A vector version of the fixed point theorem of cone compression and expansion for a sum of two operators

Abstract

In this work, we establish a vector version of fixed point theorem of cone compression and expansion for an expansive operator with constant \(h > 1\) perturbed by a \(k\)-set contraction when \(0 \leq k < h – 1\). We give the compression-expansion conditions on components to allow the nonlinear term of a system to have different behaviors both in components and in variables. An example is given to illustrate our theoretical result.

Authors

Lyna Benzenati
Bejaia University, Bejaia, Algeria

Karima Mebarki
Bejaia University, Bejaia, Algeria

Radu Precup
Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

?

Paper coordinates

L. Benzenati, K. Mebarki, R. Precup, A vector version of the fixed point theorem of cone compression and expansion for a sum of two operators, Nonlinear Studies 27 (2020), no. 3, 563-575.

PDF

About this paper

Journal

Nonlinear Studies

Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

[1] H. Amann, On the number o f solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal. 11 (1972), 346-384.
[2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620-709.
[3] R. Avery and D.R. Anderson, Fixed point theorem o f cone expansion and compression o f functional type, J. Difference Equ. Appl. 8 (2002), 1073-1083.
[4] R.I. Avery, D.R. Anderson, and R.J. Krueger, An extension o f the fixed point theorem o f cone expansion and compression o f functional type, Comm. Appl. Nonlinear Anal. 13 (2006), 15-26.
[5] T.A. Burton, A fixed-point theorem of Krasnoselski, Appl. Math. Lett. 11 (1998), 85-88.
[6] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, Heidelberg, 1985.
[7] S. Djebali and K. Mebarki, Fixed point index for expansive perturbation of k-set contraction mappings, Top. Meth. Nonli. Anal., Vol 54, No 2 (2019), 613-640.
[8] M. Feng, X. Zhang and W. Ge, Positive fixed point o f strict set contraction operators on ordered Banach spaces and applications, Abst. Appl. Anal. 2010 (2010), Article ID 439137, 13 pp.
[9] D. Guo, Y. J. Cho and J. Zhu, Partial Ordering Methods in Nonlinear Problems, Shangdon Science and Technology Publishing Pr[14] M.K. Kwong, On Krasnoselskii’s cone fixed point theorem, Fixed Point Theory Appl. 2008 (2008), Article ID 164537, 18 pp.
[15] D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1980.
[16] A.J.B. Potter, Applications o f Hilbert’s projective metric to certain classes o f non-homogeneous operators, Q. J. Math. 2 (1977), 93-99.
[17] D. O’ Regan and R. Precup, Compression-expansion fixed point theorem in two norms and applications, J. Math. Anal. Appl. 309 (2005), 383-391.
[18] R. Precup, A vector version o f Krasnoselskii’s fixed point theorem in cones and positive periodic solutions o f nonlinear systems, J. Fixed Point Theory Appl. 2 (2007), 141-151.
[19] R. Precup, Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications, in Mathematical Models in Engineering, Biology, and Medicine, AIP Conference Proceedings 1124, Melville-New York, 2009, pp 284-293.
[20] T. Xiang and R. Yuan, A class of expansive-type Krasnosel’skii fixed point theorems, Nonlinear Anal. 71 (2009), 3229-3239.
[21] T. Xiang and S.G. Georgiev, Noncompact-type Krasnoselskii fixed-point theorems and their applications, Math. Methods Appl. Sci. 39 (2016), 833-863.ess, Shangdon, 1985.
[10] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, Mass, USA, 1988.
[11] M.A. Krasnosel’skii, Two remarks on the method of successive approximations, Uspekhi Matematicheskikh Nauk, Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo 10 (1955), 123-127.
[12] M.A. Krasnosel’skii, Fixed points of cone-compressing or cone-extending operators, Soviet Math. Dokl. 1 (1960), 1285-1288.
[13] M.A. KrasnoseTskii, Positive solutions o f operator equations, Noordhoff, Groningen, 1964.
[14] M.K. Kwong, On Krasnoselskii’s cone fixed point theorem, Fixed Point Theory Appl. 2008 (2008), Article ID 164537, 18 pp.
[15] D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1980.
[16] A.J.B. Potter, Applications o f Hilbert’s projective metric to certain classes o f non-homogeneous operators, Q. J. Math. 2 (1977), 93-99.
[17] D. O’ Regan and R. Precup, Compression-expansion fixed point theorem in two norms and applications, J. Math. Anal. Appl. 309 (2005), 383-391.
[18] R. Precup, A vector version o f Krasnoselskii’s fixed point theorem in cones and positive periodic solutions o f nonlinear systems, J. Fixed Point Theory Appl. 2 (2007), 141-151.
[19] R. Precup, Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications, in Mathematical Models in Engineering, Biology, and Medicine, AIP Conference Proceedings 1124, Melville-New York, 2009, pp 284-293.
[20] T. Xiang and R. Yuan, A class of expansive-type Krasnosel’skii fixed point theorems, Nonlinear Anal. 71 (2009), 3229-3239.
[21] T. Xiang and S.G. Georgiev, Noncompact-type Krasnoselskii fixed-point theorems and their applications, Math. Methods Appl. Sci. 39 (2016), 833-863.

2020

Related Posts