## Abstract

In this work, we establish a vector version of fixed point theorem of cone compression and expansion for an expansive operator with constant \(h > 1\) perturbed by a \(k\)-set contraction when \(0 \leq k < h – 1\). We give the compression-expansion conditions on components to allow the nonlinear term of a system to have different behaviors both in components and in variables. An example is given to illustrate our theoretical result.

## Authors

Lyna **Benzenati**

Bejaia University, Bejaia, Algeria

Karima **Mebarki
**Bejaia University, Bejaia, Algeria

Radu **Precup**

Babes-Bolyai University, Cluj-Napoca, Romania

## Keywords

?

## Paper coordinates

L. Benzenati, K. Mebarki, R. Precup, *A vector version of the fixed point theorem of cone compression and expansion for a sum of two operators*, Nonlinear Studies 27 (2020), no. 3, 563-575.

## About this paper

##### Journal

Nonlinear Studies

##### Publisher Name

##### DOI

##### Print ISSN

##### Online ISSN

google scholar link

[1] H. Amann, On the number o f solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal. 11 (1972), 346-384.

[2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620-709.

[3] R. Avery and D.R. Anderson, Fixed point theorem o f cone expansion and compression o f functional type, J. Difference Equ. Appl. 8 (2002), 1073-1083.

[4] R.I. Avery, D.R. Anderson, and R.J. Krueger, An extension o f the fixed point theorem o f cone expansion and compression o f functional type, Comm. Appl. Nonlinear Anal. 13 (2006), 15-26.

[5] T.A. Burton, A fixed-point theorem of Krasnoselski, Appl. Math. Lett. 11 (1998), 85-88.

[6] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, Heidelberg, 1985.

[7] S. Djebali and K. Mebarki, Fixed point index for expansive perturbation of k-set contraction mappings, Top. Meth. Nonli. Anal., Vol 54, No 2 (2019), 613-640.

[8] M. Feng, X. Zhang and W. Ge, Positive fixed point o f strict set contraction operators on ordered Banach spaces and applications, Abst. Appl. Anal. 2010 (2010), Article ID 439137, 13 pp.

[9] D. Guo, Y. J. Cho and J. Zhu, Partial Ordering Methods in Nonlinear Problems, Shangdon Science and Technology Publishing Pr[14] M.K. Kwong, On Krasnoselskii’s cone fixed point theorem, Fixed Point Theory Appl. 2008 (2008), Article ID 164537, 18 pp.

[15] D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1980.

[16] A.J.B. Potter, Applications o f Hilbert’s projective metric to certain classes o f non-homogeneous operators, Q. J. Math. 2 (1977), 93-99.

[17] D. O’ Regan and R. Precup, Compression-expansion fixed point theorem in two norms and applications, J. Math. Anal. Appl. 309 (2005), 383-391.

[18] R. Precup, A vector version o f Krasnoselskii’s fixed point theorem in cones and positive periodic solutions o f nonlinear systems, J. Fixed Point Theory Appl. 2 (2007), 141-151.

[19] R. Precup, Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications, in Mathematical Models in Engineering, Biology, and Medicine, AIP Conference Proceedings 1124, Melville-New York, 2009, pp 284-293.

[20] T. Xiang and R. Yuan, A class of expansive-type Krasnosel’skii fixed point theorems, Nonlinear Anal. 71 (2009), 3229-3239.

[21] T. Xiang and S.G. Georgiev, Noncompact-type Krasnoselskii fixed-point theorems and their applications, Math. Methods Appl. Sci. 39 (2016), 833-863.ess, Shangdon, 1985.

[10] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, Mass, USA, 1988.

[11] M.A. Krasnosel’skii, Two remarks on the method of successive approximations, Uspekhi Matematicheskikh Nauk, Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo 10 (1955), 123-127.

[12] M.A. Krasnosel’skii, Fixed points of cone-compressing or cone-extending operators, Soviet Math. Dokl. 1 (1960), 1285-1288.

[13] M.A. KrasnoseTskii, Positive solutions o f operator equations, Noordhoff, Groningen, 1964.

[14] M.K. Kwong, On Krasnoselskii’s cone fixed point theorem, Fixed Point Theory Appl. 2008 (2008), Article ID 164537, 18 pp.

[15] D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1980.

[16] A.J.B. Potter, Applications o f Hilbert’s projective metric to certain classes o f non-homogeneous operators, Q. J. Math. 2 (1977), 93-99.

[17] D. O’ Regan and R. Precup, Compression-expansion fixed point theorem in two norms and applications, J. Math. Anal. Appl. 309 (2005), 383-391.

[18] R. Precup, A vector version o f Krasnoselskii’s fixed point theorem in cones and positive periodic solutions o f nonlinear systems, J. Fixed Point Theory Appl. 2 (2007), 141-151.

[19] R. Precup, Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications, in Mathematical Models in Engineering, Biology, and Medicine, AIP Conference Proceedings 1124, Melville-New York, 2009, pp 284-293.

[20] T. Xiang and R. Yuan, A class of expansive-type Krasnosel’skii fixed point theorems, Nonlinear Anal. 71 (2009), 3229-3239.

[21] T. Xiang and S.G. Georgiev, Noncompact-type Krasnoselskii fixed-point theorems and their applications, Math. Methods Appl. Sci. 39 (2016), 833-863.