[1] C. T. H. Baker, C. A. H. Paul and D. R. Wille, Issues in the numerical solution of evolutionary delay differential equations, Advances in Comput. Math., 1995, 3, 171–196.
[2] M. Dobritoiu and M.-A. Serban, Step method for a system of integral equations from biomathematics, Appl. Math. Comput., 2014, 227, 412–421.
[3] R. D. Driver, Ordinary and Delay Differential Equations, Vol. 20 of Applied Mathematical Sciences, Springer-Verlag, New York, 1977.
[4] V. Ilea, D. Otrocol, M. -A. Serban and D. Trif, Integro-differential equations with two times lags, Fixed Point Theory, 2012, 13(1), 85–97. 508 D. Otrocol & M.-A. Serban
[5] S. Micula, An iterative numerical method for Fredholm–Volterra integral equations of the second kind, Appl. Math. Comput., 2015, 270, 935–942.
[6] S. Micula, A fast converging iterative method for Volterra integral equations of the second kind with delayed arguments, Fixed Point Theory, 2015, 16(2), 371–380.
[7] D. Otrocol, A numerical method for approximating the solution of a LotkaVolterra system with two delays, Studia Univ. “Babes–Bolyai”, Mathematica, 2005, 50(1), 99–110.
[8] D. Otrocol, V.A. Ilea and C. Revnic, An iterative method for a functionaldifferential equations with mixed type argument, Fixed Point Theory, 2010, 11(2), 327–336.
[9] A. I. Perov, On the Cauchy problem for a system of ordinary differential equations, Priblijen. Metod Res. Dif. Urav Kiev, 1964 (in Russian).
[10] R. Precup, The role of the matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput. Modelling, 2009, 49(3–4), 703– 708.
[11] I. A. Rus, Picard operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, 2001, 2, 41–58.
[12] I. A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, ClujNapoca, 2001.
[13] I. A. Rus, Picard operators and applications, Sci. Math. Jpn., 2003, 58(1), 191–219.
[14] I. A. Rus, Abstract models of step method which imply the convergence of successive approximations, Fixed Point Theory, 2008, 9(1), 293–307.
[15] I. A. Rus, M. A. S¸erban and D. Trif, Step method for some integral equations from biomathematics, Bull. Math. Soc. Sci. Math. Roumanie, 2011, 54(102)(2), 167–183.
[16] L. F. Shampine, Solving delay differential equations with dde23, www.radford.edu/ thompson/webddes/tutorial.html.
[17] N. L. Trefethen, An extension of Matlab to continuous functions and operators, SIAM J. Sci. Comput., 2004, 25(5), 1743–1770.
[18] D. Trif, LibScEig 1.0, > Mathematics > Differential Equations > LibScEig 1.0, http://www.mathworks.com/matlabcentral/fileexchange, 2005.
[19] D. Trif, Chebpack, MATLAB Central, URL: http://www.mathworks.com/ matlabcentral/fileexchange/32227-chebpack, 2011.
[20] D. Trif, Matrix based operatorial approach to differential and integral problems, in MATLAB, AUbiquitous Tool for the Practical Engineer, Ed. Clara Ionescu, InTech, 2011, 37–62.
[21] D. Trif, Operatorial tau method for some delay equations, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 2012, 10, 169–189.