The mysterious wavelets world


This survey paper contains the basic ideas of windowed Fourier transform, wavelet transform, wavelet bases and multiresolution analysis, providing important information that introduces the reader at the forefront of current research.


Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania


Fourier transform; wavelet bases; multiresolution analysis; scaling function; time-frequency signal analysis

Paper coordinates

O. Agratini, The mysterious wavelets world, Poceedings of the 5th Romanian-German Seminar on Mathematical Analysis and Approximation Theory, Sibiu, June 2002, pp.9-35


About this paper


Mathematical Analysis and Approximation Theory

Publisher Name
Print ISSN


Online ISSN

google scholar link

[1] Abbate, A., De Cusatis, C.M., Das, P.K., Wavelets  and Subbands, Fundamentals and Applications,  Boston, Birkhauser, 2002.
[2] Bultheel, A., Learning to swin in a sea of wavelets,  Bulletin of the Belgian Mathematical Society-Simon Stevin, vol.2 (1995), no.1, 1-45.
[3] Chui, C.K.,  An Introduction to Wavelets, Academic Press New York, 1992.
[4] Daubechies, I.,  Ten Lectures on Wavelets,  SIAM, Philadelphia, PA, 1992.
[5] Debnath, L., Wavelet Transform and Their Applications,  Birkhauser, Boston Basel Berlin, 2002.
[6] Gasquet, C., Witomski, P., Analyse de Fourier et applications, Masson, Paris, 1990.
[7] Meyer, Y., Wavelets – Algorithms and Applications, SIAM, Philadelphia, PA, 1993.
[8] Odgen, R.T., Essential Wavelets for Statistical Applicaitons and Data Analysis, Boston, Birkhauser, 1997.
[9] Soardi, P.M., Apprunti sulle Ondine, Quaderni dell’Unione Matematica Italiana, 44, Pitagora Editrice, Bologna, 1998.
[10] Stănășila, O.,  Analiza matematică a semnalelor și undinelor,  Matrix Rom. București, 1997.


Related Posts