Abstract

The high q-convergence orders of the inexact Newton iterates were characterized by Ypma in terms of some affine invariant conditions. Using these results, we obtain affine invariant characterizations for the q-convergence orders of the inexact perturbed Newton iterates.

Authors

Emil Cătinaş
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Keywords

inexact perturbed Newton methods; affine invariant conditions; q-convergence orders.

Cite this paper as:

E. Cătinaş, Affine invariant conditions for the inexact perturbed Newton method, Rev. Anal. Numér. Théor. Approx., 31 (2002) no. 1, pp. 17-20, https://ictp.acad.ro/jnaat/journal/article/view/2002-vol31-no1-art3

PDF

About this paper

Print ISSN

1222-9024

Online ISSN

2457-8126

MR

1222-9024

Online ISSN

2457-8126

Google Scholar citations

[1] I. Argyros and F. Szidarovsky, The Theory and Applications of Iteration Methods, C.R.C. Press Inc., Boca Raton, FL, 1993.

[2] E. Catinas, On the high convergence orders of the Newton-GMBACK methods, Rev.Anal. Numer. Th ́eor. Approx.,28(1999) no. 2, 125-132, https://ictp.acad.ro/jnaat

[3] E. Catinas, Newton and Newton-Krylov Methods for Solving Nonlinear Systems inRn, Ph.D. thesis, “Babes–Bolyai” University of Cluj-Napoca, Romania, 1999.

[4] E. Catinas, A note on the quadratic convergence of the inexact Newton methods, Rev.Anal. Numer. Theor. Approx.,29(2000) no. 2, 129-133, https://ictp.acad.ro/jnaat

[5] E. Catinas, Inexact perturbed Newton methods and applications to a class of Krylovsolvers, J. Optim. Theory Appl.,108(2001) no. 3, 543-570, https://ictp.acad.ro/catinas/catinaspb.htm

[6] E. Catinas, On the superlinear convergence of the successive approximations method, J. Optim. Theory Appl.,113(2002) no. 3, 473-485, https://ictp.acad.ro/catinas/catinaspb.htm

[7] E. Catinas, The inexact, inexact perturbed and quasi-Newton methods are equivalentmodels, Math. Comp.74(2005) no. 249, 291-301, https://ictp.acad.ro/catinas/catinaspb.htm

[8] Dembo, R. S., Eisenstat, S. C. and Steihaug, T., Inexact Newton methods, SIAMJ. Numer. Anal.,19(1982), pp. 400-408.

[9] Deuflhard, P.and Heindl, G., Affine invariant convergence theorems for Newton’smethod and extensions to related methods, SIAM J. Numer. Anal.,16(1979), pp. 1-10.

[10] Deuflhard, P.and Potra, F. A., Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem, SIAM J. Numer. Anal.,29(1992), pp. 1395-1412.

[11] Ortega, J. M.and Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

[12] Walker, H. F., An approach to continuation using Krylov subspace methods, Computational Science in the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J. L.Lions, J. Periaux and M. F. Wheeler, eds., John Wiley and Sons, Ltd., 1997, pp. 72-82.

[13] Ypma, T. J., Local convergence of inexact Newton methods, SIAM J. Numer. Anal.,21(1984), pp. 583-590.Received by the editors: October 3, 2001.

Paper (preprint) in HTML form

EMIL CĂTINAŞ
Abstract

The high convergence orders of the inexact Newton iterates were characterized by Ypma in terms of some affine invariant conditions. Using these results, we obtain affine invariant characterizations for the convergence orders of the inexact perturbed Newton iterates.

Rev. Anal. Numér. Théor. Approx., vol. 31 (2002) no. 1, pp. 17-20

AFFINE INVARIANT CONDITIONS
FOR THE INEXACT PERTURBED NEWTON METHOD*

MSC 2000. 65 H 10 .
Keywords. inexact and inexact perturbed Newton methods, affine invariant conditions, convergence orders.

1. INTRODUCTION

Given a nonlinear mapping F:nnF:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}, the inexact Newton (IN) method for solving the system F(x)=0F(x)=0 is given by the iterations:

F(xk)sk=F(xk)+rk\displaystyle F^{\prime}\left(x_{k}\right)s_{k}=-F\left(x_{k}\right)+r_{k}
xk+1=xk+sk,k=0,1,,x0n,\displaystyle x_{k+1}=x_{k}+s_{k},\quad k=0,1,\ldots,\quad x_{0}\in\mathbb{R}^{n},

where rkr_{k} represent the residuals of the approximate solutions sks_{k} of the linear systems. The local convergence of these iterates to a solution xnx^{*}\in\mathbb{R}^{n} is usually studied under the following assumptions, which we shall implicitly assume throughout this paper:

  • the mapping FF is Fréchet differentiable on a neighborhood of xx^{*}, with FF^{\prime} continuous at xx^{*};

  • the Jacobian F(x)F^{\prime}\left(x^{*}\right) is invertible.

We recall that, given an arbitrary norm \|\cdot\| on n\mathbb{R}^{n}, a sequence (xk)k0n\left(x_{k}\right)_{k\geq 0}\subset\mathbb{R}^{n} is said that converges ( qq-)superlinearly to its limit x¯n\bar{x}\in\mathbb{R}^{n} if

limkxk+1x¯xkx¯=0,( assuming xkx¯ for all kk0)\lim_{k\rightarrow\infty}\frac{\left\|x_{k+1}-\bar{x}\right\|}{\left\|x_{k}-\bar{x}\right\|}=0,\quad\left(\text{ assuming }x_{k}\neq\bar{x}\text{ for all }k\geq k_{0}\right)

also denoted by xk+1x¯=o(xkx¯)\left\|x_{k+1}-\bar{x}\right\|=o\left(\left\|x_{k}-\bar{x}\right\|\right), as kk\rightarrow\infty. For rigorous definitions and results concerning the high convergence orders we refer the reader to [11, ch. 9].

The high convergence orders of the IN iterates were characterized by Dembo, Eisenstat and Steihaug.

00footnotetext: This work was supported by the Romanian Academy under grant GAR 45/2002.
"T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania (ecatinas@ictp.acad.ro).

Theorem 1. 8. Assume that the IN iterates converge to xx^{*}. Then the convergence is superlinear if and only if

rk=o(F(xk)), as k.\left\|r_{k}\right\|=o\left(\left\|F\left(x_{k}\right)\right\|\right),\quad\text{ as }k\rightarrow\infty.

If, additionally, FF^{\prime} is Hölder continuous with exponent p(0,1]p\in(0,1] at xx^{*}, i.e., there exist L,ε>0L,\varepsilon>0 such that

F(x)F(x)Lxxp, when xx<ε,\left\|F^{\prime}(x)-F^{\prime}\left(x^{*}\right)\right\|\leq L\left\|x-x^{*}\right\|^{p},\quad\text{ when }\left\|x-x^{*}\right\|<\varepsilon,

then the convergence is with order 1+p1+p if and only if

rk=𝒪(F(xk)1+p), as k.\left\|r_{k}\right\|=\mathcal{O}\left(\left\|F\left(x_{k}\right)\right\|^{1+p}\right),\quad\text{ as }\quad k\rightarrow\infty.

In the inexact perturbed Newton (IPN) method there is assumed that at each step there appear different errors: the Jacobians are perturbed, the functions evaluations are approximately performed, and the resulting linear systems are only approximately solved:

(F(xk)+Δk)sk=(F(xk)+δk)+r^k\displaystyle\left(F^{\prime}\left(x_{k}\right)+\Delta_{k}\right)s_{k}=\left(-F\left(x_{k}\right)+\delta_{k}\right)+\hat{r}_{k}
xk+1=xk+sk,k=0,1,,x0D\displaystyle x_{k+1}=x_{k}+s_{k},\quad k=0,1,\ldots,\quad x_{0}\in D

We have obtained the following characterizations for the convergence of these iterates.

Theorem 2. 5. Assume that the IPN iterates are uniquely defined (i.e. the perturbations (Δk)k0\left(\Delta_{k}\right)_{k\geq 0} are such that the matrices F(xk)+ΔkF^{\prime}\left(x_{k}\right)+\Delta_{k} are invertible for k=0,1,k=0,1,\ldots ) and converge to xx^{*}. Then the convergence is superlinear if and only if

Δk(F(xk)+Δk)1F(xk)+(IΔk(F(xk)+Δk)1)(δk+r^k)=\displaystyle\left\|\Delta_{k}\left(F^{\prime}\left(x_{k}\right)+\Delta_{k}\right)^{-1}F\left(x_{k}\right)+\left(I-\Delta_{k}\left(F^{\prime}\left(x_{k}\right)+\Delta_{k}\right)^{-1}\right)\left(\delta_{k}+\hat{r}_{k}\right)\right\|=
=o(F(xk)), as k\displaystyle=o\left(\left\|F\left(x_{k}\right)\right\|\right),\quad\text{ as }k\rightarrow\infty

If, additionally, FF^{\prime} is Hölder continuous with exponent p(0,1]p\in(0,1] at xx^{*}, then the convergence is with order 1+p1+p if and only if

Δk(F(xk)+Δk)1F(xk)+(IΔk(F(xk)+Δk)1)(δk+r^k)=\displaystyle\left\|\Delta_{k}\left(F^{\prime}\left(x_{k}\right)+\Delta_{k}\right)^{-1}F\left(x_{k}\right)+\left(I-\Delta_{k}\left(F^{\prime}\left(x_{k}\right)+\Delta_{k}\right)^{-1}\right)\left(\delta_{k}+\hat{r}_{k}\right)\right\|=
=𝒪(F(xk)), as k\displaystyle=\mathcal{O}\left(\left\|F\left(x_{k}\right)\right\|\right),\quad\text{ as }k\rightarrow\infty

Theorem 3. [7]. Assume that the IPN iterates are well defined (i.e. the perturbed linear systems are compatible) and converge to xx^{*}. Then the convergence is superlinear if and only if

Δksk+δk+r^k=o(F(xk)), as k.\left\|-\Delta_{k}s_{k}+\delta_{k}+\hat{r}_{k}\right\|=o\left(\left\|F\left(x_{k}\right)\right\|\right),\quad\text{ as }k\rightarrow\infty.

If, additionally, FF^{\prime} is Hölder continuous with exponent p(0,1]p\in(0,1] at xx^{*}, then the convergence is with order 1+p1+p if and only if

Δksk+δk+r^k=𝒪(F(xk)1+p), as k.\left\|-\Delta_{k}s_{k}+\delta_{k}+\hat{r}_{k}\right\|=\mathcal{O}\left(\left\|F\left(x_{k}\right)\right\|^{1+p}\right),\quad\text{ as }k\rightarrow\infty.

2. MAIN RESULTS

The affine invariant conditions are those conditions which do not change when considering, instead of the original system, the modified system CF(x)=CF(x)= 0 , where Cn×nC\in\mathbb{R}^{n\times n} is nonsingular. The (exact) Newton iterates remain the same under such transformation, such that the conditions on the convergence of the iterates should also remain unchanged.

Ypma has obtained in [13] the following characterizations for the IN iterates, which are affine invariant.

Theorem 4. 13. Assume that the IN iterates converge to xx^{*}. Then the convergence is superlinear if and only if

F(xk)1rk=o(F(xk)1F(xk)), as k.\left\|F^{\prime}\left(x_{k}\right)^{-1}r_{k}\right\|=o\left(\left\|F^{\prime}\left(x_{k}\right)^{-1}F\left(x_{k}\right)\right\|\right),\quad\text{ as }k\rightarrow\infty.

If, additionally, FF^{\prime} is Hölder continuous with exponent p(0,1]p\in(0,1] at xx^{*}, then the convergence is with order 1+p1+p if and only if

F(xk)1rk=𝒪(F(xk)1F(xk)1+p) as k\left\|F^{\prime}\left(x_{k}\right)^{-1}r_{k}\right\|=\mathcal{O}\left(\left\|F^{\prime}\left(x_{k}\right)^{-1}F\left(x_{k}\right)\right\|^{1+p}\right)\quad\text{ as }\quad k\rightarrow\infty

Using this result, we obtain the following affine invariant results for the inexact perturbed Newton method:

Theorem 5. Assume that the IPN iterates are uniquely defined and converge to xx^{*}. Then the convergence is superlinear if and only if

F(xk)1(Δk(F(xk)+Δk)1F(xk)+(IΔk(F(xk)+Δk)1)(δk+r^k))=\displaystyle\left\|F^{\prime}\left(x_{k}\right)^{-1}\left(\Delta_{k}\left(F^{\prime}\left(x_{k}\right)+\Delta_{k}\right)^{-1}F\left(x_{k}\right)+\left(I-\Delta_{k}\left(F^{\prime}\left(x_{k}\right)+\Delta_{k}\right)^{-1}\right)\left(\delta_{k}+\hat{r}_{k}\right)\right)\right\|=
=o(F(xk)1F(xk)), as k\displaystyle=o\left(\left\|F^{\prime}\left(x_{k}\right)^{-1}F\left(x_{k}\right)\right\|\right),\quad\text{ as }k\rightarrow\infty

If, additionally, FF^{\prime} is Hölder continuous with exponent p(0,1]p\in(0,1] at xx^{*}, then the convergence is with order 1+p1+p if and only if

F(xk)1(Δk(F(xk)+Δk)1F(xk)+(IΔk(F(xk)+Δk)1)(δk+r^k))=\displaystyle\left\|F^{\prime}\left(x_{k}\right)^{-1}\left(\Delta_{k}\left(F^{\prime}\left(x_{k}\right)+\Delta_{k}\right)^{-1}F\left(x_{k}\right)+\left(I-\Delta_{k}\left(F^{\prime}\left(x_{k}\right)+\Delta_{k}\right)^{-1}\right)\left(\delta_{k}+\hat{r}_{k}\right)\right)\right\|=
=𝒪(F(xk)1F(xk)1+p), as k\displaystyle=\mathcal{O}\left(\left\|F^{\prime}\left(x_{k}\right)^{-1}F\left(x_{k}\right)\right\|^{1+p}\right),\quad\text{ as }k\rightarrow\infty

Theorem 6. Assume that the IPN iterates are well defined and converge to xx^{*}. Then the convergence is superlinear if and only if

F(xk)1(Δksk+δk+r^k)=o(F(xk)1F(xk)), as k.\left\|F^{\prime}\left(x_{k}\right)^{-1}\left(-\Delta_{k}s_{k}+\delta_{k}+\hat{r}_{k}\right)\right\|=o\left(\left\|F^{\prime}\left(x_{k}\right)^{-1}F\left(x_{k}\right)\right\|\right),\quad\text{ as }k\rightarrow\infty.

If, additionally, FF^{\prime} is Hölder continuous with exponent p(0,1]p\in(0,1] at xx^{*}, then the convergence is with order 1+p1+p if and only if

F(xk)1(Δksk+δk+r^k)=𝒪(F(xk)1F(xk)1+p), as k.\left\|F^{\prime}\left(x_{k}\right)^{-1}\left(-\Delta_{k}s_{k}+\delta_{k}+\hat{r}_{k}\right)\right\|=\mathcal{O}\left(\left\|F^{\prime}\left(x_{k}\right)^{-1}F\left(x_{k}\right)\right\|^{1+p}\right),\quad\text{ as }k\rightarrow\infty.

The proofs are easily obtained by using the fact that the IPN iterates are IN iterates having the residuals

rk\displaystyle r_{k} =Δk(F(xk)+Δk)1F(xk)+(IΔk(F(xk)+Δk)1)(δk+r^k)\displaystyle=\Delta_{k}\left(F^{\prime}\left(x_{k}\right)+\Delta_{k}\right)^{-1}F\left(x_{k}\right)+\left(I-\Delta_{k}\left(F^{\prime}\left(x_{k}\right)+\Delta_{k}\right)^{-1}\right)\left(\delta_{k}+\hat{r}_{k}\right)
=Δksk+δk+r^k\displaystyle=-\Delta_{k}s_{k}+\delta_{k}+\hat{r}_{k}

REFERENCES

[1] I. Argyros and F. Szidarovsky, The Theory and Applications of Iteration Methods, C.R.C. Press Inc., Boca Raton, FL, 1993.
[2] E. Cătinaş, On the high convergence orders of the Newton-GMBACK methods, Rev. Anal. Numér. Théor. Approx., 28 (1999) no. 2, 125-132.
[3] E. Cătinaş, Newton and Newton-Krylov Methods for Solving Nonlinear Systems in n\mathbb{R}^{n}, Ph.D. thesis, "Babes-Bolyai" University of Cluj-Napoca, Romania, 1999.
[4] E. Cătinaş, A note on the quadratic convergence of the inexact Newton methods, Rev. Anal. Numér. Théor. Approx., 29 (2000) no. 2, 129-133.
[5] E. Catinaş, Inexact perturbed Newton methods and applications to a class of Krylov solvers, J. Optim. Theory Appl., 108 (2001) no. 3, 543-570.
[6] E. Cătinaş, On the superlinear convergence of the successive approximations method, J. Optim. Theory Appl., 113 (2002) no. 3, 473-485.
[7] E. Cătinaş, The inexact, inexact perturbed and quasi-Newton methods are equivalent models, Math. Comp. 74 (2005) no. 249, 291-301.
[8] Dembo, R. S., Eisenstat, S. C., and Steihaug, T., Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982), pp. 400-408.
[9] Deuflhard, P. and Heindl, G., Affine invariant convergence theorems for Newton’s method and extensions to related methods, SIAM J. Numer. Anal., 16 (1979), pp. 1-10.
[10] Deuflhard, P. and Potra, F. A., Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem, SIAM J. Numer. Anal., 29 (1992), pp. 13951412.
[11] Ortega, J. M. and Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
[12] Walker, H. F., An approach to continuation using Krylov subspace methods, Computational Science in the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J. L. Lions, J. Periaux and M. F. Wheeler, eds., John Wiley and Sons, Ltd., 1997, pp. 72-82.
[13] Ypma, T. J., Local convergence of inexact Newton methods, SIAM J. Numer. Anal., 21 (1984), pp. 583-590.

Received by the editors: October 3, 2001.

2002

Related Posts