A viscoplastic contact problem with normal compliance, unilateral constraint and memory term

Abstract

We consider a mathematical model which describes the quasistatic contact between a viscoplastic body and a foundation. The materialโ€™s behavior is modelled with a rate-type constitutive law with internal state variable. The contact is frictionless and is modelled with normal compliance, unilateral constraint and memory term.

We present the classical formulation of the problem, list the assumptions on the data and derive a variational formulation of the model. Then we prove its unique weak solvability. The proof is based on arguments of history-dependent quasivariational inequalities.

We also study the dependence of the solution with respect to the data and prove a convergence result.

Authors

Mircea Sofonea
(Laboratoire de Mathรฉmatiques et Physique, Universitรฉ de Perpignan)

Flavius Patrulescu
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Anca FarcaลŸ
(BabeลŸ-Bolyai University Faculty of Mathematics and Computer Sciences)

Keywords

viscoplastic material; frictionless contact; normal compliance; unilateral constraint; memory term; history-dependent variational inequality, weak solution; Frรฉchet space

Cite this paper as:

M. Sofonea, F. Pฤƒtrulescu, A. FarcaลŸ, A viscoplastic contact problem with normal compliance, unilateral constraint and memory term, Appl. Math. Opt., vol. 62 (2014), pp. 175-198

PDF

About this paper

Journal

Applied Mathematics and Optimization

Publisher Name

Springer US, New York, NY

Print ISSN

0095-4616

Online ISSN

1432-0606

MR

3175193

ZBL

1297.74086

[1] M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, Quarterly of Mechanics and Applied Mathematics, 65 (2012), 555-579.
[2] C. Corduneanu, Problemes globaux dans la theorie des equations Integrales de Volterra, Ann. Math. Pure Appl., 67 (1965), 349-363.
[3] N. Cristescu, I. Suliciu, Viscoplasticity, Martinus Nijhoff Publishers, Editura Tehnica, Bucharest, (1982).
[4] A. Farcas, F. Patrulescu, M. Sofonea, A history-dependent contact problem with unilateral constraint, Mathematics and its Applications, 2 (2012), 105-111.
[5] J.R. Fernandez-Garcia, W. Han, M. Sofonea, J.M. Viano, Variational and numerical analysis of a frictionless contact problem for elastic-viscoplastic materials with internal state variable, Quarterly of Mechanics and Applied Mathematics, 54 (2001), 501-522.
[6] W. Han, M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, 30, American Mathematical Societyโ€“International Press, Sommerville, MA (2002).
[7] I.R. Ionescu, M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford University Press, Oxford (1993).
[8] J. Jarusek, M. Sofonea, On the solvability of dynamic elastic-visco-plastic contact problems, Zeitschrift fur Angewandte Matematik und Mechanik (ZAMM), 88 (2008), 3-22.
[9] N. Kikuchi, J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.
[10] A. Klarbring, A. Mikelic, M. Shillor, Frictional contact problems with normal compliance, Int. J. Engng. Sci., 26 (1988), 811-832.
[11] A. Klarbring, A. Mikelic, M. Shillor, On friction problems with normal compliance, Nonlinear Analysis, 13 (1989), 935-955.
[12] J.J. Massera, J.J. Schaffer, Linear Differential Equations and Function Spaces, Academic Press, New York-London (1966).
[13] J.A.C.Martins, J.T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Analysis TMA, 11 (1987), 407-428.
[14] J.T. Oden, J.A.C. Martins, Models and computational methods for dynamic friction phenomena, Computer Methods in Applied Mechanics and Engineering, 52 (1985), 527-634.
[15] M. Shillor, M. Sofonea, J.J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics, 655, Springer, Berlin (2004).
[16] M. Sofonea, C. Avramescu, A. Matei, A Fixed point result with applications in the study of viscoplastic frictionless contact problems, Communications on pure and Applied Analysis, 7(2008), 645-658.
[17] M. Sofonea, A. Matei. History-dependent quasivariational inequalities arising in Contact Mechanics, Eur. J. Appl. Math., 22 (2011), 471-491.
[18] M. Sofonea, A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, 398, Cambridge University Press, Cambridge (2012).

Paper (preprint) in HTML form

A Viscoplastic Contact Problem with Normal Compliance, Unilateral Constraint and Memory Term

M. Sofonea 1, F. Pฤƒtrulescu 2 and A. FarcaลŸ 3
1 Laboratoire de Mathรฉmatiques et Physique
Universitรฉ de Perpignan Via Domitia
52 Avenue de Paul Alduy, 66860 Perpignan, France
2 Tiberiu Popoviciu Institute of Numerical Analysis
P.O. Box 68-1, 400110 Cluj-Napoca, Romania
3 Faculty of Mathematics and Computer Science BabeลŸ-Bolyai University
Kogฤƒlniceanu street, no. 1, 400084, Cluj-Napoca, Romania
Abstract

We consider a mathematical model which describes the quasistatic contact between a viscoplastic body and a foundation. The materialโ€™s behavior is modelled with a rate-type constitutive law with internal state variable. The contact is frictionless and is modelled with normal compliance, unilateral constraint and memory term. We present the classical formulation of the problem, list the assumptions on the data and derive a variational formulation of the model. Then we prove its unique weak solvability. The proof is based on arguments of history-dependent quasivariational inequalities. We also study the dependence of the solution with respect to the data and prove a convergence result.

2010 Mathematics Subject Classification : 74M15, 74G25, 74G30, 49J40.

Keywords: viscoplastic material, frictionless contact, normal compliance, unilateral constraint, memory term, history-dependent variational inequality, weak solution, Frรฉchet space.

1 Introduction

The aim of this paper is to study a frictionless contact problem for rate-type viscoplastic materials within the framework of the Mathematical Theory of Contact Mechanics. We model the materialโ€™s behavior with a constitutive law of the form

๐ˆห™(t)=โ„ฐ๐œบ(๐’–ห™(t))+๐’ข(๐ˆ(t),๐œบ(๐’–(t)),๐œฟ(t)),\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\kappa}(t)), (1.1)

where ๐’–\boldsymbol{u} denotes the displacement field, ๐ˆ\boldsymbol{\sigma} represents the stress tensor, ๐œบ(๐’–)\boldsymbol{\varepsilon}(\boldsymbol{u}) is the linearized strain tensor and ๐œฟ\boldsymbol{\kappa} denotes an internal state variable. Here โ„ฐ\mathcal{E} is a linear operator which describes the elastic properties of the material and ๐’ข\mathcal{G} is a nonlinear constitutive function which describes its viscoplastic behavior. In (1.1) and everywhere in this paper the dot above a variable represents the derivative with respect to the time variable tt. Following [3, 7], the internal state variable ๐œฟ\boldsymbol{\kappa} is a vector-valued function whose evolution is governed by the differential equation

๐œฟห™(t)=๐‘ฎ(๐ˆ(t),๐œบ(๐’–(t)),๐œฟ(t)),\dot{\boldsymbol{\kappa}}(t)=\boldsymbol{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\kappa}(t)), (1.2)

in which ๐‘ฎ\boldsymbol{G} is a nonlinear constitutive function with values in โ„m,m\mathbb{R}^{m},m being a positive integer.

Various results, examples and mechanical interpretations in the study of viscoplastic materials of the form (1.1), (1.2) can be found in [3, 7, and the references therein. Quasistatic contact problems for such materials have been considered in 5, 6) and the references therein. There, the contact was assumed to be frictionless and was modelled with normal compliance; the unique weak solvability of the corresponding problems was proved by using arguments of nonlinear equations with monotone operators and fixed point; semi-discrete and fully discrete scheme were considered, error estimates and convergence results were proved and numerical simulation in the study of two-dimensional test problems were presented. The normal compliance contact condition was first introduced in [14] and since then used in many publications, see, e.g., 9, 10, 11, 13] and references therein. The term normal compliance was first introduced in [10, 11.

In the particular case without internal state variable the constitutive equation (1.1) reads

๐ˆห™(t)=โ„ฐ๐œบ(๐’–ห™(t))+๐’ข(๐ˆ(t),๐œบ(๐’–(t))),\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))), (1.3)

and was used in the literature in order to model the behaviour of various materials like rubbers, rocks, metals, pastes and polymers. Quasistatic frictionless contact problems for materials of the form (1.3) have been considered in [1, 6, 15, 18] and the references therein, under various contact conditions. In [6, 15] both the Signorini and the normal compliance condition were used which, recall, describe a contact with a rigid and elastic foundation, respectively. In [1, 18] the contact was modelled with normal compliance and unilateral constraint condition. This condition, introduced for the first time in [8], models an elastic-rigid behavior of the foundation.

With respect to the papers above mentioned, the current paper has three traits of novelties that we describe in what follows. First, the model we consider involves a contact condition with normal compliance, unilateral constraint and memory term. This condition takes into account both the deformability, the rigidity, and the memory effects of the foundation. Second, in contrast with the short note [4], we model the behavior of the material with a viscoplastic constitutive law with internal state variable. And, finally, we study the contact process on an unbounded interval of time which implies the use of the framework of Frรฉchet spaces of continuous functions, instead of that of the classical Banach spaces of continuous functions defined on a bounded interval of time. The three ingredients above lead to a new and interesting mathematical model. The aim of this work is to prove the unique weak solvability of this model and to study the dependence of the weak solution with respect to the data.

The rest of the paper is structured as follows. In Section 2 we present the notation we shall use as well as some preliminary material. In Section 3 we describe the model of the contact process. In Section 4 we list the assumptions on the data and derive the variational formulation of the problem. Then we state and prove our main existence and uniqueness result, Theorem 4.1. In Section 5 we state and prove our converge result, Theorem 5.1. It states the continuous dependence of the solution with respect to the data.

2 Notations and preliminaries

Everywhere in this paper we use the notation โ„•โˆ—\mathbb{N}^{*} for the set of positive integers and โ„+\mathbb{R}_{+}will represent the set of nonnegative real numbers, i.e. โ„+=[0,+โˆž)\mathbb{R}_{+}=[0,+\infty). For a given rโˆˆโ„r\in\mathbb{R} we denote by r+r^{+}its positive part, i.e. r+=maxโก{r,0}r^{+}=\max\{r,0\}. Let ฮฉ\Omega be a bounded domain ฮฉโŠ‚โ„d(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary ฮ“\Gamma and let ฮ“1\Gamma_{1} be a measurable part of ฮ“\Gamma such that meas (ฮ“1)>0\left(\Gamma_{1}\right)>0. We use the notation ๐’™=(xi)\boldsymbol{x}=\left(x_{i}\right) for a typical point in ฮฉโˆชฮ“\Omega\cup\Gamma and we denote by ๐‚=(ฮฝi)\boldsymbol{\nu}=\left(\nu_{i}\right) the outward unit normal at ฮ“\Gamma. Here and below the indices i,j,k,li,j,k,l run between 1 and dd and, unless stated otherwise, the summation convention over repeated indices is used. An index that follows a comma represents the partial derivative with respect to the corresponding component of the spatial variable, e.g. ui,j=โˆ‚ui/โˆ‚xju_{i,j}=\partial u_{i}/\partial x_{j}.

We denote by ๐•Šd\mathbb{S}^{d} the space of second order symmetric tensors on โ„d\mathbb{R}^{d} or, equivalently, the space of symmetric matrices of order dd. The inner product and norm on โ„d\mathbb{R}^{d} and ๐•Šd\mathbb{S}^{d} are defined by

๐’–โ‹…๐’—=uivi,โ€–๐’—โ€–=(๐’—โ‹…๐’—)12โˆ€๐’–,๐’—โˆˆโ„d๐ˆโ‹…๐‰=ฯƒijฯ„ij,โ€–๐‰โ€–=(๐‰โ‹…๐‰)12โˆ€๐ˆ,๐‰โˆˆ๐•Šd\begin{array}[]{llrl}\boldsymbol{u}\cdot\boldsymbol{v}=u_{i}v_{i},&\|\boldsymbol{v}\|=(\boldsymbol{v}\cdot\boldsymbol{v})^{\frac{1}{2}}&\forall\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^{d}\\ \boldsymbol{\sigma}\cdot\boldsymbol{\tau}=\sigma_{ij}\tau_{ij},&\|\boldsymbol{\tau}\|=(\boldsymbol{\tau}\cdot\boldsymbol{\tau})^{\frac{1}{2}}&\forall\boldsymbol{\sigma},\boldsymbol{\tau}\in\mathbb{S}^{d}\end{array}

Also, we use the notation โ€–๐œฟโ€–\|\boldsymbol{\kappa}\| for the Euclidean norm of the element ๐œฟโˆˆโ„m\boldsymbol{\kappa}\in\mathbb{R}^{m}. In addition, we use standard notation for the Lebesgue and Sobolev spaces associated
to ฮฉ\Omega and ฮ“\Gamma and, moreover, we consider the spaces

V={๐’—=(vi)โˆˆH1(ฮฉ)d:๐’—=๐ŸŽ on ฮ“1},Q={๐‰=(ฯ„ij)โˆˆL2(ฮฉ)dร—d:ฯ„ij=ฯ„ji}.V=\left\{\boldsymbol{v}=\left(v_{i}\right)\in H^{1}(\Omega)^{d}:\boldsymbol{v}=\mathbf{0}\text{ on }\Gamma_{1}\right\},\quad Q=\left\{\boldsymbol{\tau}=\left(\tau_{ij}\right)\in L^{2}(\Omega)^{d\times d}:\tau_{ij}=\tau_{ji}\right\}.

These are real Hilbert spaces endowed with the inner products

(๐’–,๐’—)V=โˆซฮฉ๐œบ(๐’–)โ‹…๐œบ(๐’—)๐‘‘x,(๐ˆ,๐‰)Q=โˆซฮฉ๐ˆโ‹…๐‰๐‘‘x(\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{\varepsilon}(\boldsymbol{u})\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx,\quad(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q}=\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\tau}dx

and the associated norms โˆฅโ‹…โˆฅV\|\cdot\|_{V} and โˆฅโ‹…โˆฅQ\|\cdot\|_{Q}, respectively. Here ๐œบ\boldsymbol{\varepsilon} represents the deformation operator given by

๐œบ(๐’—)=(ฮตij(๐’—)),ฮตij(๐’—)=12(vi,j+vj,i)โˆ€๐’—โˆˆH1(ฮฉ)d.\boldsymbol{\varepsilon}(\boldsymbol{v})=\left(\varepsilon_{ij}(\boldsymbol{v})\right),\quad\varepsilon_{ij}(\boldsymbol{v})=\frac{1}{2}\left(v_{i,j}+v_{j,i}\right)\quad\forall\boldsymbol{v}\in H^{1}(\Omega)^{d}.

Completeness of the space ( V,โˆฅโ‹…โˆฅVV,\|\cdot\|_{V} ) follows from the assumption meas (ฮ“1)>0\left(\Gamma_{1}\right)>0, which allows the use of Kornโ€™s inequality.

For an element ๐’—โˆˆV\boldsymbol{v}\in V we still write ๐’—\boldsymbol{v} for the trace of ๐’—\boldsymbol{v} on the boundary and we denote by vฮฝv_{\nu} and ๐’—ฯ„\boldsymbol{v}_{\tau} the normal and tangential components of ๐’—\boldsymbol{v} on ฮ“\Gamma, given by vฮฝ=๐’—โ‹…๐‚,๐’—ฯ„=๐’—โˆ’vฮฝ๐‚v_{\nu}=\boldsymbol{v}\cdot\boldsymbol{\nu},\boldsymbol{v}_{\tau}=\boldsymbol{v}-v_{\nu}\boldsymbol{\nu}. Let ฮ“3\Gamma_{3} be a measurable part of ฮ“\Gamma. Then, by the Sobolev trace theorem, there exists a positive constant c0c_{0} which depends on ฮฉ,ฮ“1\Omega,\Gamma_{1} and ฮ“3\Gamma_{3} such that

โ€–๐’—โ€–L2(ฮ“3)dโ‰คc0โ€–๐’—โ€–Vโˆ€๐’—โˆˆV\|\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\leq c_{0}\|\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{v}\in V (2.1)

Also, for a regular function ๐ˆโˆˆQ\boldsymbol{\sigma}\in Q we use the notation ฯƒฮฝ\sigma_{\nu} and ๐ˆฯ„\boldsymbol{\sigma}_{\tau} for the normal and the tangential traces, i.e. ฯƒฮฝ=(๐ˆ๐‚)โ‹…๐‚\sigma_{\nu}=(\boldsymbol{\sigma}\boldsymbol{\nu})\cdot\boldsymbol{\nu} and ๐ˆฯ„=๐ˆ๐‚โˆ’ฯƒฮฝ๐‚\boldsymbol{\sigma}_{\tau}=\boldsymbol{\sigma}\boldsymbol{\nu}-\sigma_{\nu}\boldsymbol{\nu}. Moreover, we recall that the divergence operator is defined by the equality Divโก๐ˆ=(ฯƒij,j)\operatorname{Div}\boldsymbol{\sigma}=\left(\sigma_{ij,j}\right) and, finally, the following Greenโ€™s formula holds:

โˆซฮฉ๐ˆโ‹…๐œบ(๐’—)๐‘‘x+โˆซฮฉDivโก๐ˆโ‹…๐’—dx=โˆซฮ“๐ˆ๐‚โ‹…๐’—๐‘‘aโˆ€๐’—โˆˆV\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx+\int_{\Omega}\operatorname{Div}\boldsymbol{\sigma}\cdot\boldsymbol{v}dx=\int_{\Gamma}\boldsymbol{\sigma}\boldsymbol{\nu}\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V (2.2)

Finally, we denote by ๐โˆž\mathbf{Q}_{\infty} the space of fourth order tensor fields given by

๐โˆž={โ„ฐ=(โ„ฐijkl):โ„ฐijkl=โ„ฐjikl=โ„ฐklijโˆˆLโˆž(ฮฉ),1โ‰คi,j,k,lโ‰คd}\mathbf{Q}_{\infty}=\left\{\mathcal{E}=\left(\mathcal{E}_{ijkl}\right):\mathcal{E}_{ijkl}=\mathcal{E}_{jikl}=\mathcal{E}_{klij}\in L^{\infty}(\Omega),\quad 1\leq i,j,k,l\leq d\right\}

and we recall that ๐โˆž\mathbf{Q}_{\infty} is a real Banach space with the norm

โ€–โ„ฐโ€–๐โˆž=max1โ‰คi,j,k,lโ‰คdโกโ€–โ„ฐijklโ€–Lโˆž(ฮฉ)\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}=\max_{1\leq i,j,k,l\leq d}\left\|\mathcal{E}_{ijkl}\right\|_{L^{\infty}(\Omega)}

Moreover, a simple calculation shows that

โ€–โ„ฐ๐‰โ€–Qโ‰คdโ€–โ„ฐโ€–๐โˆžโ€–๐‰โ€–Qโˆ€โ„ฐโˆˆ๐โˆž,๐‰โˆˆQ\|\mathcal{E}\boldsymbol{\tau}\|_{Q}\leq d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\|\boldsymbol{\tau}\|_{Q}\quad\forall\mathcal{E}\in\mathbf{Q}_{\infty},\boldsymbol{\tau}\in Q (2.3)

For each Banach space XX we use the notation C(โ„+;X)C\left(\mathbb{R}_{+};X\right) for the space of continuous functions defined on โ„+\mathbb{R}_{+}with values in XX. For a subset KโŠ‚XK\subset X we still use the symbol C(โ„+;K)C\left(\mathbb{R}_{+};K\right) for the set of continuous functions defined on โ„+\mathbb{R}_{+}with values in KK. It is well known that C(โ„+;X)C\left(\mathbb{R}_{+};X\right) can be organized in a canonical way as a Frรฉchet space,
i.e. as a complete metric space in which the corresponding topology is induced by a countable family of seminorms. Details can be found in [2] and [12], for instance. Here we restrict ourseleves to recall that the convergence of a sequence (xk)k\left(x_{k}\right)_{k} to the element xx, in the space C(โ„+;X)C\left(\mathbb{R}_{+};X\right), can be described as follows:

{xkโ†’x in C(โ„+;X) as kโ†’โˆž if and only if maxrโˆˆ[0,n]โกโ€–xk(r)โˆ’x(r)โ€–Xโ†’0 as kโ†’โˆž, for all nโˆˆโ„•โˆ—\left\{\begin{array}[]{l}x_{k}\rightarrow x\quad\text{ in }C\left(\mathbb{R}_{+};X\right)\text{ as }k\rightarrow\infty\text{ if and only if }\\ \max_{r\in[0,n]}\left\|x_{k}(r)-x(r)\right\|_{X}\rightarrow 0\text{ as }k\rightarrow\infty,\text{ for all }n\in\mathbb{N}^{*}\end{array}\right.

The following fixed-point result will be used in Section 4 of the paper.
Theorem 2.1 Let ( X,โˆฅโ‹…โˆฅXX,\|\cdot\|_{X} ) be a real Banach space and let ฮ›:C(โ„+;X)โ†’C(โ„+;X)\Lambda:C\left(\mathbb{R}_{+};X\right)\rightarrow C\left(\mathbb{R}_{+};X\right) be a nonlinear operator with the following property: there exists c>0c>0 such that

โ€–ฮ›u(t)โˆ’ฮ›v(t)โ€–Xโ‰คcโˆซ0tโ€–u(s)โˆ’v(s)โ€–X๐‘‘s\|\Lambda u(t)-\Lambda v(t)\|_{X}\leq c\int_{0}^{t}\|u(s)-v(s)\|_{X}ds (2.5)

for all u,vโˆˆC(โ„+;X)u,v\in C\left(\mathbb{R}_{+};X\right) and for all tโˆˆโ„+t\in\mathbb{R}_{+}. Then the operator ฮ›\Lambda has a unique fixed point ฮทโˆ—โˆˆC(โ„+;X)\eta^{*}\in C\left(\mathbb{R}_{+};X\right).

Theorem 2.1 represents a simplified version of Corollary 2.5 in [16. We underline that in (2.5) and below, the notation ฮ›ฮท(t)\Lambda\eta(t) represents the value of the function ฮ›ฮท\Lambda\eta at the point tt, i.e. ฮ›ฮท(t)=(ฮ›ฮท)(t)\Lambda\eta(t)=(\Lambda\eta)(t).

Consider now a real Hilbert space XX with inner product (โ‹…,โ‹…)X(\cdot,\cdot)_{X} and associated norm โˆฅโ‹…โˆฅX\|\cdot\|_{X} as well as a normed space YY with norm โˆฅโ‹…โˆฅY\|\cdot\|_{Y}. Let KK be a subset of XX and consider the operators A:Kโ†’X,โ„›:C(โ„+;X)โ†’C(โ„+;Y)A:K\rightarrow X,\mathcal{R}:C\left(\mathbb{R}_{+};X\right)\rightarrow C\left(\mathbb{R}_{+};Y\right) as well as the functions ฯ†:Yร—Kโ†’โ„,f:โ„+โ†’X\varphi:Y\times K\rightarrow\mathbb{R},f:\mathbb{R}_{+}\rightarrow X such that:
KK is a nonempty closed convex subset of XX.

 (a) There exists m>0 such that (Au1โˆ’Au2,u1โˆ’u2)Xโ‰ฅmโ€–u1โˆ’u2โ€–X2โˆ€u1,u2โˆˆK. (b) There exists M>0 such that โ€–Au1โˆ’Au2โ€–Xโ‰คMโ€–u1โˆ’u2โ€–Xโˆ€u1,u2โˆˆK.}\left.\begin{array}[]{l}\text{ (a) There exists }m>0\text{ such that }\\ \left(Au_{1}-Au_{2},u_{1}-u_{2}\right)_{X}\geq m\left\|u_{1}-u_{2}\right\|_{X}^{2}\quad\forall u_{1},u_{2}\in K.\\ \text{ (b) There exists }M>0\text{ such that }\\ \left\|Au_{1}-Au_{2}\right\|_{X}\leq M\left\|u_{1}-u_{2}\right\|_{X}\quad\forall u_{1},u_{2}\in K.\end{array}\right\}
For every nโˆˆโ„•โˆ— there exists rn>0 such that\displaystyle\text{ For every }n\in\mathbb{N}^{*}\text{ there exists }r_{n}>0\text{ such that } (2.8)
โ€–โ„›u1(t)โˆ’โ„›u2(t)โ€–Yโ‰คrnโˆซ0tโ€–u1(s)โˆ’u2(s)โ€–X๐‘‘sโˆ€u1,u2โˆˆC(โ„+;X),โˆ€tโˆˆ[0,n]}\displaystyle\left.\qquad\begin{array}[]{l}\left\|\mathcal{R}u_{1}(t)-\mathcal{R}u_{2}(t)\right\|_{Y}\leq r_{n}\int_{0}^{t}\left\|u_{1}(s)-u_{2}(s)\right\|_{X}ds\\ \forall u_{1},u_{2}\in C\left(\mathbb{R}_{+};X\right),\forall t\in[0,n]\end{array}\right\}
 (a) The function ฯ†(u,โ‹…):Kโ†’โ„ is convex and  lower semicontinuous, for all uโˆˆY (b) There exists ฮฑโ‰ฅ0 such that ฯ†(u1,v2)โˆ’ฯ†(u1,v1)+ฯ†(u2,v1)โˆ’ฯ†(u2,v2)โ‰คฮฑโ€–u1โˆ’u2โ€–Yโ€–v1โˆ’v2โ€–Xโˆ€u1,u2โˆˆY,โˆ€v1,v2โˆˆK}\left.\begin{array}[]{l}\text{ (a) The function }\varphi(u,\cdot):K\rightarrow\mathbb{R}\text{ is convex and }\\ \quad\text{ lower semicontinuous, for all }u\in Y\text{. }\\ \quad\text{ (b) There exists }\alpha\geq 0\text{ such that }\\ \quad\varphi\left(u_{1},v_{2}\right)-\varphi\left(u_{1},v_{1}\right)+\varphi\left(u_{2},v_{1}\right)-\varphi\left(u_{2},v_{2}\right)\\ \quad\leq\alpha\left\|u_{1}-u_{2}\right\|_{Y}\left\|v_{1}-v_{2}\right\|_{X}\quad\forall u_{1},u_{2}\in Y,\forall v_{1},v_{2}\in K\text{. }\end{array}\right\}

The following result, proved in [17], will be used in Section 4 of this paper.
Theorem 2.2 Assume that (2.6)-(2.10) hold. Then there exists a unique function uโˆˆC(โ„+;K)u\in C\left(\mathbb{R}_{+};K\right) such that, for all tโˆˆโ„+t\in\mathbb{R}_{+}, the inequality below holds:

(Au(t),vโˆ’u(t))X+ฯ†(โ„›u(t),v)โˆ’ฯ†(โ„›u(t),u(t))\displaystyle(Au(t),v-u(t))_{X}+\varphi(\mathcal{R}u(t),v)-\varphi(\mathcal{R}u(t),u(t)) (2.11)
โ‰ฅ(f(t),vโˆ’u(t))Xโˆ€vโˆˆK\displaystyle\geq(f(t),v-u(t))_{X}\quad\forall v\in K

Following the terminology introduced in [17] we refer to an operator which satisfies condition (2.8) as a history-dependent operator. Moreover, (2.11) represents a historydependent quasivariational inequality.

Finally, assume that XX and YY represent two real Hilbert spaces with the inner products (โ‹…,โ‹…)X(\cdot,\cdot)_{X} and (โ‹…,โ‹…)Y(\cdot,\cdot)_{Y}, and associated norms โˆฅโ‹…โˆฅX\|\cdot\|_{X} and โˆฅโ‹…โˆฅY\|\cdot\|_{Y}, respectively. Then, we denote by Xร—YX\times Y the product of these spaces. We recall that Xร—YX\times Y is a real Hilbert space with the canonical inner product (โ‹…,โ‹…)Xร—Y(\cdot,\cdot)_{X\times Y} defined by

(z1,z2)Xร—Y=(x1,x2)X+(y1,y2)Yโˆ€z1=(x1,y1),z2=(x2,y2)โˆˆXร—Y.\left(z_{1},z_{2}\right)_{X\times Y}=\left(x_{1},x_{2}\right)_{X}+\left(y_{1},y_{2}\right)_{Y}\quad\forall z_{1}=\left(x_{1},y_{1}\right),z_{2}=\left(x_{2},y_{2}\right)\in X\times Y.

The associated norm of the space Xร—YX\times Y, denoted โˆฅโ‹…โˆฅXร—Y\|\cdot\|_{X\times Y}, satisfies the inequality

โ€–zโ€–Xร—Yโ‰คโ€–xโ€–X+โ€–yโ€–Yโ‰ค2โ€–zโ€–Xร—Yโˆ€z=(x,y)โˆˆXร—Y\|z\|_{X\times Y}\leq\|x\|_{X}+\|y\|_{Y}\leq\sqrt{2}\|z\|_{X\times Y}\quad\forall z=(x,y)\in X\times Y

This inequality will be used several times in Sections 4 and 5 of this manuscript.

3 The model

The physical setting is as follows. A viscoplastic body occupies a bounded domain ฮฉโŠ‚โ„d(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary ฮ“\Gamma, divided into three measurable parts ฮ“1,ฮ“2\Gamma_{1},\Gamma_{2} and ฮ“3\Gamma_{3}, such that meas (ฮ“1)>0\left(\Gamma_{1}\right)>0. The body is subject to the action of body forces of density ๐’‡0\boldsymbol{f}_{0}. We also assume that it is fixed on ฮ“1\Gamma_{1} and surface tractions of density ๐’‡2\boldsymbol{f}_{2} act on ฮ“2\Gamma_{2}. On ฮ“3\Gamma_{3}, the body is in frictionless contact with a deformable obstacle, the so-called foundation. We assume that the contact process is quasistatic and we study it in the interval of time โ„+=[0,โˆž)\mathbb{R}_{+}=[0,\infty). Then, the classical formulation of the contact problem we consider in this paper is the following.

Problem ๐’ซ\mathcal{P}. Find a displacement field ๐’–:ฮฉร—โ„+โ†’โ„d\boldsymbol{u}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d}, a stress field ๐ˆ:ฮฉร—โ„+โ†’๐•Šd\boldsymbol{\sigma}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d} and an internal state variable ๐œฟ:ฮฉร—โ„+โ†’โ„m\boldsymbol{\kappa}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{m} such that

๐ˆห™(t)=โ„ฐฮต(๐’–ห™(t))+๐’ข(๐ˆ(t),๐œบ(๐’–(t)),๐œฟ(t)) in ฮฉ,๐œฟห™(t)=๐‘ฎ(๐ˆ(t),๐œบ(๐’–(t)),๐œฟ(t)) in ฮฉ,Divโก๐ˆ(t)+๐’‡0(t)=๐ŸŽ in ฮฉ,๐’–(t)=๐ŸŽ on ฮ“1,๐ˆ(t)๐‚=๐’‡2(t) on ฮ“2,๐ˆฯ„(t)=๐ŸŽ on ฮ“3,\begin{array}[]{rll}\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\varepsilon(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\kappa}(t))&\text{ in }&\Omega,\\ \dot{\boldsymbol{\kappa}}(t)=\boldsymbol{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\kappa}(t))&\text{ in }&\Omega,\\ \operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}&\text{ in }&\Omega,\\ \boldsymbol{u}(t)=\mathbf{0}&\text{ on }&\Gamma_{1},\\ \boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t)&\text{ on }&\Gamma_{2},\\ \boldsymbol{\sigma}_{\tau}(t)=\mathbf{0}&\text{ on }&\Gamma_{3},\end{array}

for all tโˆˆโ„+t\in\mathbb{R}_{+}, there exists ฮพ:ฮ“3ร—โ„+โ†’โ„\xi:\Gamma_{3}\times\mathbb{R}_{+}\rightarrow\mathbb{R} which satisfies

uฮฝ(t)โ‰คg,ฯƒฮฝ(t)+p(uฮฝ(t))+ฮพ(t)โ‰ค0(uฮฝ(t)โˆ’g)(ฯƒฮฝ(t)+p(uฮฝ(t))+ฮพ(t))=00โ‰คฮพ(t)โ‰คโˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘sฮพ(t)=0 if uฮฝ(t)<0ฮพ(t)=โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s if uฮฝ(t)>0} on ฮ“3\left.\begin{array}[]{l}u_{\nu}(t)\leq g,\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\leq 0\\ \left(u_{\nu}(t)-g\right)\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\right)=0\\ 0\leq\xi(t)\leq\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\\ \xi(t)=0\text{ if }u_{\nu}(t)<0\\ \xi(t)=\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\text{ if }u_{\nu}(t)>0\end{array}\right\}\quad\text{ on }\quad\Gamma_{3}

for all tโˆˆโ„+t\in\mathbb{R}_{+}and, moreover,

๐’–(0)=๐’–0,๐ˆ(0)=๐ˆ0,๐œฟ(0)=๐œฟ0 in ฮฉ.\boldsymbol{u}(0)=\boldsymbol{u}_{0},\quad\boldsymbol{\sigma}(0)=\boldsymbol{\sigma}_{0},\quad\boldsymbol{\kappa}(0)=\boldsymbol{\kappa}_{0}\quad\text{ in }\quad\Omega. (3.8)

Here and below, in order to simplify the notation, we do not indicate explicitly the dependence of various functions on the spatial variable ๐’™\boldsymbol{x}. Equations (3.1), (3.2) represent the rate-type viscoplastic constitutive law with internal state variable introduced in Section (1. Equation (3.3) represents the equation of equilibrium in which Div denotes the divergence operator for tensor valued functions. Conditions (3.4) and (3.5) are the displacement boundary condition and the traction boundary condition, respectively. Condition (3.6) is the frictionless condition and it shows that the tangential stress on the contact surface vanishes. Finally, (3.8) represents the initial conditions in which ๐’–0,๐ˆ0,๐œฟ0\boldsymbol{u}_{0},\boldsymbol{\sigma}_{0},\boldsymbol{\kappa}_{0} denote the initial displacement, the initial stress field and the initial state variable, respectively.

We now describe the contact condition (3.7) in which our main interest is. Here ฯƒฮฝ\sigma_{\nu} denotes the normal stress, uฮฝu_{\nu} is the normal displacement and uฮฝ+u_{\nu}^{+}may be interpreted as the penetration of the bodyโ€™s surface asperities and those of the foundation. Moreover, pp is a Lipschitz continuous increasing function which vanishes for a negative argument, bb is a positive function and g>0g>0. This condition can be derived in the following way. Let tโˆˆโ„+t\in\mathbb{R}_{+}be a given time moment. First, we assume that the penetration
is limited by the bound gg and, therefore, at each time moment tโˆˆโ„+t\in\mathbb{R}_{+}, the normal displacement satisfies the inequality

uฮฝ(t)โ‰คg on ฮ“3.u_{\nu}(t)\leq g\quad\text{ on }\Gamma_{3}. (3.9)

Next, we assume that the normal stress has an additive decomposition of the form

ฯƒฮฝ(t)=ฯƒฮฝD(t)+ฯƒฮฝR(t)+ฯƒฮฝM(t) on ฮ“3\sigma_{\nu}(t)=\sigma_{\nu}^{D}(t)+\sigma_{\nu}^{R}(t)+\sigma_{\nu}^{M}(t)\quad\text{ on }\Gamma_{3} (3.10)

in which the functions ฯƒฮฝD(t),ฯƒฮฝR(t)\sigma_{\nu}^{D}(t),\sigma_{\nu}^{R}(t) and ฯƒฮฝM(t)\sigma_{\nu}^{M}(t) describe the deformability, the rigidity and the memory properties of the foundation. We assume that ฯƒฮฝD(t)\sigma_{\nu}^{D}(t) satisfies a normal compliance contact condition, that is

โˆ’ฯƒฮฝD(t)=p(uฮฝ(t)) on ฮ“3.-\sigma_{\nu}^{D}(t)=p\left(u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3}. (3.11)

The part ฯƒฮฝR(t)\sigma_{\nu}^{R}(t) of the normal stress satisfies the Signorini condition in the form with a gap function, i.e.

ฯƒฮฝR(t)โ‰ค0,ฯƒฮฝR(t)(uฮฝ(t)โˆ’g)=0 on ฮ“3.\sigma_{\nu}^{R}(t)\leq 0,\quad\sigma_{\nu}^{R}(t)\left(u_{\nu}(t)-g\right)=0\quad\text{ on }\Gamma_{3}. (3.12)

And, finally, the function ฯƒฮฝM(t)\sigma_{\nu}^{M}(t) satisfies the condition

{|ฯƒฮฝM(t)|โ‰คโˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s,ฯƒฮฝM(t)=0 if uฮฝ(t)<0โˆ’ฯƒฮฝM(t)=โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s if uฮฝ(t)>0\left\{\begin{array}[]{l}\left|\sigma_{\nu}^{M}(t)\right|\leq\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,\quad\sigma_{\nu}^{M}(t)=0\quad\text{ if }\quad u_{\nu}(t)<0\\ -\sigma_{\nu}^{M}(t)=\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\quad\text{ if }\quad u_{\nu}(t)>0\end{array}\right.

on ฮ“3\Gamma_{3}. We combine (3.10), (3.11) and denote โˆ’ฯƒฮฝM(t)=ฮพ(t)-\sigma_{\nu}^{M}(t)=\xi(t) to see that

ฯƒฮฝR(t)=ฯƒฮฝ(t)+p(uฮฝ(t))+ฮพ(t) on ฮ“3\sigma_{\nu}^{R}(t)=\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\quad\text{ on }\Gamma_{3} (3.14)

Then we substitute equality (3.14) in (3.12) and use (3.9), (3.13) to obtain the contact condition (3.6).

We now present additional details of the contact condition (3.7). The inequalities and equalities below in this section are valid in an arbitrary point ๐’™โˆˆฮ“3\boldsymbol{x}\in\Gamma_{3}. First, we recall that (3.7) describes a condition with unilateral constraint, since inequality (3.9) holds at each time moment. Next, assume that at a given moment tt there is penetration which did not reach the bound gg, i.e. 0<uฮฝ(t)<g0<u_{\nu}(t)<g. Then (3.7) yields

โˆ’ฯƒฮฝ(t)=p(uฮฝ(t))+โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s-\sigma_{\nu}(t)=p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds (3.15)

This equality shows that at the moment tt, the reaction of the foundation depend both on the current value of the penetration (represented by the term p(uฮฝ(t))p\left(u_{\nu}(t)\right) ) as well as on the history of the penetration (represented by the integral term in (3.15)). Assume now that at a given moment tt there is separation between the body and the foundation, i.e. uฮฝ(t)<0u_{\nu}(t)<0. Then, since p(uฮฝ(t))=0p\left(u_{\nu}(t)\right)=0, (3.7) shows that ฯƒฮฝ(t)=0\sigma_{\nu}(t)=0,
i.e. the reaction of the foundation vanishes. Note that the same behavior of the normal stress is described both in the classical normal compliance condition and in the Signorini contact condition, when separation arises.

In conclusion, condition (3.7) shows that when there is separation then the normal stress vanishes; when there is penetration the contact follows a normal compliance condition with memory term of the form (3.15) but up to the limit gg and then, when this limit is reached, the contact follows a Signorini-type unilateral condition with the gap gg. For this reason we refer to this condition as to a normal compliance contact condition with unilateral constraint and memory term. It can be interpreted physically as follows. The foundation is assumed to be made of a hard material covered by a thin layer of a soft material with thickness gg. The soft material has a viscoelastic behaviour, i.e. is deformable, allows penetration and presents memory effects; the contact with this layer is modelled with normal compliance and memory term, as shown in equality (3.15). The hard material is perfectly rigid and, therefore, it does not allow penetration; the contact with this material is modelled with the Signorini contact condition. To resume, the foundation has a rigid-viscoelastic behavior; its viscoelastic behavior is given by the layer of the soft material while its rigid behavior is given by the hard material.

4 Existence and uniqueness

In this section we list the assumptions on the data, derive the variational formulation of the problem ๐’ซ\mathcal{P} and then we state and prove its unique weak solvability. To this end we assume that the elasticity tensor โ„ฐ\mathcal{E} and the constitutive functions ๐’ข\mathcal{G} and ๐‘ฎ\boldsymbol{G} satisfy the following conditions.

{ (a) โ„ฐ=(โ„ฐijkl):ฮฉร—๐•Šdโ†’๐•Šd. (b) โ„ฐijkl=โ„ฐklij=โ„ฐjiklโˆˆLโˆž(ฮฉ),1โ‰คi,j,k,lโ‰คd. (c) There exists mโ„ฐ>0 such that โ„ฐ๐‰โ‹…๐‰โ‰ฅmโ„ฐโ€–๐‰โ€–2โˆ€๐‰โˆˆ๐•Šd, a.e. in ฮฉ.\displaystyle\left\{\begin{array}[]{l}\text{ (a) }\mathcal{E}=\left(\mathcal{E}_{ijkl}\right):\Omega\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) }\mathcal{E}_{ijkl}=\mathcal{E}_{klij}=\mathcal{E}_{jikl}\in L^{\infty}(\Omega),1\leq i,j,k,l\leq d.\\ \text{ (c) There exists }m_{\mathcal{E}}>0\text{ such that }\\ \mathcal{E}\boldsymbol{\tau}\cdot\boldsymbol{\tau}\geq m_{\mathcal{E}}\|\boldsymbol{\tau}\|^{2}\forall\boldsymbol{\tau}\in\mathbb{S}^{d},\text{ a.e. in }\Omega.\end{array}\right. (4.1)
{ (a) ๐’ข:ฮฉร—๐•Šdร—๐•Šdร—โ„mโ†’๐•Šd. (b) There exists L๐’ข>0 such that โ€–๐’ข(๐’™,๐ˆ1,๐œบ1,๐œฟ1)โˆ’๐’ข(๐’™,๐ˆ2,๐œบ2,๐œฟ2)โ€–โ‰คL๐’ข(โ€–๐ˆ1โˆ’๐ˆ2โ€–+โ€–๐œบ1โˆ’๐œบ2โ€–+โ€–๐œฟ1โˆ’๐œฟ2โ€–)โˆ€๐ˆ1,๐ˆ2,๐œบ1,๐œบ2โˆˆ๐•Šd,๐œฟ1,๐œฟ2โˆˆโ„m, a.e. ๐’™โˆˆฮฉ. (c) The mapping ๐’™โ†ฆ๐’ข(๐’™,๐ˆ,๐œบ,๐œฟ) is measurable on ฮฉ, for any ๐ˆ,๐œบโˆˆ๐•Šd and ๐œฟโˆˆโ„m (d) The mapping ๐’™โ†ฆ๐’ข(๐’™,๐ŸŽ,๐ŸŽ,๐ŸŽ) belongs to Q.\displaystyle\left\{\begin{array}[]{l}\text{ (a) }\mathcal{G}:\Omega\times\mathbb{S}^{d}\times\mathbb{S}^{d}\times\mathbb{R}^{m}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) There exists }L_{\mathcal{G}}>0\text{ such that }\\ \left\|\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{1},\boldsymbol{\varepsilon}_{1},\boldsymbol{\kappa}_{1}\right)-\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{2},\boldsymbol{\kappa}_{2}\right)\right\|\\ \quad\leq L_{\mathcal{G}}\left(\left\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right\|+\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|+\left\|\boldsymbol{\kappa}_{1}-\boldsymbol{\kappa}_{2}\right\|\right)\\ \quad\forall\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\boldsymbol{\kappa}_{1},\boldsymbol{\kappa}_{2}\in\mathbb{R}^{m},\text{ a.e. }\boldsymbol{x}\in\Omega.\\ \text{ (c) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\boldsymbol{\sigma},\boldsymbol{\varepsilon},\boldsymbol{\kappa})\text{ is measurable on }\Omega,\\ \quad\text{ for any }\boldsymbol{\sigma},\boldsymbol{\varepsilon}\in\mathbb{S}^{d}\text{ and }\boldsymbol{\kappa}\in\mathbb{R}^{m}\text{. }\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\mathbf{0},\mathbf{0},\mathbf{0})\text{ belongs to }Q.\end{array}\right. (4.2)
{ (a) ๐‘ฎ:ฮฉร—๐•Šdร—๐•Šdร—โ„mโ†’โ„m. (b) There exists LG>0 such that โ€–๐‘ฎ(๐’™,๐ˆ1,๐œบ1,๐œฟ1)โˆ’๐‘ฎ(๐’™,๐ˆ2,๐œบ2,๐œฟ2)โ€–โ‰คLG(โ€–๐ˆ1โˆ’๐ˆ2โ€–+โ€–๐œบ1โˆ’๐œบ2โ€–+โ€–๐œฟ1โˆ’๐œฟ2โ€–)โˆ€๐ˆ1,๐ˆ2,๐œบ1,๐œบ2โˆˆ๐•Šd,๐œฟ1,๐œฟ2โˆˆโ„m, a.e. ๐’™โˆˆฮฉ. (c) The mapping ๐’™โ†ฆ๐‘ฎ(๐’™,๐ˆ,๐œบ,๐œฟ) is measurable on ฮฉ, for any ๐ˆ,๐œบโˆˆ๐•Šd and ๐œฟโˆˆโ„m. (d) The mapping ๐’™โ†ฆ๐‘ฎ(๐’™,๐ŸŽ,๐ŸŽ,๐ŸŽ) belongs to L2(ฮฉ)m\left\{\begin{array}[]{l}\text{ (a) }\boldsymbol{G}:\Omega\times\mathbb{S}^{d}\times\mathbb{S}^{d}\times\mathbb{R}^{m}\rightarrow\mathbb{R}^{m}.\\ \text{ (b) There exists }L_{G}>0\text{ such that }\\ \quad\left\|\boldsymbol{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{1},\boldsymbol{\varepsilon}_{1},\boldsymbol{\kappa}_{1}\right)-\boldsymbol{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{2},\boldsymbol{\kappa}_{2}\right)\right\|\\ \quad\leq L_{G}\left(\left\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right\|+\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|+\left\|\boldsymbol{\kappa}_{1}-\boldsymbol{\kappa}_{2}\right\|\right)\\ \quad\forall\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\boldsymbol{\kappa}_{1},\boldsymbol{\kappa}_{2}\in\mathbb{R}^{m},\text{ a.e. }\boldsymbol{x}\in\Omega.\\ \text{ (c) The mapping }\boldsymbol{x}\mapsto\boldsymbol{G}(\boldsymbol{x},\boldsymbol{\sigma},\boldsymbol{\varepsilon},\boldsymbol{\kappa})\text{ is measurable on }\Omega,\\ \quad\text{ for any }\boldsymbol{\sigma},\boldsymbol{\varepsilon}\in\mathbb{S}^{d}\text{ and }\boldsymbol{\kappa}\in\mathbb{R}^{m}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\boldsymbol{G}(\boldsymbol{x},\mathbf{0},\mathbf{0},\mathbf{0})\text{ belongs to }L^{2}(\Omega)^{m}\text{. }\end{array}\right.

The densities of body forces and surface tractions are such that

๐’‡0โˆˆC(โ„+;L2(ฮฉ)d),๐’‡2โˆˆC(โ„+;L2(ฮ“2)d)\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right),\quad\boldsymbol{f}_{2}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right) (4.4)

and the normal compliance function pp satisfies

{ (a) p:ฮ“3ร—โ„โ†’โ„+.(b) There exists Lp>0 such that |p(๐’™,r1)โˆ’p(๐’™,r2)|โ‰คLp|r1โˆ’r2|โˆ€r1,r2โˆˆโ„, a.e. ๐’™โˆˆฮ“3. (c) (p(๐’™,r1)โˆ’p(๐’™,r2))(r1โˆ’r2)โ‰ฅ0โˆ€r1,r2โˆˆโ„, a.e. ๐’™โˆˆฮ“3. (d) The mapping ๐’™โ†ฆp(๐’™,r) is measurable on ฮ“3, for any rโˆˆโ„. (e) p(๐’™,r)=0 for all rโ‰ค0, a.e. ๐’™โˆˆฮ“3.\left\{\begin{array}[]{l}\text{ (a) }p:\Gamma_{3}\times\mathbb{R}\rightarrow\mathbb{R}_{+}.\\ \text{(b) There exists }L_{p}>0\text{ such that }\\ \quad\left|p\left(\boldsymbol{x},r_{1}\right)-p\left(\boldsymbol{x},r_{2}\right)\right|\leq L_{p}\left|r_{1}-r_{2}\right|\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (c) }\left(p\left(\boldsymbol{x},r_{1}\right)-p\left(\boldsymbol{x},r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto p(\boldsymbol{x},r)\text{ is measurable on }\Gamma_{3},\\ \quad\text{ for any }r\in\mathbb{R}.\\ \text{ (e) }p(\boldsymbol{x},r)=0\text{ for all }r\leq 0,\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\end{array}\right.

Also, the surface memory function and the initial data verify

bโˆˆC(โ„+;Lโˆž(ฮ“3)),b(t,๐’™)โ‰ฅ0 for all tโˆˆโ„+,a.e. ๐’™โˆˆฮ“3๐’–0โˆˆU,๐ˆ0โˆˆQ,๐œฟ0โˆˆL2(ฮฉ)m\begin{array}[]{cl}b\in C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right),\quad b(t,\boldsymbol{x})\geq 0&\text{ for all }t\in\mathbb{R}_{+},\text{a.e. }\boldsymbol{x}\in\Gamma_{3}\\ \boldsymbol{u}_{0}\in U,\quad\boldsymbol{\sigma}_{0}\in Q,\quad\boldsymbol{\kappa}_{0}\in L^{2}(\Omega)^{m}\end{array}

where UU denotes the set of admissible displacements defined by

U={๐’—โˆˆV:vฮฝโ‰คg on ฮ“3}U=\left\{\boldsymbol{v}\in V:v_{\nu}\leq g\text{ on }\Gamma_{3}\right\} (4.8)

Assume in what follows that ( ๐’–,๐ˆ,๐œฟ\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) are sufficiently regular functions which satisfy (3.1)-(3.8) and let ๐’—โˆˆU\boldsymbol{v}\in U and t>0t>0 be given. First, we integrate equations (3.1), (3.2) with the initial conditions (3.8) to obtain

๐ˆ(t)=โˆซ0t๐’ข(๐ˆ(s),๐œบ(๐’–(s)),๐œฟ(s))๐‘‘s+๐ˆ0โˆ’โ„ฐ๐œบ(๐’–0)+โ„ฐ๐œบ(๐’–(t))\boldsymbol{\sigma}(t)=\int_{0}^{t}\mathcal{G}(\boldsymbol{\sigma}(s),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\kappa}(s))ds+\boldsymbol{\sigma}_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)) (4.9)

and

๐œฟ(t)=โˆซ0t๐‘ฎ(๐ˆ(s),๐œบ(๐’–(s)),๐œฟ(s))๐‘‘s+๐œฟ0\boldsymbol{\kappa}(t)=\int_{0}^{t}\boldsymbol{G}(\boldsymbol{\sigma}(s),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\kappa}(s))ds+\boldsymbol{\kappa}_{0} (4.10)

Next, we use Green formula (2.2) and the equilibrium equation (3.3) to see that

โˆซฮฉ๐ˆ(t)โ‹…(ฮต(๐’—)โˆ’๐œบ(๐’–(t)))๐‘‘x=โˆซฮฉ๐’‡0(t)โ‹…(๐’—โˆ’๐’–(t))๐‘‘x+โˆซฮ“๐ˆ(t)๐‚โ‹…(๐’—โˆ’๐’–(t))๐‘‘a\int_{\Omega}\boldsymbol{\sigma}(t)\cdot(\varepsilon(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx+\int_{\Gamma}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da

We split the surface integral over ฮ“1,ฮ“2\Gamma_{1},\Gamma_{2} and ฮ“3\Gamma_{3} and, since ๐’—โˆ’๐’–(t)=๐ŸŽ\boldsymbol{v}-\boldsymbol{u}(t)=\mathbf{0} a.e. on ฮ“1\Gamma_{1}, ๐ˆ(t)๐‚=๐’‡2(t)\boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t) on ฮ“2\Gamma_{2}, we deduce that

โˆซฮฉ๐ˆ(t)โ‹…(๐œบ(๐’—)โˆ’๐œบ(๐’–(t)))๐‘‘x=โˆซฮฉ๐’‡0(t)โ‹…(๐’—โˆ’๐’–(t))๐‘‘x\displaystyle\int_{\Omega}\boldsymbol{\sigma}(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx
+โˆซฮ“2๐’‡2(t)โ‹…(๐’—โˆ’๐’–(t))๐‘‘a+โˆซฮ“3๐ˆ(t)๐‚โ‹…(๐’—โˆ’๐’–(t))๐‘‘a\displaystyle\quad+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da+\int_{\Gamma_{3}}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da

Moreover, since

๐ˆ(t)๐‚โ‹…(๐’—โˆ’๐’–(t))=ฯƒฮฝ(t)(vฮฝโˆ’uฮฝ(t))+๐ˆฯ„(t)โ‹…(๐’—ฯ„โˆ’๐’–ฯ„(t)) on ฮ“3,\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))=\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)+\boldsymbol{\sigma}_{\tau}(t)\cdot\left(\boldsymbol{v}_{\tau}-\boldsymbol{u}_{\tau}(t)\right)\quad\text{ on }\Gamma_{3},

taking into account the frictionless condition (3.6) we obtain

โˆซฮฉ๐ˆ\displaystyle\int_{\Omega}\boldsymbol{\sigma} (t)โ‹…(๐œบ(๐’—)โˆ’๐œบ(๐’–(t)))dx=โˆซฮฉ๐’‡0(t)โ‹…(๐’—โˆ’๐’–(t))๐‘‘x\displaystyle(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx (4.11)
+โˆซฮ“2๐’‡2(t)โ‹…(๐’—โˆ’๐’–(t))๐‘‘a+โˆซฮ“3ฯƒฮฝ(t)(vฮฝโˆ’uฮฝ(t))๐‘‘a\displaystyle+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da+\int_{\Gamma_{3}}\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)da

We write now

ฯƒฮฝ(t)(vฮฝโˆ’uฮฝ(t))=(ฯƒฮฝ(t)+p(uฮฝ(t))+ฮพ(t))(vฮฝโˆ’g)\displaystyle\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)=\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\right)\left(v_{\nu}-g\right)
+(ฯƒฮฝ(t)+p(uฮฝ(t))+ฮพ(t))(gโˆ’uฮฝ(t))\displaystyle\quad+\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\right)\left(g-u_{\nu}(t)\right)
โˆ’(p(uฮฝ(t))+ฮพ(t))(vฮฝโˆ’uฮฝ(t)) on ฮ“3\displaystyle\quad-\left(p\left(u_{\nu}(t)\right)+\xi(t)\right)\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3}

then we use the contact conditions (3.7) and the definition (4.8) of the set UU to see that

ฯƒฮฝ(t)(vฮฝโˆ’uฮฝ(t))โ‰ฅโˆ’(p(uฮฝ(t))+ฮพ(t))(vฮฝโˆ’uฮฝ(t)) on ฮ“3\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)\geq-\left(p\left(u_{\nu}(t)\right)+\xi(t)\right)\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3} (4.12)

We use (3.7), again, and the hypothesis (4.6) on function bb to deduce that

(โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s)(vฮฝ+โˆ’uฮฝ+(t))โ‰ฅฮพ(t)(vฮฝโˆ’uฮฝ(t)) on ฮ“3\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\right)\left(v_{\nu}^{+}-u_{\nu}^{+}(t)\right)\geq\xi(t)\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3} (4.13)

Then we add the inequalities (4.12) and (4.13) and integrate the result on ฮ“3\Gamma_{3} to find that

โˆซฮ“3ฯƒฮฝ(t)(vฮฝโˆ’uฮฝ(t))๐‘‘a\displaystyle\int_{\Gamma_{3}}\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)da (4.14)
โ‰ฅโˆ’(p(uฮฝ(t)),vฮฝโˆ’uฮฝ(t))L2(ฮ“3)โˆ’(โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s,vฮฝ+โˆ’uฮฝ+(t))L2(ฮ“3)\displaystyle\quad\geq-\left(p\left(u_{\nu}(t)\right),v_{\nu}-u_{\nu}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}-\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,v_{\nu}^{+}-u_{\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}

Finally, we combine (4.11) and (4.14) to deduce that

(๐ˆ(t),๐œบ(๐’—)โˆ’๐œบ(๐’–(t)))Q+(p(uฮฝ(t)),vฮฝโˆ’uฮฝ(t))L2(ฮ“3)\displaystyle(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+\left(p\left(u_{\nu}(t)\right),v_{\nu}-u_{\nu}(t)\right)_{L^{2}\left(\Gamma_{3}\right)} (4.15)
+(โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s,vฮฝ+โˆ’uฮฝ+(t))L2(ฮ“3)\displaystyle\quad+\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,v_{\nu}^{+}-u_{\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
โ‰ฅ(๐’‡0(t),๐’—โˆ’๐’–(t))L2(ฮฉ)d+(๐’‡2(t),๐’—โˆ’๐’–(t))L2(ฮ“2)dโˆ€๐’—โˆˆU\displaystyle\quad\geq\left(\boldsymbol{f}_{0}(t),\boldsymbol{v}-\boldsymbol{u}(t)\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2}(t),\boldsymbol{v}-\boldsymbol{u}(t)\right)_{L^{2}\left(\Gamma_{2}\right)^{d}}\quad\forall\boldsymbol{v}\in U

We gather the results above to obtain the following variational formulation of Problem ๐’ซ\mathcal{P}.

Problem ๐’ซV\mathcal{P}^{V}. Find a displacement field ๐’–:โ„+โ†’U\boldsymbol{u}:\mathbb{R}_{+}\rightarrow U, a stress field ๐ˆ:โ„+โ†’Q\boldsymbol{\sigma}:\mathbb{R}_{+}\rightarrow Q and an internal state variable ๐œฟ:โ„+โ†’L2(ฮฉ)m\boldsymbol{\kappa}:\mathbb{R}_{+}\rightarrow L^{2}(\Omega)^{m} such that (4.9), (4.10) and (4.15) hold, for all tโˆˆโ„+t\in\mathbb{R}_{+}.

In the study of the problem ๐’ซV\mathcal{P}^{V} we have the following existence and uniqueness result.

Theorem 4.1 Assume that (4.1) -(4.7) hold. Then, Problem ๐’ซV\mathcal{P}^{V} has a unique solution which satisfies

๐’–โˆˆC(โ„+;U),๐ˆโˆˆC(โ„+;Q) and ๐œฟโˆˆC(โ„+;L2(ฮฉ)m).\boldsymbol{u}\in C\left(\mathbb{R}_{+};U\right),\quad\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q\right)\quad\text{ and }\quad\boldsymbol{\kappa}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{m}\right). (4.16)

We now turn to the proof of the theorem. We start with the following existence and uniqueness result.

Lemma 4.2 Assume that (4.1) -(4.3) and (4.7) hold. Then, for each ๐’–โˆˆC(โ„+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) there exists a unique function ๐’ฎ๐’–=(๐’ฎ1๐’–,๐’ฎ2๐’–)โˆˆC(โ„+;Qร—L2(ฮฉ)m)\mathcal{S}\boldsymbol{u}=\left(\mathcal{S}_{1}\boldsymbol{u},\mathcal{S}_{2}\boldsymbol{u}\right)\in C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) such that

๐’ฎ1๐’–(t)=โˆซ0t๐’ข(๐’ฎ1๐’–(s)+โ„ฐฮต(๐’–(s)),๐œบ(๐’–(s)),๐’ฎ2๐’–(s))๐‘‘s+๐ˆ0โˆ’โ„ฐฮต(๐’–0)\displaystyle\mathcal{S}_{1}\boldsymbol{u}(t)=\int_{0}^{t}\mathcal{G}\left(\mathcal{S}_{1}\boldsymbol{u}(s)+\mathcal{E}\varepsilon(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\mathcal{S}_{2}\boldsymbol{u}(s)\right)ds+\boldsymbol{\sigma}_{0}-\mathcal{E}\varepsilon\left(\boldsymbol{u}_{0}\right) (4.17)
๐’ฎ2๐’–(t)=โˆซ0t๐‘ฎ(๐’ฎ1๐’–(s)+โ„ฐฮต(๐’–(s)),๐œบ(๐’–(s)),๐’ฎ2๐’–(s))๐‘‘s+๐œฟ0\displaystyle\mathcal{S}_{2}\boldsymbol{u}(t)=\int_{0}^{t}\boldsymbol{G}\left(\mathcal{S}_{1}\boldsymbol{u}(s)+\mathcal{E}\varepsilon(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\mathcal{S}_{2}\boldsymbol{u}(s)\right)ds+\boldsymbol{\kappa}_{0} (4.18)

for all tโˆˆโ„+t\in\mathbb{R}_{+}. Moreover, the operator ๐’ฎ:C(โ„+;V)โ†’C(โ„+;Qร—L2(ฮฉ)m)\mathcal{S}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) is a history-dependent operator, i.e. it satisfies the following property: for every nโˆˆโ„•โˆ—n\in\mathbb{N}^{*} there exists sn>0s_{n}>0 which depends only on n,d,๐’ข,๐‘ฎn,d,\mathcal{G},\boldsymbol{G} and โ„ฐ\mathcal{E}, such that

โ€–๐’ฎ๐’–(t)โˆ’๐’ฎ๐’—(t)โ€–Qร—L2(ฮฉ)mโ‰คsnโˆซ0tโ€–๐’–(s)โˆ’๐’—(s)โ€–V๐‘‘s\displaystyle\|\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{v}(t)\|_{Q\times L^{2}(\Omega)^{m}}\leq s_{n}\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}ds (4.19)
โˆ€๐’–,๐’—โˆˆC(โ„+;V)โˆ€tโˆˆ[0,n]\displaystyle\forall\boldsymbol{u},\boldsymbol{v}\in C\left(\mathbb{R}_{+};V\right)\quad\forall t\in[0,n]

Proof. Let ๐’–โˆˆC(โ„+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right). We consider the operator ฮ›:C(โ„+;Qร—L2(ฮฉ)m)โ†’C(โ„+;Qร—L2(ฮฉ)m)\Lambda:C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right)\rightarrow C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) defined by

ฮ›๐‰(t)=(ฮ›1๐‰(t),ฮ›2๐‰(t))\displaystyle\Lambda\boldsymbol{\tau}(t)=\left(\Lambda_{1}\boldsymbol{\tau}(t),\Lambda_{2}\boldsymbol{\tau}(t)\right) (4.20)
ฮ›1๐‰(t)=โˆซ0t๐’ข(๐œถ(s)+โ„ฐ๐œบ(๐’–(s)),๐œบ(๐’–(s)),๐œท(s))๐‘‘s+๐ˆ0โˆ’โ„ฐ๐œบ(๐’–0)\displaystyle\Lambda_{1}\boldsymbol{\tau}(t)=\int_{0}^{t}\mathcal{G}(\boldsymbol{\alpha}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\beta}(s))ds+\boldsymbol{\sigma}_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right) (4.21)
ฮ›2๐‰(t)=โˆซ0t๐‘ฎ(๐œถ(s)+โ„ฐ๐œบ(๐’–(s)),๐œบ(๐’–(s)),๐œท(s))๐‘‘s+๐œฟ0\displaystyle\Lambda_{2}\boldsymbol{\tau}(t)=\int_{0}^{t}\boldsymbol{G}(\boldsymbol{\alpha}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\beta}(s))ds+\boldsymbol{\kappa}_{0} (4.22)

for all ๐‰=(๐œถ,๐œท)โˆˆC(โ„+;Qร—L2(ฮฉ)m)\boldsymbol{\tau}=(\boldsymbol{\alpha},\boldsymbol{\beta})\in C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) and tโˆˆโ„+t\in\mathbb{R}_{+}. Note that the operator ฮ›\Lambda depends on ๐’–\boldsymbol{u} but, for simplicity, we do not indicate explicitly this dependence.

Let ๐‰1=(๐œถ1,๐œท1),๐‰2=(๐œถ2,๐œท2)โˆˆC(โ„+;Qร—L2(ฮฉ)m)\boldsymbol{\tau}_{1}=\left(\boldsymbol{\alpha}_{1},\boldsymbol{\beta}_{1}\right),\boldsymbol{\tau}_{2}=\left(\boldsymbol{\alpha}_{2},\boldsymbol{\beta}_{2}\right)\in C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) and let tโˆˆโ„+t\in\mathbb{R}_{+}. Then, using definition (4.20)-(4.22) and assumptions (4.2), (4.3), we deduce that

โ€–ฮ›๐‰1(t)โˆ’ฮ›๐‰2(t)โ€–Qร—L2(ฮฉ)m\displaystyle\left\|\Lambda\boldsymbol{\tau}_{1}(t)-\Lambda\boldsymbol{\tau}_{2}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}
โ‰ค(L๐’ข+LG)โˆซ0t(โ€–๐œถ1(s)โˆ’๐œถ2(s)โ€–Q+โ€–๐œท1(s)โˆ’๐œท2(s)โ€–L2(ฮฉ)m)๐‘‘s\displaystyle\quad\leq\left(L_{\mathcal{G}}+L_{G}\right)\int_{0}^{t}\left(\left\|\boldsymbol{\alpha}_{1}(s)-\boldsymbol{\alpha}_{2}(s)\right\|_{Q}+\left\|\boldsymbol{\beta}_{1}(s)-\boldsymbol{\beta}_{2}(s)\right\|_{L^{2}(\Omega)^{m}}\right)ds
=2(L๐’ข+LG)โˆซ0tโ€–๐‰1(s)โˆ’๐‰2(s)โ€–Qร—L2(ฮฉ)m๐‘‘s\displaystyle\quad=\sqrt{2}\left(L_{\mathcal{G}}+L_{G}\right)\int_{0}^{t}\left\|\boldsymbol{\tau}_{1}(s)-\boldsymbol{\tau}_{2}(s)\right\|_{Q\times L^{2}(\Omega)^{m}}ds

This inequality combined with Theorem 2.1 shows that the operator ฮ›\Lambda has a unique fixed point in C(โ„+;Qร—L2(ฮฉ)m)C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right), denoted ๐’ฎ๐’–=(๐’ฎ1๐’–,๐’ฎ2๐’–)\mathcal{S}\boldsymbol{u}=\left(\mathcal{S}_{1}\boldsymbol{u},\mathcal{S}_{2}\boldsymbol{u}\right). Moreover, combining (4.20)-(4.22) with equality ฮ›(๐’ฎ๐’–)=๐’ฎ๐’–\Lambda(\mathcal{S}\boldsymbol{u})=\mathcal{S}\boldsymbol{u} we deduce that (4.17)-(4.18) hold.

To proceed, let ๐’–,๐’—โˆˆC(โ„+;V),nโˆˆโ„•โˆ—\boldsymbol{u},\boldsymbol{v}\in C\left(\mathbb{R}_{+};V\right),n\in\mathbb{N}^{*} and let tโˆˆ[0,n]t\in[0,n]. Then using (4.17)(4.18) and taking into account (4.1)-(4.3) and (2.3) we obtain that

โˆฅ๐’ฎ1๐’–(t)โˆ’\displaystyle\|\mathcal{S}_{1}\boldsymbol{u}(t)- ๐’ฎ1๐’—(t)โˆฅ=Qโˆฅโˆซ0t๐’ข(๐’ฎ1๐’–(s)+โ„ฐ๐œบ(๐’–(s)),๐œบ(๐’–(s)),๐’ฎ2๐’–(s))ds\displaystyle\mathcal{S}_{1}\boldsymbol{v}(t)\left\|{}_{Q}=\right\|\int_{0}^{t}\mathcal{G}\left(\mathcal{S}_{1}\boldsymbol{u}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\mathcal{S}_{2}\boldsymbol{u}(s)\right)ds
โˆ’โˆซ0t๐’ข(๐’ฎ1๐’—(s)+โ„ฐ๐œบ(๐’—(s)),๐œบ(๐’—(s)),๐’ฎ2๐’—(s))๐‘‘sโˆฅQ\displaystyle\quad-\int_{0}^{t}\mathcal{G}\left(\mathcal{S}_{1}\boldsymbol{v}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{v}(s)),\boldsymbol{\varepsilon}(\boldsymbol{v}(s)),\mathcal{S}_{2}\boldsymbol{v}(s)\right)ds\|_{Q}
โ‰ค\displaystyle\leq L๐’ขโˆซ0t(โ€–๐’ฎ1๐’–(s)โˆ’๐’ฎ1๐’—(s)โ€–Q+โ€–๐’ฎ2๐’–(s)โˆ’๐’ฎ2๐’—(s)โ€–L2(ฮฉ)m)๐‘‘s\displaystyle L_{\mathcal{G}}\int_{0}^{t}\left(\left\|\mathcal{S}_{1}\boldsymbol{u}(s)-\mathcal{S}_{1}\boldsymbol{v}(s)\right\|_{Q}+\left\|\mathcal{S}_{2}\boldsymbol{u}(s)-\mathcal{S}_{2}\boldsymbol{v}(s)\right\|_{L^{2}(\Omega)^{m}}\right)ds
+L๐’ข(dโ€–โ„ฐโ€–๐โˆž+1)โˆซ0tโ€–๐œบ(๐’–(s))โˆ’๐œบ(๐’—(s))โ€–Q๐‘‘s\displaystyle\quad+L_{\mathcal{G}}\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+1\right)\int_{0}^{t}\|\boldsymbol{\varepsilon}(\boldsymbol{u}(s))-\boldsymbol{\varepsilon}(\boldsymbol{v}(s))\|_{Q}ds
โ‰ค\displaystyle\leq 2L๐’ขโˆซ0tโ€–๐’ฎ๐’–(s)โˆ’๐’ฎ๐’—(s)โ€–Qร—L2(ฮฉ)m๐‘‘s\displaystyle\sqrt{2}L_{\mathcal{G}}\int_{0}^{t}\|\mathcal{S}\boldsymbol{u}(s)-\mathcal{S}\boldsymbol{v}(s)\|_{Q\times L^{2}(\Omega)^{m}}ds
+L๐’ข(dโ€–โ„ฐโ€–๐โˆž+1)โˆซ0tโ€–๐’–(s)โˆ’๐’—(s)โ€–V๐‘‘s\displaystyle\quad+L_{\mathcal{G}}\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+1\right)\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}ds
โˆฅ๐’ฎ2๐’–(t)โˆ’\displaystyle\|\mathcal{S}_{2}\boldsymbol{u}(t)- ๐’ฎ2๐’—(t)โˆฅ=L2(ฮฉ)mโˆฅโˆซ0t๐‘ฎ(๐’ฎ1๐’–(s)+โ„ฐ๐œบ(๐’–(s)),๐œบ(๐’–(s)),๐’ฎ2๐’–(s))ds\displaystyle\mathcal{S}_{2}\boldsymbol{v}(t)\left\|{}_{L^{2}(\Omega)^{m}}=\right\|\int_{0}^{t}\boldsymbol{G}\left(\mathcal{S}_{1}\boldsymbol{u}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\mathcal{S}_{2}\boldsymbol{u}(s)\right)ds
โˆ’โˆซ0t๐‘ฎ(๐’ฎ1๐’—(s)+โ„ฐ๐œบ(๐’—(s)),๐œบ(๐’—(s)),๐’ฎ2๐’—(s))๐‘‘sโˆฅL2(ฮฉ)m\displaystyle\quad-\int_{0}^{t}\boldsymbol{G}\left(\mathcal{S}_{1}\boldsymbol{v}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{v}(s)),\boldsymbol{\varepsilon}(\boldsymbol{v}(s)),\mathcal{S}_{2}\boldsymbol{v}(s)\right)ds\|_{L^{2}(\Omega)^{m}}
โ‰ค\displaystyle\leq LGโˆซ0t(โ€–๐’ฎ1๐’–(s)โˆ’๐’ฎ1๐’—(s)โ€–Q+โ€–๐’ฎ2๐’–(s)โˆ’๐’ฎ2๐’—(s)โ€–L2(ฮฉ)m)๐‘‘s\displaystyle L_{G}\int_{0}^{t}\left(\left\|\mathcal{S}_{1}\boldsymbol{u}(s)-\mathcal{S}_{1}\boldsymbol{v}(s)\right\|_{Q}+\left\|\mathcal{S}_{2}\boldsymbol{u}(s)-\mathcal{S}_{2}\boldsymbol{v}(s)\right\|_{L^{2}(\Omega)^{m}}\right)ds
+LG(dโ€–โ„ฐโ€–๐โˆž+1)โˆซ0tโ€–๐œบ(๐’–(s))โˆ’๐œบ(๐’—(s))โ€–Q๐‘‘s\displaystyle\quad+L_{G}\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+1\right)\int_{0}^{t}\|\boldsymbol{\varepsilon}(\boldsymbol{u}(s))-\boldsymbol{\varepsilon}(\boldsymbol{v}(s))\|_{Q}ds
โ‰ค\displaystyle\leq 2LGโˆซ0tโ€–๐’ฎ๐’–(s)โˆ’๐’ฎ๐’—(s)โ€–Qร—L2(ฮฉ)m๐‘‘s\displaystyle\sqrt{2}L_{G}\int_{0}^{t}\|\mathcal{S}\boldsymbol{u}(s)-\mathcal{S}\boldsymbol{v}(s)\|_{Q\times L^{2}(\Omega)^{m}}ds
+LG(dโ€–โ„ฐโ€–๐โˆž+1)โˆซ0tโ€–๐’–(s)โˆ’๐’—(s)โ€–V๐‘‘s\displaystyle\quad+L_{G}\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+1\right)\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}ds

Therefore, we have

โ€–๐’ฎ๐’–(t)โˆ’๐’ฎ๐’—(t)โ€–Qร—L2(ฮฉ)mโ‰คโ€–๐’ฎ1๐’–(t)โˆ’๐’ฎ1๐’—(t)โ€–Q+โ€–๐’ฎ2๐’–(t)โˆ’๐’ฎ2๐’—(t)โ€–L2(ฮฉ)m\displaystyle\|\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{v}(t)\|_{Q\times L^{2}(\Omega)^{m}}\leq\left\|\mathcal{S}_{1}\boldsymbol{u}(t)-\mathcal{S}_{1}\boldsymbol{v}(t)\right\|_{Q}+\left\|\mathcal{S}_{2}\boldsymbol{u}(t)-\mathcal{S}_{2}\boldsymbol{v}(t)\right\|_{L^{2}(\Omega)^{m}}
โ‰ค๐’ฆ(โˆซ0tโ€–๐’ฎ๐’–(s)โˆ’๐’ฎ๐’—(s)โ€–Qร—L2(ฮฉ)m๐‘‘s+โˆซ0tโ€–๐’–(s)โˆ’๐’—(s)โ€–V๐‘‘s)\displaystyle\quad\leq\mathcal{K}\left(\int_{0}^{t}\|\mathcal{S}\boldsymbol{u}(s)-\mathcal{S}\boldsymbol{v}(s)\|_{Q\times L^{2}(\Omega)^{m}}ds+\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}ds\right)

where

๐’ฆ=maxโก{2(L๐’ข+LG),(L๐’ข+LG)(dโ€–โ„ฐโ€–๐โˆž+1)}.\mathcal{K}=\max\left\{\sqrt{2}\left(L_{\mathcal{G}}+L_{G}\right),\left(L_{\mathcal{G}}+L_{G}\right)\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+1\right)\right\}. (4.23)

Using now a Gronwall argument we deduce that

โ€–๐’ฎ๐’–(t)โˆ’๐’ฎ๐’—(t)โ€–Qร—L2(ฮฉ)mโ‰ค๐’ฆen๐’ฆโˆซ0tโ€–๐’–(s)โˆ’๐’—(s)โ€–V๐‘‘s\|\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{v}(t)\|_{Q\times L^{2}(\Omega)^{m}}\leq\mathcal{K}e^{n\mathcal{K}}\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}ds (4.24)

This inequality shows that inequality (4.19) holds with sn=๐’ฆen๐’ฆs_{n}=\mathcal{K}e^{n\mathcal{K}}, which concludes the proof.

Next, using the Riesz representation Theorem we define the operators P:Vโ†’VP:V\rightarrow V, โ„ฌ:C(โ„+;V)โ†’C(โ„+;L2(ฮ“3))\mathcal{B}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right) and the function ๐’‡:โ„+โ†’V\boldsymbol{f}:\mathbb{R}_{+}\rightarrow V by equalities

(P๐’–,๐’—)V=โˆซฮ“3p(uฮฝ)vฮฝ๐‘‘aโˆ€๐’–,๐’—โˆˆV\displaystyle(P\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Gamma_{3}}p\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (4.25)
(โ„ฌ๐’–(t),ฮพ)L2(ฮ“3)=(โˆซ0tb(tโˆ’s)uฮฝ+(s)๐‘‘s,ฮพ)L2(ฮ“3)\displaystyle(\mathcal{B}\boldsymbol{u}(t),\xi)_{L^{2}\left(\Gamma_{3}\right)}=\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,\xi\right)_{L^{2}\left(\Gamma_{3}\right)} (4.26)
โˆ€๐’–โˆˆC(โ„+;V),ฮพโˆˆL2(ฮ“3),tโˆˆโ„+\displaystyle\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\xi\in L^{2}\left(\Gamma_{3}\right),t\in\mathbb{R}_{+}
(๐’‡(t),๐’—)V=โˆซฮฉ๐’‡0(t)โ‹…๐’—๐‘‘x+โˆซฮ“2๐’‡2(t)โ‹…๐’—๐‘‘aโˆ€๐’—โˆˆV,tโˆˆโ„+\displaystyle(\boldsymbol{f}(t),\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot\boldsymbol{v}dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V,t\in\mathbb{R}_{+} (4.27)

We use the operator ๐’ฎ:C(โ„+;V)โ†’C(โ„+;Qร—L2(ฮฉ)m)\mathcal{S}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) defined in Lemma 4.2 to obtain the following equivalence result.

Lemma 4.3 Let ( ๐’–,๐ˆ,๐œฟ\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) be a triple of functions which satisfy (4.16). Then (u, ๐ˆ,๐œฟ\boldsymbol{\sigma},\boldsymbol{\kappa} ) is a solution of ๐’ซV\mathcal{P}^{V} if and only if

๐ˆ(t)=โ„ฐ๐œบ(๐’–(t))+๐’ฎ1(๐’–(t))\displaystyle\boldsymbol{\sigma}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\mathcal{S}_{1}(\boldsymbol{u}(t)) (4.28)
๐œฟ(t)=๐’ฎ2๐’–(t)\displaystyle\boldsymbol{\kappa}(t)=\mathcal{S}_{2}\boldsymbol{u}(t) (4.29)
(โ„ฐ๐œบ(๐’–(t)),๐œบ(๐’—)โˆ’๐œบ(๐’–(t)))Q+(๐’ฎ1๐’–(t),๐œบ(๐’—)โˆ’๐œบ(๐’–(t)))Q\displaystyle(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+\left(\mathcal{S}_{1}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t))\right)_{Q} (4.30)
+(P๐’–(t),๐’—โˆ’๐’–(t))V+(โ„ฌ๐’–(t),vฮฝ+โˆ’uฮฝ+(t))L2(ฮ“3)\displaystyle\quad+(P\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}+\left(\mathcal{B}\boldsymbol{u}(t),v_{\nu}^{+}-u_{\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
โ‰ฅ(๐’‡(t),๐’—โˆ’๐’–(t))V,โˆ€๐’—โˆˆU\displaystyle\quad\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V},\quad\forall\boldsymbol{v}\in U

for all tโˆˆโ„+t\in\mathbb{R}_{+}.
Proof. First we suppose that ( ๐’–,๐ˆ,๐œฟ\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) is solution for Problem ๐’ซV\mathcal{P}^{V} and let tโˆˆโ„+t\in\mathbb{R}_{+}. Using (4.9) and (4.10) we obtain

๐ˆ(t)\displaystyle\boldsymbol{\sigma}(t) โˆ’โ„ฐ๐œบ(๐’–(t))\displaystyle-\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)) (4.31)
=โˆซ0t๐’ข(๐ˆ(s)โˆ’โ„ฐ๐œบ(๐’–(s))+โ„ฐ๐œบ(๐’–(s)),๐œบ(๐’–(s)),๐œฟ(s))๐‘‘s+๐ˆ0โˆ’โ„ฐ๐œบ(๐’–0)\displaystyle=\int_{0}^{t}\mathcal{G}(\boldsymbol{\sigma}(s)-\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s))+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\kappa}(s))ds+\boldsymbol{\sigma}_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right)
๐œฟ(t)\displaystyle\boldsymbol{\kappa}(t) =โˆซ0t๐‘ฎ(๐ˆ(s)โˆ’โ„ฐ๐œบ(๐’–(s))+โ„ฐ๐œบ(๐’–(s)),๐œบ(๐’–(s)),๐œฟ(s))๐‘‘s+๐œฟ0\displaystyle=\int_{0}^{t}\boldsymbol{G}(\boldsymbol{\sigma}(s)-\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s))+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\kappa}(s))ds+\boldsymbol{\kappa}_{0} (4.32)

We now use the definitions of ๐’ฎ1\mathcal{S}_{1} and ๐’ฎ2\mathcal{S}_{2} in Lemma 4.2 to obtain (4.28) and (4.29). Then we combine (4.15), (4.28) and use notation (4.25)-(4.27) to see that (4.30) holds.

Conversely, assume that ( ๐’–,๐ˆ,๐œฟ\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) satisfies (4.28)-(4.30) and let tโˆˆโ„+t\in\mathbb{R}_{+}. We use (4.28), (4.29) and the definitions (4.17), (4.18) of the operators ๐’ฎ1\mathcal{S}_{1} and ๐’ฎ2\mathcal{S}_{2} to obtain (4.31) and (4.32), which show that (4.9) and (4.10) hold. Moreover, using (4.28), (4.30) and the definitions (4.25)-(4.27) we find (4.15), which concludes the proof.

We are now in position to provide the proof for Theorem 4.1.
Proof. We first define the operators A:Vโ†’V,โ„›:C(โ„+;V)โ†’C(โ„+;Qร—L2(ฮ“3))A:V\rightarrow V,\mathcal{R}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\times L^{2}\left(\Gamma_{3}\right)\right) and the functional ฯ†:Qร—L2(ฮ“3)ร—Vโ†’โ„\varphi:Q\times L^{2}\left(\Gamma_{3}\right)\times V\rightarrow\mathbb{R} by equalities

(A๐’–,๐’—)=(โ„ฐฮต(๐’–),๐œบ(๐’—))Q+(P๐’–,๐’—)Vโˆ€๐’–,๐’—โˆˆV\displaystyle(A\boldsymbol{u},\boldsymbol{v})=(\mathcal{E}\varepsilon(\boldsymbol{u}),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+(P\boldsymbol{u},\boldsymbol{v})_{V}\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (4.33)
โ„›๐’–(t)=(๐’ฎ1๐’–(t),โ„ฌ๐’–(t))โˆ€๐’–โˆˆC(โ„+;V)\displaystyle\mathcal{R}\boldsymbol{u}(t)=\left(\mathcal{S}_{1}\boldsymbol{u}(t),\mathcal{B}\boldsymbol{u}(t)\right)\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) (4.34)
ฯ†(๐ˆ,ฮพ,๐’—)=(๐ˆ,๐œบ(๐’—))Q+(ฮพ+,vฮฝ+)L2(ฮ“3)โˆ€๐ˆโˆˆQ,ฮพโˆˆL2(ฮ“3),๐’—โˆˆV\displaystyle\varphi(\boldsymbol{\sigma},\xi,\boldsymbol{v})=(\boldsymbol{\sigma},\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\left(\xi^{+},v_{\nu}^{+}\right)_{L^{2}\left(\Gamma_{3}\right)}\quad\forall\boldsymbol{\sigma}\in Q,\xi\in L^{2}\left(\Gamma_{3}\right),\boldsymbol{v}\in V (4.35)

With these notation we consider the problem of finding a function ๐’–:โ„+โ†’V\boldsymbol{u}:\mathbb{R}_{+}\rightarrow V such that, for all tโˆˆโ„+t\in\mathbb{R}_{+}, the following inequality holds:

๐’–(t)โˆˆU,(A๐’–(t),๐’—โˆ’๐’–(t))V+ฯ†(โ„›๐’–(t),๐’—)โˆ’ฯ†(โ„›๐’–(t),๐’–(t))\displaystyle\boldsymbol{u}(t)\in U,\quad(A\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}+\varphi(\mathcal{R}\boldsymbol{u}(t),\boldsymbol{v})-\varphi(\mathcal{R}\boldsymbol{u}(t),\boldsymbol{u}(t)) (4.36)
โ‰ฅ(๐’‡,๐’—โˆ’๐’–(t))Vโˆ€๐’—โˆˆU\displaystyle\geq(\boldsymbol{f},\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\forall\boldsymbol{v}\in U

In order to solve (4.36) we employ Theorem 2.2 with X=V,K=UX=V,K=U and Y=Qร—L2(ฮ“3)Y=Q\times L^{2}\left(\Gamma_{3}\right). To this end we use the definition (4.33) and inequalities (2.1), (2.3) to obtain that

|(A๐’–โˆ’A๐’—,๐’˜)V|โ‰ค|(โ„ฐฮต(๐’–)โˆ’โ„ฐฮต(๐’—),๐œบ(๐’˜))Q|+|(P๐’–โˆ’P๐’—,๐’˜)V|โ‰คdโ€–โ„ฐโ€–๐โˆžโ€–๐’–โˆ’๐’—โ€–Vโ€–๐’˜โ€–V+Lpโ€–๐’˜โ€–L2(ฮ“3)dโ€–๐’–โˆ’๐’—โ€–L2(ฮ“3)dโ‰ค(dโ€–โ„ฐโ€–๐โˆž+c02Lp)โ€–๐’–โˆ’๐’—โ€–Vโ€–๐’˜โ€–Vโˆ€๐’–,๐’—,๐’˜โˆˆV.\begin{gathered}\left|(A\boldsymbol{u}-A\boldsymbol{v},\boldsymbol{w})_{V}\right|\leq\left|(\mathcal{E}\varepsilon(\boldsymbol{u})-\mathcal{E}\varepsilon(\boldsymbol{v}),\boldsymbol{\varepsilon}(\boldsymbol{w}))_{Q}\right|+\left|(P\boldsymbol{u}-P\boldsymbol{v},\boldsymbol{w})_{V}\right|\\ \leq d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\|\boldsymbol{u}-\boldsymbol{v}\|_{V}\|\boldsymbol{w}\|_{V}+L_{p}\|\boldsymbol{w}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\|\boldsymbol{u}-\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\\ \leq\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+c_{0}^{2}L_{p}\right)\|\boldsymbol{u}-\boldsymbol{v}\|_{V}\|\boldsymbol{w}\|_{V}\quad\forall\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}\in V.\end{gathered}

Then we take ๐’˜=A๐’–โˆ’A๐’—\boldsymbol{w}=A\boldsymbol{u}-A\boldsymbol{v} in the previous inequality to find that

โ€–A๐’–โˆ’A๐’—โ€–Vโ‰ค(dโ€–โ„ฐโ€–๐โˆž+c02Lp)โ€–๐’–โˆ’๐’—โ€–Vโˆ€๐’–,๐’—โˆˆV.\|A\boldsymbol{u}-A\boldsymbol{v}\|_{V}\leq\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+c_{0}^{2}L_{p}\right)\|\boldsymbol{u}-\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{u},\boldsymbol{v}\in V. (4.37)

On the other hand, from (4.1) and the monotonicity of the function pp we deduce that

(A๐’–โˆ’A๐’—,๐’–โˆ’๐’—)Vโ‰ฅmฮตโ€–๐’–โˆ’๐’—โ€–V2.(A\boldsymbol{u}-A\boldsymbol{v},\boldsymbol{u}-\boldsymbol{v})_{V}\geq m_{\varepsilon}\|\boldsymbol{u}-\boldsymbol{v}\|_{V}^{2}. (4.38)

Inequalities (4.37) and (4.38) imply that the operator AA satisfies assumption (2.7).
Let nโˆˆโ„•โˆ—n\in\mathbb{N}^{*} and let tโˆˆ[0,n]t\in[0,n]. Then, using (4.34), (4.19) and the trace inequality (2.1) we find that

โ€–โ„›๐’–(t)โˆ’โ„›๐’—(t)โ€–Qร—L2(ฮ“3)\displaystyle\|\mathcal{R}\boldsymbol{u}(t)-\mathcal{R}\boldsymbol{v}(t)\|_{Q\times L^{2}\left(\Gamma_{3}\right)}
โ‰ค(sn+c0โ‹…maxrโˆˆ[0,n]โกโ€–b(r)โ€–Lโˆž(ฮ“3))โˆซ0tโ€–๐’–(s)โˆ’๐’—(s)โ€–V๐‘‘s\displaystyle\quad\leq\left(s_{n}+c_{0}\cdot\max_{r\in[0,n]}\|b(r)\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}ds

which shows that (2.8) holds with rn=sn+c0โ‹…maxrโˆˆ[0,n]โกโ€–b(r)โ€–Lโˆž(ฮ“3)r_{n}=s_{n}+c_{0}\cdot\max_{r\in[0,n]}\|b(r)\|_{L^{\infty}\left(\Gamma_{3}\right)}.
We now take into account (4.35) and (2.1) to deduce that

ฯ†((๐ˆ1,ฮพ1),๐’–2)โˆ’ฯ†((๐ˆ1,ฮพ1),๐’–1)+ฯ†((๐ˆ2,ฮพ2),๐’–1)โˆ’ฯ†((๐ˆ2,ฮพ2),๐’–2)=(๐ˆ1โˆ’๐ˆ2,๐œบ(๐’–2)โˆ’๐œบ(๐’–1))Q+(ฮพ1+โˆ’ฮพ2+,u2ฮฝ+โˆ’u1ฮฝ+)L2(ฮ“3)โ‰ค(โ€–๐ˆ1โˆ’๐ˆ2โ€–Q+c0โ€–ฮพ1โˆ’ฮพ2โ€–L2(ฮ“3))โ€–๐’–1โˆ’๐’–2โ€–Vโ‰ค2maxโก{1,c0}โ€–(๐ˆ1,ฮพ1)โˆ’(๐ˆ2,ฮพ2)โ€–Qร—L2(ฮ“3)โ€–๐’–1โˆ’๐’–2โ€–V,โˆ€๐ˆ1,๐ˆ1โˆˆQ,ฮพ1,ฮพ2โˆˆL2(ฮ“3),๐’–1,๐’–2โˆˆV,\begin{gathered}\varphi\left(\left(\boldsymbol{\sigma}_{1},\xi_{1}\right),\boldsymbol{u}_{2}\right)-\varphi\left(\left(\boldsymbol{\sigma}_{1},\xi_{1}\right),\boldsymbol{u}_{1}\right)+\varphi\left(\left(\boldsymbol{\sigma}_{2},\xi_{2}\right),\boldsymbol{u}_{1}\right)-\varphi\left(\left(\boldsymbol{\sigma}_{2},\xi_{2}\right),\boldsymbol{u}_{2}\right)\\ =\left(\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{2}\right)-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{1}\right)\right)_{Q}+\left(\xi_{1}^{+}-\xi_{2}^{+},u_{2\nu}^{+}-u_{1\nu}^{+}\right)_{L^{2}\left(\Gamma_{3}\right)}\\ \leq\left(\left\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right\|_{Q}+c_{0}\left\|\xi_{1}-\xi_{2}\right\|_{L^{2}\left(\Gamma_{3}\right)}\right)\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|_{V}\\ \leq\sqrt{2}\max\left\{1,c_{0}\right\}\left\|\left(\boldsymbol{\sigma}_{1},\xi_{1}\right)-\left(\boldsymbol{\sigma}_{2},\xi_{2}\right)\right\|_{Q\times L^{2}\left(\Gamma_{3}\right)}\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|_{V},\\ \forall\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{1}\in Q,\xi_{1},\xi_{2}\in L^{2}\left(\Gamma_{3}\right),\boldsymbol{u}_{1},\boldsymbol{u}_{2}\in V,\end{gathered}

which shows that (2.9) (b) holds with ฮฑ=2maxโก{1,c0}\alpha=\sqrt{2}\max\left\{1,c_{0}\right\}. In addition, we note that the function ฯ†((๐ˆ,ฮพ),โ‹…):Vโ†’โ„\varphi((\boldsymbol{\sigma},\xi),\cdot):V\rightarrow\mathbb{R} is convex and lower semi-continuous for all (๐ˆ,ฮพ)โˆˆQร—L2(ฮ“3)(\boldsymbol{\sigma},\xi)\in Q\times L^{2}\left(\Gamma_{3}\right) and, therefore, (2.9) (a) holds, too.

Finally, using assumption (4.4) and definition (4.27) we deduce that ๐’‡\boldsymbol{f} has the regularity expressed in (2.10). It follows now from Theorem 2.2 that there exists a unique function ๐’–โˆˆC(โ„+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) which solves the inequality (4.36). And, using notation (4.33)-(4.35), we deduce the existence of a unique function ๐’–โˆˆC(โ„+;U)\boldsymbol{u}\in C\left(\mathbb{R}_{+};U\right)
which satisfies (4.30) for any tโˆˆโ„+t\in\mathbb{R}_{+}. Let ๐ˆ,๐œฟ\boldsymbol{\sigma},\boldsymbol{\kappa} be the functions defined by (4.28) and (4.29). Then, it follows that the triple ( ๐’–,๐ˆ,๐œฟ\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) is the unique triple of functions with regularity (4.16) which satisfies (4.28)-(4.30). Theorem 4.1 is now a consequence of Lemma 4.3.

We refer in the rest of the paper to solution of Problem ๐’ซV\mathcal{P}^{V} as a weak solution to the contact problem ๐’ซ\mathcal{P}. We conclude by Theorem 4.1 that, Problem ๐’ซ\mathcal{P} has a unique weak solution solution with regularity (4.16), provided that (4.1)-(4.7) hold.

5 A convergence result

We now study the dependence of the solution of Problem ๐’ซV\mathcal{P}^{V} with respect to perturbations of the data. To this end, we assume in what follows that (4.1)-(4.7) hold and we denote by ( ๐’–,๐ˆ,๐œฟ\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) the solution of Problem ๐’ซV\mathcal{P}^{V} obtained in Theorem 4.1, For each ฯ>0\rho>0 let pฯ,bฯ,๐’‡0ฯ,๐’‡2ฯ,๐’–0ฯ,๐ˆ0ฯp_{\rho},b_{\rho},\boldsymbol{f}_{0\rho},\boldsymbol{f}_{2\rho},\boldsymbol{u}_{0\rho},\boldsymbol{\sigma}_{0\rho} and ๐œฟ0ฯ\boldsymbol{\kappa}_{0\rho} represent perturbations of p,bp,b, ๐’‡0,๐’‡2,๐’–0,๐ˆ0\boldsymbol{f}_{0},\boldsymbol{f}_{2},\boldsymbol{u}_{0},\boldsymbol{\sigma}_{0} and ๐œฟ0\boldsymbol{\kappa}_{0}, respectively, which satisfy conditions (4.4)-(4.7). With these data, we consider the following perturbation of Problem ๐’ซV\mathcal{P}^{V}.

Problem ๐’ซฯV\mathcal{P}_{\rho}^{V}. Find a displacement field ๐’–ฯ:โ„+โ†’U\boldsymbol{u}_{\rho}:\mathbb{R}_{+}\rightarrow U, a stress field ๐ˆฯ:โ„+โ†’Q\boldsymbol{\sigma}_{\rho}:\mathbb{R}_{+}\rightarrow Q and an internal state variable ๐œฟฯ:โ„+โ†’L2(ฮฉ)m\boldsymbol{\kappa}_{\rho}:\mathbb{R}_{+}\rightarrow L^{2}(\Omega)^{m} such that

๐ˆฯ(t)=โˆซ0t๐’ข(๐ˆฯ(s),๐œบ(๐’–ฯ(s)),๐œฟฯ(s))๐‘‘s+๐ˆ0ฯโˆ’โ„ฐ๐œบ(๐’–0ฯ)+โ„ฐ๐œบ(๐’–ฯ(t))\displaystyle\boldsymbol{\sigma}_{\rho}(t)=\int_{0}^{t}\mathcal{G}\left(\boldsymbol{\sigma}_{\rho}(s),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(s)\right),\boldsymbol{\kappa}_{\rho}(s)\right)ds+\boldsymbol{\sigma}_{0\rho}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0\rho}\right)+\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right) (5.1)
๐œฟฯ(t)=โˆซ0t๐‘ฎ(๐ˆฯ(s),๐œบ(๐’–ฯ(s)),๐œฟฯ(s))๐‘‘s+๐œฟ0ฯ\displaystyle\boldsymbol{\kappa}_{\rho}(t)=\int_{0}^{t}\boldsymbol{G}\left(\boldsymbol{\sigma}_{\rho}(s),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(s)\right),\boldsymbol{\kappa}_{\rho}(s)\right)ds+\boldsymbol{\kappa}_{0\rho} (5.2)
(๐ˆฯ(t),๐œบ(๐’—)โˆ’๐œบ(๐’–ฯ(t)))Q+(pฯ(uฯฮฝ(t)),vฮฝโˆ’uฯฮฝ(t))L2(ฮ“3)\displaystyle\left(\boldsymbol{\sigma}_{\rho}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}+\left(p_{\rho}\left(u_{\rho\nu}(t)\right),v_{\nu}-u_{\rho\nu}(t)\right)_{L^{2}\left(\Gamma_{3}\right)} (5.3)
+(โˆซ0tbฯ(tโˆ’s)uฯฮฝ+(s)๐‘‘s,vฮฝ+โˆ’uฯฮฝ+(t))L2(ฮ“3)\displaystyle+\left(\int_{0}^{t}b_{\rho}(t-s)u_{\rho\nu}^{+}(s)ds,v_{\nu}^{+}-u_{\rho\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
โ‰ฅ(๐’‡0ฯ(t),๐’—โˆ’๐’–ฯ(t))L2(ฮฉ)d+(๐’‡2ฯ(t),๐’—โˆ’๐’–ฯ(t))L2(ฮ“2)dโˆ€๐’—โˆˆU\displaystyle\geq\left(\boldsymbol{f}_{0\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{L^{2}\left(\Gamma_{2}\right)^{d}}\quad\forall\boldsymbol{v}\in U

for all tโˆˆโ„+t\in\mathbb{R}_{+}.
Here and below uฯฮฝu_{\rho\nu} represents the normal component of the function ๐’–ฯ\boldsymbol{u}_{\rho}. It follows from Theorem 4.1 that, for each ฯ>0\rho>0, Problem ๐’ซฯV\mathcal{P}_{\rho}^{V} has a unique solution ( ๐’–ฯ,๐ˆฯ,๐œฟฯ\boldsymbol{u}_{\rho},\boldsymbol{\sigma}_{\rho},\boldsymbol{\kappa}_{\rho} ) with the regularity ๐’–ฯโˆˆC(โ„+;U),๐ˆฯโˆˆC(โ„+;Q)\boldsymbol{u}_{\rho}\in C\left(\mathbb{R}_{+};U\right),\boldsymbol{\sigma}_{\rho}\in C\left(\mathbb{R}_{+};Q\right) and ๐œฟฯโˆˆC(โ„+;L2(ฮฉ)m)\boldsymbol{\kappa}_{\rho}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{m}\right). Consider now the following assumptions:

{ There exists F:โ„+โ†’โ„+and ฮฑโˆˆโ„+such that  (a) |pฯ(๐’™,r)โˆ’p(๐’™,r)|โ‰คF(ฯ)(|r|+ฮฑ)โˆ€rโˆˆโ„, a.e. ๐’™โˆˆฮ“3, for each ฯ>0 (b) F(ฯ)โ†’0 as ฯโ†’0\left\{\begin{array}[]{l}\text{ There exists }F:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}\text{and }\alpha\in\mathbb{R}_{+}\text{such that }\\ \text{ (a) }\left|p_{\rho}(\boldsymbol{x},r)-p(\boldsymbol{x},r)\right|\leq F(\rho)(|r|+\alpha)\\ \quad\forall r\in\mathbb{R}\text{, a.e. }\boldsymbol{x}\in\Gamma_{3}\text{, for each }\rho>0\text{. }\\ \text{ (b) }F(\rho)\rightarrow 0\text{ as }\rho\rightarrow 0\text{. }\end{array}\right.
bฯโ†’b in C(โ„+;Lโˆž(ฮ“3)) as ฯโ†’0.๐’‡0ฯโ†’๐’‡0 in C(โ„+;L2(ฮฉ)d) as ฯโ†’0.๐’‡2ฯโ†’๐’‡2 in C(โ„+;L2(ฮ“2)d) as ฯโ†’0.๐’–0ฯโ†’๐’–0 in V as ฯโ†’0.๐ˆ0ฯโ†’๐ˆ0 in Q as ฯโ†’0.๐œฟ0ฯโ†’๐œฟ0 in L2(ฮฉ)m as ฯโ†’0.\begin{array}[]{ll}b_{\rho}\rightarrow b&\text{ in }C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right)\quad\text{ as }\quad\rho\rightarrow 0.\\ \boldsymbol{f}_{0\rho}\rightarrow\boldsymbol{f}_{0}&\text{ in }C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right)\quad\text{ as }\rho\rightarrow 0.\\ \boldsymbol{f}_{2\rho}\rightarrow\boldsymbol{f}_{2}&\text{ in }C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right)\quad\text{ as }\rho\rightarrow 0.\\ \boldsymbol{u}_{0\rho}\rightarrow\boldsymbol{u}_{0}&\text{ in }V\quad\text{ as }\rho\rightarrow 0.\\ \boldsymbol{\sigma}_{0\rho}\rightarrow\boldsymbol{\sigma}_{0}&\text{ in }Q\quad\text{ as }\rho\rightarrow 0.\\ \boldsymbol{\kappa}_{0\rho}\rightarrow\boldsymbol{\kappa}_{0}&\text{ in }L^{2}(\Omega)^{m}\quad\text{ as }\rho\rightarrow 0.\end{array}

We have the following convergence result.
Theorem 5.1 Assume that (5.4)-(5.10) hold. Then the solution ( ๐’–ฯ,๐ˆฯ,๐œฟฯ\boldsymbol{u}_{\rho},\boldsymbol{\sigma}_{\rho},\boldsymbol{\kappa}_{\rho} ) of Problem ๐’ซฯV\mathcal{P}_{\rho}^{V} converges to the solution ( ๐’–,๐ˆ,๐œฟ\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) of Problem ๐’ซV\mathcal{P}^{V}, i.e.

{๐’–ฯโ†’๐’– in C(โ„+;V)๐ˆฯโ†’๐ˆ in C(โ„+;Q)๐œฟฯโ†’๐œฟ in C(โ„+;L2(ฮฉ)m)\left\{\begin{array}[]{lll}\boldsymbol{u}_{\rho}\rightarrow\boldsymbol{u}&\text{ in }&C\left(\mathbb{R}_{+};V\right)\\ \boldsymbol{\sigma}_{\rho}\rightarrow\boldsymbol{\sigma}&\text{ in }&C\left(\mathbb{R}_{+};Q\right)\\ \boldsymbol{\kappa}_{\rho}\rightarrow\boldsymbol{\kappa}&\text{ in }&C\left(\mathbb{R}_{+};L^{2}(\Omega)^{m}\right)\end{array}\right.

as ฯโ†’0\rho\rightarrow 0.
Proof. Let ฯ>0\rho>0. We define the operators Pฯ:Vโ†’V,โ„ฌฯ:C(โ„+;V)โ†’C(โ„+;L2(ฮ“3))P_{\rho}:V\rightarrow V,\mathcal{B}_{\rho}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right) and the function ๐’‡ฯ:โ„+โ†’V\boldsymbol{f}_{\rho}:\mathbb{R}_{+}\rightarrow V by equalities

(Pฯ๐’–,๐’—)V=โˆซฮ“3pฯ(uฮฝ)vฮฝ๐‘‘aโˆ€๐’–,๐’—โˆˆV\displaystyle\left(P_{\rho}\boldsymbol{u},\boldsymbol{v}\right)_{V}=\int_{\Gamma_{3}}p_{\rho}\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (5.12)
(โ„ฌฯ๐’–(t),ฮพ)L2(ฮ“3)=(โˆซ0tbฯ(tโˆ’s)uฮฝ+(s)๐‘‘s,ฮพ)L2(ฮ“3)\displaystyle\left(\mathcal{B}_{\rho}\boldsymbol{u}(t),\xi\right)_{L^{2}\left(\Gamma_{3}\right)}=\left(\int_{0}^{t}b_{\rho}(t-s)u_{\nu}^{+}(s)ds,\xi\right)_{L^{2}\left(\Gamma_{3}\right)} (5.13)
โˆ€๐’–โˆˆC(โ„+;V),ฮพโˆˆL2(ฮ“3),tโˆˆโ„+\displaystyle\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\xi\in L^{2}\left(\Gamma_{3}\right),t\in\mathbb{R}_{+}
(๐’‡ฯ(t),๐’—)V=โˆซฮฉ๐’‡0ฯ(t)โ‹…๐’—๐‘‘x+โˆซฮ“2๐’‡2ฯ(t)โ‹…๐’—๐‘‘aโˆ€๐’—โˆˆV,tโˆˆโ„+\displaystyle\left(\boldsymbol{f}_{\rho}(t),\boldsymbol{v}\right)_{V}=\int_{\Omega}\boldsymbol{f}_{0\rho}(t)\cdot\boldsymbol{v}dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2\rho}(t)\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V,t\in\mathbb{R}_{+} (5.14)

Also, we use Lemma 4.2 to define the operator ๐’ฎฯ:C(โ„+;V)โ†’C(โ„+;Qร—L2(ฮฉ)m)\mathcal{S}_{\rho}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) by equalities

๐’ฎฯ๐’–(t)=(๐’ฎ1ฯ๐’–(t),๐’ฎ2ฯ๐’–(t))\displaystyle\mathcal{S}_{\rho}\boldsymbol{u}(t)=\left(\mathcal{S}_{1\rho}\boldsymbol{u}(t),\mathcal{S}_{2\rho}\boldsymbol{u}(t)\right) (5.15)
๐’ฎ1ฯ๐’–(t)=โˆซ0t๐’ข(๐’ฎ1ฯ๐’–(s)+โ„ฐ๐œบ(๐’–(s)),๐œบ(๐’–(s)),๐’ฎ2ฯ๐’–(s))๐‘‘s+๐ˆ0ฯโˆ’โ„ฐ๐œบ(๐’–0ฯ)\displaystyle\mathcal{S}_{1\rho}\boldsymbol{u}(t)=\int_{0}^{t}\mathcal{G}\left(\mathcal{S}_{1\rho}\boldsymbol{u}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\mathcal{S}_{2\rho}\boldsymbol{u}(s)\right)ds+\boldsymbol{\sigma}_{0\rho}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0\rho}\right) (5.16)
๐’ฎ2ฯ๐’–(t)=โˆซ0t๐‘ฎ(๐’ฎ1ฯ๐’–(s)+โ„ฐ๐œบ(๐’–(s)),๐œบ(๐’–(s)),๐’ฎ2ฯ๐’–(s))๐‘‘s+๐œฟ0ฯ\displaystyle\mathcal{S}_{2\rho}\boldsymbol{u}(t)=\int_{0}^{t}\boldsymbol{G}\left(\mathcal{S}_{1\rho}\boldsymbol{u}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\mathcal{S}_{2\rho}\boldsymbol{u}(s)\right)ds+\boldsymbol{\kappa}_{0\rho} (5.17)

for all ๐’–โˆˆC(โ„+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) and tโˆˆโ„+t\in\mathbb{R}_{+}. Finally, we recall Lemma 4.3 which shows that the solution ( ๐’–ฯ,๐ˆฯ,๐œฟฯ\boldsymbol{u}_{\rho},\boldsymbol{\sigma}_{\rho},\boldsymbol{\kappa}_{\rho} ) satisfies

๐ˆฯ(t)=โ„ฐ๐œบ(๐’–ฯ(t))+๐’ฎ1ฯ(๐’–ฯ(t))\displaystyle\boldsymbol{\sigma}_{\rho}(t)=\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)+\mathcal{S}_{1\rho}\left(\boldsymbol{u}_{\rho}(t)\right) (5.18)
๐œฟฯ(t)=๐’ฎ2ฯ๐’–ฯ(t)\displaystyle\boldsymbol{\kappa}_{\rho}(t)=\mathcal{S}_{2\rho}\boldsymbol{u}_{\rho}(t) (5.19)
(โ„ฐ๐œบ(๐’–ฯ(t)),๐œบ(๐’—)โˆ’๐œบ(๐’–ฯ(t)))Q+(๐’ฎ1ฯ๐’–ฯ(t),๐œบ(๐’—)โˆ’๐œบ(๐’–ฯ(t)))Q+(Pฯ๐’–ฯ(t),๐’—โˆ’๐’–ฯ(t))V+(โ„ฌฯ๐’–ฯ(t),vฮฝ+โˆ’uฯฮฝ+(t))L2(ฮ“3)โ‰ฅ(๐’‡(t),๐’—โˆ’๐’–ฯ(t))V\displaystyle\begin{array}[]{l}\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}+\left(\mathcal{S}_{1\rho}\boldsymbol{u}_{\rho}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}\\ \quad+\left(P_{\rho}\boldsymbol{u}_{\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{V}+\left(\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t),v_{\nu}^{+}-u_{\rho\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}\\ \quad\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{V}\end{array} (5.20)

for all tโˆˆโ„+t\in\mathbb{R}_{+}.
Let ฯ>0,nโˆˆโ„•โˆ—\rho>0,n\in\mathbb{N}^{*} and let tโˆˆ[0,n]t\in[0,n]. We take ๐’—=๐’–(t)\boldsymbol{v}=\boldsymbol{u}(t) in (5.20) and ๐’—=๐’–ฯ(t)\boldsymbol{v}=\boldsymbol{u}_{\rho}(t) in (4.30) and add the resulting inequalities to obtain

(โ„ฐฮต(๐’–(t))โˆ’โ„ฐฮต(๐’–ฯ(t)),๐œบ(๐’–(t))โˆ’๐œบ(๐’–ฯ(t)))Q\displaystyle\left(\mathcal{E}\varepsilon(\boldsymbol{u}(t))-\mathcal{E}\varepsilon\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q} (5.21)
โ‰ค(๐’ฎ1ฯ๐’–ฯ(t)โˆ’๐’ฎ1๐’–(t),๐œบ(๐’–(t))โˆ’๐œบ(๐’–ฯ(t)))Q\displaystyle\leq\left(\mathcal{S}_{1\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}_{1}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}
+(Pฯ๐’–ฯ(t)โˆ’P๐’–(t),๐’–(t)โˆ’๐’–ฯ(t))V\displaystyle\quad+\left(P_{\rho}\boldsymbol{u}_{\rho}(t)-P\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}
+(โ„ฌฯ๐’–ฯ(t)โˆ’โ„ฌ๐’–(t),uฮฝ+(t)โˆ’uฯฮฝ+(t))L2(ฮ“3)\displaystyle\quad+\left(\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{B}\boldsymbol{u}(t),u_{\nu}^{+}(t)-u_{\rho\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
+(๐’‡ฯ(t)โˆ’๐’‡(t),๐’–(t)โˆ’๐’–ฯ(t))V\displaystyle\quad+\left(\boldsymbol{f}_{\rho}(t)-\boldsymbol{f}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}

We now estimate each term in the previous inequality. First, we use assumption (4.1) to deduce that

mโ„ฐโ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–V2โ‰ค(โ„ฐ๐œบ(๐’–(t))โˆ’โ„ฐ๐œบ(๐’–ฯ(t)),๐œบ(๐’–(t))โˆ’๐œบ(๐’–ฯ(t)))Q.m_{\mathcal{E}}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}^{2}\leq\left(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}. (5.22)

Next, using the Cauchy-Schwarz inequality we deduce that

(๐’ฎ1ฯ๐’–ฯ(t)โˆ’๐’ฎ1๐’–(t),๐œบ(๐’–(t))โˆ’๐œบ(๐’–ฯ(t)))Q\displaystyle\left(\mathcal{S}_{1\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}_{1}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q} (5.23)
โ‰คโ€–๐’ฎฯ๐’–ฯ(t)โˆ’๐’ฎ๐’–(t)โ€–Qร—L2(ฮฉ)mโ€–๐’–(t)โˆ’๐’–ฯ(t)โ€–V\displaystyle\quad\leq\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}\left\|\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right\|_{V}

Moreover, by arguments similar to those used in the proof of (4.24) we deduce that

โ€–๐’ฎฯ๐’–ฯ(t)โˆ’๐’ฎ๐’–(t)โ€–Qร—L2(ฮฉ)mโ‰ค(๐’ฆโˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s+ฯ„0ฯ)en๐’ฆ\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}\leq\left(\mathcal{K}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\tau_{0\rho}\right)e^{n\mathcal{K}} (5.24)

where ๐’ฆ\mathcal{K} is given by (4.23) and

ฯ„0ฯ=โ€–๐ˆ0ฯโˆ’๐ˆ0โ€–Q+dโ€–โ„ฐโ€–๐โˆžโ€–๐’–0ฯโˆ’๐’–0โ€–V+โ€–๐œฟ0ฯโˆ’๐œฟ0โ€–L2(ฮฉ)m\tau_{0\rho}=\left\|\boldsymbol{\sigma}_{0\rho}-\boldsymbol{\sigma}_{0}\right\|_{Q}+d\|\mathcal{E}\|_{\mathbf{Q}^{\infty}}\left\|\boldsymbol{u}_{0\rho}-\boldsymbol{u}_{0}\right\|_{V}+\left\|\boldsymbol{\kappa}_{0\rho}-\boldsymbol{\kappa}_{0}\right\|_{L^{2}(\Omega)^{m}} (5.25)

We combine now (5.23) and (5.24) and use the notation sn=๐’ฆen๐’ฆs_{n}=\mathcal{K}e^{n\mathcal{K}} introduced in the proof of Lemma 4.2 to deduce that

(๐’ฎ1ฯ๐’–ฯ(t)โˆ’๐’ฎ1๐’–(t),๐œบ(๐’–(t))โˆ’๐œบ(๐’–ฯ(t)))Q\displaystyle\left(\mathcal{S}_{1\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}_{1}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q} (5.26)
โ‰ค(snโˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s+ฯ„0ฯen๐’ฆ)โ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–V\displaystyle\quad\leq\left(s_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\tau_{0\rho}e^{n\mathcal{K}}\right)\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}

To proceed, we use the definitions (5.12) and (4.25), the monotonicity of the function pฯp_{\rho} and assumption (5.4) to see that

(Pฯ๐’–ฯ(t)โˆ’P๐’–(t),๐’–(t)โˆ’๐’–ฯ(t))V\displaystyle\left(P_{\rho}\boldsymbol{u}_{\rho}(t)-P\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}
=โˆซฮ“3(pฯ(uฯฮฝ(t))โˆ’p(uฮฝ(t)))(uฮฝ(t)โˆ’uฯฮฝ(t))๐‘‘a\displaystyle\quad=\int_{\Gamma_{3}}\left(p_{\rho}\left(u_{\rho\nu}(t)\right)-p\left(u_{\nu}(t)\right)\right)\left(u_{\nu}(t)-u_{\rho\nu}(t)\right)da
โ‰คโˆซฮ“3(pฯ(uฮฝ(t))โˆ’p(uฮฝ(t)))(uฮฝ(t)โˆ’uฯฮฝ(t))๐‘‘a\displaystyle\quad\leq\int_{\Gamma_{3}}\left(p_{\rho}\left(u_{\nu}(t)\right)-p\left(u_{\nu}(t)\right)\right)\left(u_{\nu}(t)-u_{\rho\nu}(t)\right)da
โ‰คโˆซฮ“3|pฯ(uฮฝ(t))โˆ’p(uฮฝ(t))||uฮฝ(t)โˆ’uฯฮฝ(t)|๐‘‘a\displaystyle\quad\leq\int_{\Gamma_{3}}\left|p_{\rho}\left(u_{\nu}(t)\right)-p\left(u_{\nu}(t)\right)\right|\left|u_{\nu}(t)-u_{\rho\nu}(t)\right|da
โ‰คโˆซฮ“3F(ฯ)(|uฮฝ(t)|+ฮฑ)|uฮฝ(t)โˆ’uฯฮฝ(t)|๐‘‘a\displaystyle\quad\leq\int_{\Gamma_{3}}F(\rho)\left(\left|u_{\nu}(t)\right|+\alpha\right)\left|u_{\nu}(t)-u_{\rho\nu}(t)\right|da

Therefore, using the trace inequality (2.1), after some elementary calculus we find that

(Pฯ๐’–ฯ(t)โˆ’P๐’–(t),๐’–(t)โˆ’๐’–ฯ(t))V\displaystyle\left(P_{\rho}\boldsymbol{u}_{\rho}(t)-P\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V} (5.27)
โ‰คF(ฯ)(c02โˆฅ๐’–(t)โˆฅV+c0ฮฑmeas(ฮ“3)12)โˆฅ๐’–ฯ(t)โˆ’๐’–(t)โˆฅV\displaystyle\quad\leq F(\rho)\left(c_{0}^{2}\|\boldsymbol{u}(t)\|_{V}+c_{0}\alpha\operatorname{meas}\left(\Gamma_{3}\right)^{\frac{1}{2}}\right)\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}

Next, using definitions (5.13), (4.26) and condition (4.6) we have

(โ„ฌฯ๐’–ฯ(t)โˆ’โ„ฌ๐’–(t),uฮฝ+(t)โˆ’uฯฮฝ+(t))L2(ฮ“3)\displaystyle\left(\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{B}\boldsymbol{u}(t),u_{\nu}^{+}(t)-u_{\rho\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
=(โˆซ0t(bฯ(tโˆ’s)uฯฮฝ+(s)โˆ’b(tโˆ’s)uฮฝ+(s))๐‘‘s,uฮฝ+(t)โˆ’uฯฮฝ+(t))L2(ฮ“3)\displaystyle\quad=\left(\int_{0}^{t}\left(b_{\rho}(t-s)u_{\rho\nu}^{+}(s)-b(t-s)u_{\nu}^{+}(s)\right)ds,u_{\nu}^{+}(t)-u_{\rho\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
โ‰ค(โˆซ0tโˆฅbฯ(tโˆ’s)(uฯฮฝ+(s)โˆ’uฮฝ+(s))โˆฅL2(ฮ“3)ds\displaystyle\quad\leq\left(\int_{0}^{t}\left\|b_{\rho}(t-s)\left(u_{\rho\nu}^{+}(s)-u_{\nu}^{+}(s)\right)\right\|_{L^{2}\left(\Gamma_{3}\right)}ds\right.
+โˆซ0tโˆฅbฯ(tโˆ’s)uฮฝ+(s)โˆ’b(tโˆ’s)uฮฝ+(s)โˆฅL2(ฮ“3)ds)โˆฅ๐’–ฯ(t)โˆ’๐’–(t)โˆฅL2(ฮ“3)d\displaystyle\left.\quad+\int_{0}^{t}\left\|b_{\rho}(t-s)u_{\nu}^{+}(s)-b(t-s)u_{\nu}^{+}(s)\right\|_{L^{2}\left(\Gamma_{3}\right)}ds\right)\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{L^{2}\left(\Gamma_{3}\right)^{d}}

Therefore,

(โ„ฌฯ๐’–ฯ(t)โˆ’โ„ฌ๐’–(t),uฮฝ+(t)โˆ’uฯฮฝ+(t))L2(ฮ“3)\displaystyle\left(\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{B}\boldsymbol{u}(t),u_{\nu}^{+}(t)-u_{\rho\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)} (5.28)
โ‰ค(ฮธฯnโˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s+ฯ‰ฯnโˆซ0tโ€–๐’–(s)โ€–V๐‘‘s)โ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–V\displaystyle\quad\leq\left(\theta_{\rho n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\omega_{\rho n}\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds\right)\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}

where

ฮธฯn=c02maxrโˆˆ[0,n]โกโ€–bฯ(r)โ€–Lโˆž(ฮ“3),\displaystyle\theta_{\rho n}=c_{0}^{2}\max_{r\in[0,n]}\left\|b_{\rho}(r)\right\|_{L^{\infty}\left(\Gamma_{3}\right)}, (5.29)
ฯ‰ฯn=c02maxrโˆˆ[0,n]โกโ€–bฯ(r)โˆ’b(r)โ€–Lโˆž(ฮ“3).\displaystyle\omega_{\rho n}=c_{0}^{2}\max_{r\in[0,n]}\left\|b_{\rho}(r)-b(r)\right\|_{L^{\infty}\left(\Gamma_{3}\right)}. (5.30)

Finally, it is easy to see that

(๐’‡ฯ(t)โˆ’๐’‡(t),๐’–(t)โˆ’๐’–ฯ(t))Vโ‰คฮดฯnโ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–V\left(\boldsymbol{f}_{\rho}(t)-\boldsymbol{f}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}\leq\delta_{\rho n}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V} (5.31)

where

ฮดฯn=maxrโˆˆ[0,n]โกโ€–๐’‡ฯ(r)โˆ’๐’‡(r)โ€–V\delta_{\rho n}=\max_{r\in[0,n]}\left\|\boldsymbol{f}_{\rho}(r)-\boldsymbol{f}(r)\right\|_{V} (5.32)

We now combine (5.21), (5.22), (5.26), (5.27), (5.28) and (5.31) to deduce that

โˆฅ๐’–ฯ(t)\displaystyle\|\boldsymbol{u}_{\rho}(t) โˆ’๐’–(t)โˆฅโ‰คVsnmโ„ฐโˆซ0tโˆฅ๐’–ฯ(s)โˆ’๐’–(s)โˆฅVds+ฯ„0ฯen๐’ฆmโ„ฐ\displaystyle-\boldsymbol{u}(t)\left\|{}_{V}\leq\frac{s_{n}}{m_{\mathcal{E}}}\int_{0}^{t}\right\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\|_{V}ds+\frac{\tau_{0\rho}e^{n\mathcal{K}}}{m_{\mathcal{E}}} (5.33)
+\displaystyle+ F(ฯ)mโ„ฐ(c02โˆฅ๐’–(t)โˆฅV+c0ฮฑmeas(ฮ“3)12)\displaystyle\frac{F(\rho)}{m_{\mathcal{E}}}\left(c_{0}^{2}\|\boldsymbol{u}(t)\|_{V}+c_{0}\alpha\operatorname{meas}\left(\Gamma_{3}\right)^{\frac{1}{2}}\right)
+ฮธฯnmโ„ฐโˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s+ฯ‰ฯnmโ„ฐโˆซ0tโ€–๐’–(s)โ€–V๐‘‘s+ฮดฯnmโ„ฐ\displaystyle+\frac{\theta_{\rho n}}{m_{\mathcal{E}}}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\frac{\omega_{\rho n}}{m_{\mathcal{E}}}\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds+\frac{\delta_{\rho n}}{m_{\mathcal{E}}}

Let

ฮพn,u=max{en๐’ฆmโ„ฐ,1mโ„ฐ(c02maxtโˆˆ[0,n]โˆฅ๐’–(t)โˆฅV+c0ฮฑmeas(ฮ“3)12)1mโ„ฐโˆซ0nโˆฅ๐’–(s)โˆฅVds,1mโ„ฐ}\begin{gathered}\xi_{n,u}=\max\left\{\frac{e^{n\mathcal{K}}}{m_{\mathcal{E}}},\frac{1}{m_{\mathcal{E}}}\left(c_{0}^{2}\max_{t\in[0,n]}\|\boldsymbol{u}(t)\|_{V}+c_{0}\alpha\operatorname{meas}\left(\Gamma_{3}\right)^{\frac{1}{2}}\right)\right.\\ \left.\frac{1}{m_{\mathcal{E}}}\int_{0}^{n}\|\boldsymbol{u}(s)\|_{V}ds,\frac{1}{m_{\mathcal{E}}}\right\}\end{gathered}

and note that ฮพn,u\xi_{n,u} depends on n,๐’–,d,โ„ฐ,๐’ข,G,c0,ฮฑn,\boldsymbol{u},d,\mathcal{E},\mathcal{G},G,c_{0},\alpha and ฮ“3\Gamma_{3} but does not depends neither on ฯ\rho nor on tt. Then, (5.33) yields

โˆฅ๐’–ฯ(t)โˆ’\displaystyle\|\boldsymbol{u}_{\rho}(t)- ๐’–(t)โˆฅVโ‰ค(F(ฯ)+ฯ‰ฯn+ฮดฯn+ฯ„0ฯ)ฮพn,u\displaystyle\boldsymbol{u}(t)\|_{V}\leq\left(F(\rho)+\omega_{\rho n}+\delta_{\rho n}+\tau_{0\rho}\right)\xi_{n,u} (5.34)
+ฮธฯn+snmโ„ฐโˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s\displaystyle+\frac{\theta_{\rho n}+s_{n}}{m_{\mathcal{E}}}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds

Next, we use assumption (5.5) and equivalence (2.4) to see that the sequence (ฮธฯn)ฯ\left(\theta_{\rho n}\right)_{\rho} defined by (5.29) is bounded. Therefore, there exists ฮถn>0\zeta_{n}>0 which depends on nn and is independent of ฯ\rho such that

0โ‰คฮธฯn+snmโ„ฐโ‰คฮถn for all ฯ>00\leq\frac{\theta_{\rho n}+s_{n}}{m_{\mathcal{E}}}\leq\zeta_{n}\quad\text{ for all }\quad\rho>0

and, using this inequality in (5.34) we obtain that

โˆฅ๐’–ฯ(t)โˆ’\displaystyle\|\boldsymbol{u}_{\rho}(t)- ๐’–(t)โˆฅVโ‰ค(F(ฯ)+ฯ‰ฯn+ฮดฯn+ฯ„0ฯ)ฮพn,u\displaystyle\boldsymbol{u}(t)\|_{V}\leq\left(F(\rho)+\omega_{\rho n}+\delta_{\rho n}+\tau_{0\rho}\right)\xi_{n,u} (5.35)
+ฮถnโˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s\displaystyle+\zeta_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds

Then, we use the Gronwall inequality to see that

โ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–Vโ‰ค(F(ฯ)+ฯ‰ฯn+ฮดฯn+ฯ„0ฯ)ฮพn,uetฮถn\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left(F(\rho)+\omega_{\rho n}+\delta_{\rho n}+\tau_{0\rho}\right)\xi_{n,u}e^{t\zeta_{n}}

and, passing to the upper bound as tโˆˆ[0,n]t\in[0,n] we find that

maxtโˆˆ[0,n]โกโ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–Vโ‰ค(F(ฯ)+ฯ‰ฯn+ฮดฯn+ฯ„0ฯ)ฮพn,uenฮถn\max_{t\in[0,n]}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left(F(\rho)+\omega_{\rho n}+\delta_{\rho n}+\tau_{0\rho}\right)\xi_{n,u}e^{n\zeta_{n}} (5.36)

Note that (5.5), (2.4) and (5.30) imply that

ฯ‰ฯnโ†’0 as ฯโ†’0\omega_{\rho n}\rightarrow 0\quad\text{ as }\quad\rho\rightarrow 0 (5.37)

Moreover, (5.6), (5.7), (2.4) and (5.32) yield

ฮดฯnโ†’0 as ฯโ†’0\delta_{\rho n}\rightarrow 0\quad\text{ as }\quad\rho\rightarrow 0 (5.38)

and, finally, (5.8)-(5.10) and (5.25) show that

ฯ„0ฯโ†’0 as ฯโ†’0\tau_{0\rho}\rightarrow 0\quad\text{ as }\quad\rho\rightarrow 0 (5.39)

We use now the convergences (5.4) (b), (5.37)-(5.39) and inequality (5.36) to obtain that

maxtโˆˆ[0,n]โกโ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–Vโ†’0 as ฯโ†’0\max_{t\in[0,n]}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0\quad\text{ as }\rho\rightarrow 0 (5.40)

On the other hand using equalities (5.18), (5.19) and (4.28), (4.29) we find that

โ€–๐ˆฯ(t)โˆ’๐ˆ(t)โ€–Q+โ€–๐œฟฯ(t)โˆ’๐œฟ(t)โ€–L2(ฮฉ)m\displaystyle\left\|\boldsymbol{\sigma}_{\rho}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}+\left\|\boldsymbol{\kappa}_{\rho}(t)-\boldsymbol{\kappa}(t)\right\|_{L^{2}(\Omega)^{m}} (5.41)
โ‰คdโ€–โ„ฐโ€–๐โˆžโ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–V+2โ€–๐’ฎฯ๐’–ฯ(t)โˆ’๐’ฎ๐’–(t)โ€–Qร—L2(ฮฉ)m\displaystyle\quad\leq d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}+\sqrt{2}\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}

We write

โ€–๐’ฎฯ๐’–ฯ(t)โˆ’๐’ฎ๐’–(t)โ€–Qร—L2(ฮฉ)m\displaystyle\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}
โ‰คโ€–๐’ฎฯ๐’–ฯ(t)โˆ’๐’ฎฯ๐’–(t)โ€–Qร—L2(ฮฉ)m+โ€–๐’ฎฯ๐’–(t)โˆ’๐’ฎ๐’–(t)โ€–Qร—L2(ฮฉ)m\displaystyle\quad\leq\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}_{\rho}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}+\left\|\mathcal{S}_{\rho}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}

then we use inequalities (4.19) and (5.24) to see that

โ€–๐’ฎฯ๐’–ฯ(t)โˆ’๐’ฎ๐’–(t)โ€–Qร—L2(ฮฉ)mโ‰คsnโˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s\displaystyle\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}\leq s_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds
+(๐’ฆโˆซ0tโ€–๐’–ฯ(s)โˆ’๐’–(s)โ€–V๐‘‘s+ฯ„0ฯ)en๐’ฆ\displaystyle\quad+\left(\mathcal{K}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\tau_{0\rho}\right)e^{n\mathcal{K}}

This inequality combined with convergences (5.39) and (5.40) implies that

maxtโˆˆ[0,n]โกโ€–๐’ฎฯ๐’–ฯ(t)โˆ’๐’ฎ๐’–(t)โ€–Qร—L2(ฮฉ)mโ†’0 as ฯโ†’0\max_{t\in[0,n]}\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}\rightarrow 0\quad\text{ as }\rho\rightarrow 0 (5.42)

Therefore, using equality (5.41) and convergences (5.40), (5.42) we deduce that

maxtโˆˆ[0,n]โกโ€–๐ˆฯ(t)โˆ’๐ˆ(t)โ€–Qโ†’0 as ฯโ†’0\displaystyle\max_{t\in[0,n]}\left\|\boldsymbol{\sigma}_{\rho}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\rightarrow 0\quad\text{ as }\rho\rightarrow 0 (5.43)
maxtโˆˆ[0,n]โกโ€–๐œฟฯ(t)โˆ’๐œฟ(t)โ€–L2(ฮฉ)mโ†’0 as ฯโ†’0\displaystyle\max_{t\in[0,n]}\left\|\boldsymbol{\kappa}_{\rho}(t)-\boldsymbol{\kappa}(t)\right\|_{L^{2}(\Omega)^{m}}\rightarrow 0\quad\text{ as }\rho\rightarrow 0 (5.44)

The convergence (5.11) is now a direct consequence of the convergences (5.40), (5.43) and (5.44).

In addition to the mathematical interest in the convergence result (5.11) it is of importance from mechanical point of view, since it states that the weak solution of the problem (3.1)-(3.8) depends continuously on the normal compliance function, the surface memory function, the densities of body forces and surface tractions and the initial data, as well.

Acknowledgement

The work of the first two authors was supported within the Sectorial Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the projects POSDRU/88/1.5/S/60185 and POSDRU/107/1.5/ S/76841, respectively, entitled Modern Doctoral Studies: Internationalization and Interdisciplinarity, at University BabeลŸ-Bolyai, Cluj-Napoca, Romania.

References

[1] M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, Quarterly of Mechanics and Applied Mathematics 65 (2012), 555-579.
[2] C. Corduneanu, Problรจmes globaux dans la thรฉorie des รฉquations intรฉgrales de Volterra, Ann. Math. Pure Appl. 67 (1965), 349-363.
[3] N. Cristescu and I. Suliciu, Viscoplasticity, Martinus Nijhoff Publishers, Editura Tehnicฤƒ Bucharest, 1982.
[4] A. FarcaลŸ, F. Pฤƒtrulescu, M. Sofonea, A history-dependent contact problem with unilateral constrai Mathematics and its Applications 2 (2012), 105-111.
[5] J. R. Fernรกndez-Garcรญa, W. Han, M. Sofonea and J.M. Viaรฑo, Variational and numerical analysis of a frictionless contact problem for elastic-viscoplastic materials with internal state vaariable, Quarterly of Mechanics and Applied Mathematics 54 (2001), 501-522.
[6] W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, American Mathematical Society-International Press, 2002.
[7] I.R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford University Press, Oxford, 1993.
[8] J. Jaruลกek and M. Sofonea, On the solvability of dynamic elastic-viscoplastic contact problems, Zeitschrift fรผr Angewandte Mathematik und Mechanik (ZAMM) 88 (2008), 3-22.
[9] N. Kikuchi and J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.
[10] A. Klarbring, A. Mikeliฤ and M. Shillor, Frictional contact problems with normal compliance, Int. J. Engng. Sci. 26 (1988), 811-832.
[11] A. Klarbring, A. Mikeliฤ and M. Shillor, On friction problems with normal compliance, Nonlinear Analysis 13 (1989), 935-955.
[12] J. J. Massera and J. J. Schรคffer, Linear Differential Equations and Function Spaces, Academic Press, New York-London, 1966.
[13] J.A.C. Martins and J.T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Analysis TMA 11 (1987), 407-428.
[14] J.T. Oden and J.A.C. Martins, Models and computational methods for dynamic friction phenomena, Computer Methods in Applied Mechanics and Engineering 52 (1985), 527-634.
[15] M. Shillor, M. Sofonea and J.J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics 655, Springer, Berlin, 2004.
[16] M. Sofonea, C. Avramescu, A. Matei, A Fixed point result with applications in the study of viscoplastic frictionless contact problems, Communications on pure and Applied Analysis 7 (2008), 645-658.
[17] M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in Contact Mechanics, European Journal of Applied Mathematics 22 (2011), 471491.
[18] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series 398, Cambridge University Press, Cambridge, 2012.

2014

Related Posts