Abstract
Consider the nonlinear equation in \(R\), \(f\left( x\right) =0\), where \(f:A\rightarrow B \), \((A,B\subseteq \mathbb{R})\) which is assumed bijective. The Lagrange inverse interpolation polynomial leads to an iterative method of the form \[x_{i+n+2}=L_{n}[ y_{i+1},y_{i+2},…,y_{i+n+1}:f_{|0}^{-1}],\ \quad x_{1},x_{2},…,x_{n+1}\in I.\] At each iterative step we need to compute the values \(\omega_{k}\left( x\right) \) and \(\omega_{k}^{\prime}\left( y_{i}\right) ,\ i=k,\ldots,k+n\), where \(\omega_{k}\left( y\right) =\Pi_{i=k}^{k_{n}}\left( y-y_{k}\right) \). We give an algorithm for computing \(\omega_{k+1}\left( 0\right) \) and \(\omega_{k+1}^{\prime}\left( y_{i}\right) \) using \(\omega_{k}\left(0\right) \) and \(\omega_{k}^{\prime}\left( y\right) \).
Authors
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Title
Original title (in French)
Un algorythme de calcul dans la résolution des equations par interpolation
English translation of the title
An algorithm in the solving of equations by interpolation
Keywords
nonlinear equation in \(\mathbb{R}\); inverse interpolation; iterative method; Lagrange polynomial; inverse Lagrange interpolation polynomial
Cite this paper as:
I. Păvăloiu, Un algorythme de calcul dans la résolution des equations par interpolation, Seminar on functional analysis and numerical methods. Preprint no. 1 (1987), pp. 130-134 (in French).
About this paper
Journal
Seminar on functional analysis and numerical methods,
Preprint
Publisher Name
“Babes-Bolyai” University,
Faculty of Mathematics,
Research Seminars
DOI
Not available yet.
References
[1] I. Pavaloiu, Rezolvarea ecuatiilor prin interpolare, Editura Dacia, Cluj-Napoca, 1981.