Analysis of Navier–Stokes Models for Flows in Bidisperse Porous Media

Abstract


Having in view a model proposed by Nield and Kuznetsov (Transp Porous Media 59:325–339, 2005; Transp Porous Media 96:495–499, 2013), we consider a more general system of coupled Navier–Stokes type equations in the incompressible case subject to the homogeneous Dirichlet condition in a bounded domain. We provide a deep theoretical analysis for large classes of equations and coupled systems of Navier–Stokes type with various non-homogeneous terms of reaction type. Existence results are obtained by using a variational approach making use of several fixed point principles and matrix theory.

Authors

Mirela Kohr
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania

Radu Precup
Faculty of Mathematics and Computer Science and Institute of Advanced Studies in Science and Technology, Babeş–Bolyai University
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

Navier–Stokes equations; Bidisperse porous media; Fixed point technique.

Paper coordinates

M. Kohr, R. Precup, Analysis of Navier-Stokes models for flows in bidisperse porous media, J. Math. Fluid Mechanics, 25 (2023) art. no. 38, https://doi.org/10.1007/s00021-023-00784-w

PDF

About this paper

Journal

Journal of Mathematical Fluid Mechanics

Publisher Name

Springer

Print ISSN
1422-6928
Online ISSN

1422-6952

google scholar link

[1] Amrouche, C., Rodríguez-Bellido, M.A.: The Oseen and Navier–Stokes equations in a non-solenoidal framework. Math. Methods Appl. Sci. 39, 5066–5090 (2016) ADS MathSciNet MATH Google Scholar
[2] Amrouche, C., Ciarlet, P.G., Mardare, C.: On a Lemma of Jacques–Louis Lions and its relation to other fundamental results. J. Math. Pures Appl. 104, 207–226 (2015) MathSciNet MATH Google Scholar
[3] Amrouche, C., Girault, V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslov. Math. J. 44, 109–140 (1994) MathSciNet MATH Google Scholar
[4] Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models. Springer, New York (2013) MATH Google Scholar
[5] Brennen, C.E.: Fundamentals of Multiphase Flows. Cambridge University Press, Cambridge (2005) MATH Google Scholar
[6] Bulíček, M., Málek, J., Žabenský, J.: On generalized Stokes’ and Brinkman’s equations with a pressure- and shear-dependent viscosity and drag coefficient. Nonlinear Anal. Real World Appl. 26, 109–132 (2015) MathSciNet MATH Google Scholar
[7] Capone, F., Gentile, M., Massa, G.: The onset of thermal convection in anisotropic and rotating bidisperse porous media. Z. Angew. Math. Phys. 72, 169 (2021) MathSciNet MATH Google Scholar
[8] Chen, Z.Q., Cheng, P., Hsu, C.T.: A theoretical and experimental study on stagnant thermal conductivity of bi-dispersed porous media. Int. Commun. Heat Mass Transf. 27, 601–610 (2000) Google Scholar
[9] Constantin, P., Foias, C.: Navier–Stokes Equations. The University of Chicago Press, Chicago (1988) MATH Google Scholar
[10] Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988) MathSciNet MATH Google Scholar
[11] Dindos, M., Mitrea, M.: The stationary Navier–Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and C¹ domains. Arch. Ration. Mech. Anal. 174, 1–47 (2004)
[12] Fabes, E., Kenig, C., Verchota, G.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988) MathSciNet MATH Google Scholar
[13] Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, 2nd edn. Springer, New York (2011) MATH Google Scholar
[14] Ghalambaz, M., Hendizadeh, H., Zargartalebi, H., Pop, I.: Free convection in a square cavity filled with a tridisperse porous medium. Transp. Porous Media 116, 379–392 (2017) MathSciNet Google Scholar
[15] Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Springer, Berlin (1986) MATH Google Scholar
[16] Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Springer, Heidelberg, First Edition 2008, Second Edition 2021[17] Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal. 38, 1123–1171 (2013) MathSciNet MATH Google Scholar
[18] Kohr, M., Mikhailov, S.E., Wendland, W.L.: Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier–Stokes systems in Lipschitz domains with transversal interfaces. Calc. Var. Partial Differ. Equ. 61, 198 (2022) MathSciNet MATH Google Scholar
[19] Kohr, M., Mikhailov, S.E., Wendland, W.L.: On some mixed-transmission problems for the anisotropic Stokes and Navier–Stokes systems in Lipschitz domains with transversal interfaces. J. Math. Anal. Appl. 516, 126464 (2022) MathSciNet MATH Google Scholar
[20] Kohr, M., Wendland, W.L.: Variational approach for the Stokes and Navier–Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds. Calc. Var. Partial Differ. Equ. 57(165), 1–41 (2018) MathSciNet MATH Google Scholar
[21] Kohr, M., Wendland, W.L.: Boundary value problems for the Brinkman system with L^{∞} coefficients in Lipschitz domains on compact Riemannian manifolds.
A variational approach. J. Math. Pures Appl. 131, 17–63 (2019)  MathSciNet
[22] Korobkov, M.V., Pileckas, K., Russo, R.: On the flux problem in the theory of steady Navier–Stokes equations with non-homogeneous boundary conditions. Arch. Ration. Mech. Anal. 207, 185–213 (2013) MathSciNet MATH Google Scholar
[23] Kuznetsov, A.V., Nield, D.A.: Thermally developing forced convection in a bidisperse porous medium. J. Porous Media 9, 393–402 (2006) Google Scholar
[24] Lemarié-Rieusset, P.G.: The Navier–Stokes Problem in the 21st Century. CRC Press, Boca Raton (2016) MATH Google Scholar
[25] Łukaszewicz, G., Kalita, P.: Navier–Stokes Equations. An Introduction with Applications. Advances in Mechanics and Mathematics, vol. 34. Springer, Cham (2016) MATH Google Scholar
[26] Mazzucato, A.L., Nistor, V.: Well-posedness and regularity for the elasticity equation with mixed boundary conditions on polyhedral domains and domains with cracks. Arch. Ration. Mech. Anal. 195, 25–73 (2010) MathSciNet MATH Google Scholar
[27] Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque. 344, viii+241 pp (2012)
[28] Nield, D.A.: A note on the modelling of bidisperse porous media. Transp. Porous Media 111, 517–520 (2016) MathSciNet Google Scholar
[29] Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2013) MATH Google Scholar
[30] Nield, D.A., Kuznetsov, A.V.: A two-velocity two-temperature model for a bi-dispersed porous medium: forced convection in a channel. Transp. Porous Media 59, 325–339 (2005) Google Scholar
[31] Nield, D.A., Kuznetsov, A.V.: Heat transfer in bidisperse porous media. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media III, pp. 34–59. Elsevier, Oxford (2005) Google Scholar
[32] Nield, D.A., Kuznetsov, A.V.: The onset of convection in a bidisperse porous medium. Int. J. Heat Mass Transf. 49, 3068–3074 (2006) MATH Google Scholar
[33] Nield, D.A., Kuznetsov, A.V.: A note on modeling high speed flow in a bidisperse porous medium. Transp. Porous Media 96, 495–499 (2013) MathSciNet Google Scholar
[34] O’Regan, D., Precup, R.: Theorems of Leray–Schauder Type and Applications. Gordon and Breach, Amsterdam (2001) MATH Google Scholar
[35] Precup, R.: Existence results for nonlinear boundary value problems under nonresonance conditions. In: Corduneanu, C. (ed.) Qualitative Problems for Differential Equations and Control Theory, pp. 263–273. World Scientific, Singapore (1995) MATH Google Scholar
[36] Precup, R.: Methods in Nonlinear Integral Equations. Kluwer, Dordrecht (2002) MATH Google Scholar
[37] Precup, R.: Linear and Semilinear Partial Differential Equations. De Gruyter, Berlin (2013) MATH Google Scholar
[38] Precup, R., Rubbioni, P.: Stationary solutions of Fokker–Planck equations with nonlinear reaction terms in bounded domains. Potential Anal. 57, 181–199 (2022) MathSciNet MATH Google Scholar
[39] Pătrulescu, F.O., Groşsan, T., Pop, I.: Natural convection from a vertical plate embedded in a non-Darcy bidisperse porous medium. J. Heat Transf. 142, 012504 (2020) Google Scholar
[40] Revnic, C., Groşan, T., Pop, I., Ingham, D.B.: Free convection in a square cavity filled with a bidisperse porous medium. Int. J. Therm. Sci. 48, 1876–1883 (2009) MATH Google Scholar
[41] Seregin, G.: Lecture Notes on Regularity Theory for the Navier–Stokes Equations. World Scientific, London (2015) mMATH Google Scholar
[42] Sohr, H.: The Navier–Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001) MATH Google Scholar
[43] Straughan, B.: Bidispersive porous media. In: Straughan, B. (ed.) Convection with Local Thermal Non-Equilibrium and Microfluidic Effects. Advances in Mechanics and Mathematics, vol. 32. Springer, Cham (2015) MATH Google Scholar

[44] Straughan, B.: Anisotropic bidispersive convection. Proc. R. Soc. A 475, 20190206 (2019) ADS MathSciNet MATH Google Scholar

[45] Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis, AMS Chelsea edn. American Mathematical Society (2001)

[46] Varnhorn, W.: The Stokes Equations. Akademie, Berlin (1994) MATH Google Scholar

2023

Related Posts