Abstract
In this paper we deal with a class of linear operators of integral type. We evaluate the order of approximation and indicate conditions which ensure the uniform convergence of the sequence. Also, we apply our results to operators which represent a generalization of Stancu’s operators.
Authors
Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
linear positive operator; uniform convergence; Stancu operator; modulus of smoothness
Paper coordinates
O. Agratini, Approximation properties of a class of linear operators, Buletinul Academiei de Științe a Republicii Moldova, Matematica, 29 (1999) no. 1, pp. 73-78.
About this paper
Journal
Matematica
Publisher Name
Buletinul Academiei de Stiinte a Republicii Moldova
DOI
Print ISSN
0236-3089
Online ISSN
google scholar link
[2] Derriennic, M.M., Sur l’approximation de fonctions integrables sur [0,1] par des polynomes de Bernstein modifies, Journal Approx. Theory, 1981, 31, p. 325-343.
[3] Sahai, A, Prasad, G., On simultaneous approximation by modified Lupas operators, Journal Approx. Theory 1985, 45, p. 122-128.
[4] Sinha, T.A.K., Agrawal, P.N., Gupta, V., On simultaneous approximation by modified Baskakov operators, Bull. Soc., Math. Belg., 1991, 43, no.2, Ser. B, p.217-231.
[5] Sinha, T.A.K., Agrawal, P.N., Sahai, A., Gupta, V., Improved L_{p}-approximation by linear combination of modified Lupas operators, Bull. Inst. Math. Academia Sinica, 1989, 17, no.3, p. 243-253.
[6] Baskakov, V.A., An example of linear positive operators in the space of continuous funcitons, Dokl. Akad. Nauk. SSSR, 113, p.249-251.
[7] Chen, Wenzhong, Tian, Jishan, On approximation properties of Stancu operators of integral type, Journal of Xiamen University, 1987, 26, no.3, p. 270-276.
[8] Stancu, D.D., Approximation of funcitons by means of a new generalized Bernstein operator, Calcolo, 1983, 20, no.2, p.211-229.
[9] Gavrea, I., Rasa, I., Remarks on some quantitative Korovkin-type results, Revue d’Analyse Numerique et de Thorie de l’Approximation, 1993, 22, no.2, p. 173-176.
[10] Agratini, O., Approximation properties of a class of operators of Stancu-Kantorovich type, Research Seminar on Numerical and Statistical Calculus, Babes-Bolyai Univ., Cluj-Napoca, Preprint, 1994, 1, p.3-12.