right) such that the conditions (3.15),(3.16)(\ref{f10}),\ (\ref{f20}) hold for all j.j. Then (3.1)\left(\ref{p}\right) has an infinite sequence of distinct positive, concave and symmetric solutions uj(j1),u_{j}\ \left(j\geq 1\right), such that for each j,j, uju_{j} minimizes FF on the set of all functions vKv\in K satisfying (prj)1/pv1,p(pRj)1/p.\left(pr_{j}\right)^{1/p}\leq\left\|v\right\|_{1,p}\leq\left(pR_{j}\right)^{1/p}.

The existence of two infinite sequences (rj)j1,(Rj)j1\left(r_{j}\right)_{j\geq 1},\left(R_{j}\right)_{j\geq 1} as in Theorem 3.4 is guaranteed for nonlinearities ff which oscillate toward infinity, or zero. More exactly we have the following result for which the sequence (aj)j1\left(a_{j}\right)_{j\geq 1} is a constant one.

Corollary 3.5.

Let f:+f:\mathbb{R}\mathbf{\rightarrow}\mathbb{R}_{+} be a continuous function, nonnegative and nondecreasing on +,\mathbb{R}_{+}, and let a(0,1/2).a\in\left(0,1/2\right).

(i) If

limsupτf(τ)τp1>1ap(12a)1p1and liminfτf(τ)τp1<1,\text{\emph{limsup}}_{\tau\rightarrow\infty}\frac{f\left(\tau\right)}{\tau^{p-1}}>\frac{1}{a^{p}\left(1-2a\right)^{\frac{1}{p-1}}}\ \ \ \ \text{and\ \ \ \ \emph{liminf}}_{\tau\rightarrow\infty}\frac{f\left(\tau\right)}{\tau^{p-1}}<1,

then (3.1)\left(\ref{p}\right) has an infinite sequence (uj)j1\left(u_{j}\right)_{j\geq 1} of distinct positive, concave and symmetric solutions, with uj1,p.\left\|u_{j}\right\|_{1,p}\rightarrow\infty.

(ii) If

limsupτ0f(τ)τp1>1ap(12a)1p1and liminfτ0f(τ)τp1<1,\text{\emph{limsup}}_{\tau\rightarrow 0}\frac{f\left(\tau\right)}{\tau^{p-1}}>\frac{1}{a^{p}\left(1-2a\right)^{\frac{1}{p-1}}}\ \ \ \ \text{and\ \ \ \ \emph{liminf}}_{\tau\rightarrow 0}\frac{f\left(\tau\right)}{\tau^{p-1}}<1,

then (3.1)\left(\ref{p}\right) has an infinite sequence (uj)j1\left(u_{j}\right)_{j\geq 1} of distinct positive, concave and symmetric solutions, with uj1,p0.\left\|u_{j}\right\|_{1,p}\rightarrow 0.

Acknowledgements

The second author, Radu Precup, was supported by a grant of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-ID-PCE-2011-3-0094. The research of Cs. Varga has been partially supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project no. PN-II-ID-PCE-2011-3-0241.

References

  • [1] G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Boundary Value Problems (2009), 1–20.
  • [2] M. Belloni, V. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys. 54(2003), 771–783.
  • [3] F. Della Pietra and N. Gavitone, Anisotropic elliptic problems involving Hardy-type potential, J. Math. Anal. Appl. 397 (2013), 800–813.
  • [4] G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with pp-Laplacian, Portugaliae Mathematica 58 (2001), no. 3, 339–378.
  • [5] J. Diestel, Geometry of Banach Spaces - Selected Topics, Springer Verlag, Berlin, 1975.
  • [6] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 443–474.
  • [7] F. Faraci and A. Kristály, One-dimensional scalar field equations involving an oscillatory nonlinear term, Discrete Contin. Dyn. Syst. 18 (2007), 107–120.
  • [8] V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc. 137 (2009), 247–253.
  • [9] M. Frigon, On a new notion of linking and application to elliptic problems at resonance, J. Differential Equations 153 (1999), 96–120.
  • [10] N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 321–330.
  • [11] R. Glowinski and A. Marrocco, Sur l’approximation par éléments finis d’ordre un et la resolution par penalisation-dualité d’une classe de problemes de Dirichlet non linéaires, RAIRO Anal. Numer. 2 (1975), 41–76.
  • [12] D. Guo, J. Sun and G. Qi, Some extensions of the mountain pass lemma, Differential Integral Equations 1 (1988), 351–358.
  • [13] M.A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
  • [14] A. Kristály, Infinitely many solutions for a differential inclusion problem in N\mathbb{R}^{N}, J. Differential Equations 220 (2006), 511–530.
  • [15] L. Ma, Mountain pass on a closed convex set, J. Math. Anal. Appl. 205 (1997), 531–536.
  • [16] S. A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the pp-Laplacian, J. Differential Equations 182 (2002), 108–120.
  • [17] M. Marcus and V. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal. 33 (1979), 217–229.
  • [18] R. Precup, The Leray-Schauder condition in critical point theory, Nonlinear Anal. 71 (2009), 3218–3228.
  • [19] R. Precup, On a bounded critical point theorem of Schechter, Stud. Univ. Babeş-Bolyai Math. 58 (2013), no. 1, 87–95.
  • [20] R. Precup, Critical point localization theorems via Ekeland’s variational principle, Dynam. Systems Appl. 22 (2013), 355–370.
  • [21] P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985), 142–149.
  • [22] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401–410.
  • [23] B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the pp-Laplacian, Bull. London Math. Soc. 33 (2001), 331–340.
  • [24] J. Saint Raymond,On the multiplicity of solutions of the equation Δu=λf(u),-\Delta u=\lambda f(u), J. Differential Equations 180(2002), 65–88.
  • [25] M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc. 331 (1992), 681–703.
  • [26] M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Boston, 1999.
2016

Related Posts