Abstract
The paper gartes some results concerning linear approximation operators and it raises three open problems.
Authors
Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
linear positive operator; Korovkin type theorem; convex function of n-order; divided difference
Paper coordinates
O. Agratini, Approximation operators – solutions and questions, Seminaire de la Theorie de La Meilleure Approximation, Convexite et optimisation, 2002, pp.21-29.
About this paper
Journal
Publisher Name
DOI
Print ISSN
Online ISSN
google scholar link
[1] M. Abramowitz, I.A. Stegun, eds., Handbook of Mathematical Funcitons with Fromulas, Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, 1964.
[2] F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter Series in Mathematics, vol. 17, Walter de Gruyter ^ Co., Berlin, New York, 1994.
[3] M. Campiti, G. Metafune, Approximation Properties of Recursively Defined Bernstein-Type Operators, J. Approx. Theory, 87 (1996), 243-269.
[4] M.K. Khan, On the Rate of Convergence of Bernstein Power Series for Funcitons of Bounded Variation, J. Approx. Theory, 57 (1989), 90-103.
[5] H.G. Lehnhoff, On a modified Szasz-Mirakjan operator, J. Approx. Theory, 42 (1984), 278-282.
[6] J. Wang, S. Zhou, On the convergence of modified Baskakov operators, Bull. Inst. Math. Academia Sinica, 28 (2000), 2, 117-123.