Asymptotic properties of Kantorovich-type Szász–Mirakjan operators of higher order


In this paper we study local approximation properties of a higher order Kantorovich-type Szász–Mirakjan operator recently introduced by Sabancigil, Kara, and Mahmudov. We derive the complete asymptotic expansion for these operators. They generalize the Szász–Mirakjan operators of Kantorovich-type and approximate locally integrable functions satisfying a certain growth condition on the infinite interval \(0,\infty\).


Ulrich Abel
Technische Hochschule Mittelhessen, Fachbereich MND, Wilhelm-Leuschner-Strasse 13, 61169 Friedberg, Germany

Octavian Agratini
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Street Fântânele, nr. 57, 400320 Cluj-Napoca, Romania

Mircea Ivan
Technical University of Cluj-Napoca, Str. Memorandumului nr. 28, 400114 Cluj-Napoca, Romania


Linear positive operator; Szasz operator; Kantorovich operator; Stirling numbers.


Cite this paper as:

U. Abel, O. Agratini, M. Ivan, Asymptotic properties of Kantorovich-type Szász–Mirakjan operators of higher order, Mathematical Foundations of  Computing, 2023,

About this paper


Mathematical Foundations of Computing

Publisher Name

Mathematical Foundations of Computing

Print ISSN
Online ISSN


Google Scholar Profile


[1] U. Abel, Asymptotic approximation with Kantorovich polynomial, Approx. Theory Appl. (N.S.), 14 (1998), 106-116.
[2] U. Abel and M. Ivan, Asymptotic expansion of the Jakimovski-Leviatan operators and their derivatives, in Functions, Series, Operators (Budapest, 1999), János Bolyai Math. Soc., Budapest, 2002,103-119.
[3] A.-M. Acu, I. C. Buscu and I. Rasa, Generalized Kantorovich modifications of positive linear operators, Mathematical Foundations of Computing, 6 (2023), 54-62,
[4] O. Agratini, Uniform approximation of some classes of linear positive operators expressed by series, Appl. Anal., 94 (2015), 1662-1669.
[5] F. Altomare, Korovkin-type theorems and approximation by positive linear operators, Surv. Approx. Theory, 5 (2010), 92-164.
[6] F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, vol. 17 of De Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 1994, Appendix A by Michael Pannenberg and Appendix B by Ferdinand Beckhoff.
[7] M. Becker, Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27 (1978), 127-142,
[8] M. Becker, D. Kucharski and R. J. Nessel, Global approximation theorems for the Szász-Mirakjan operators in exponential weight spaces, in Linear Spaces and Approximation (Proc. Conf., Math. Res. Inst., Oberwolfach, 1977), Internat. Ser. Numer. Math., Vol. 40, Birkhäuser, Basel, 1978,319-333.
[9] H. Bohman, On approximation of continuous and of analytic functions, Ark. Mat., 2 (1952), 43-56,
[10] B. D. Boyanov and V. M. Veselinov, A note on the approximation of functions in an infinite interval by linear positive operators, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 14 (1970), 9-13 (1971).
[11] J. Bustamante, J. M. Quesada and L. Morales de la Cruz, Direct estimate for positive linear operators in polynomial weighted spaces, J. Approx. Theory, 162 (2010), 1495-1508,
[12] P. L. Butzer, On the extensions of Bernstein polynomials to the infinite interval, Proc. Amer. Math. Soc., 5 (1954), 547-553,
[13] L. Comtet, Advanced Combinatorics, enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974, The Art of Finite and Infinite Expansions.
[14] J. de la Cal and J. Cárcamo, On uniform approximation by some classical Bernstein-type operators, J. Math. Anal. Appl., 279 (2003), 625-638,
[15] Z. Ditzian, Convergence of sequences of linear positive operators: Remarks and applications, J. Approximation Theory, 14 (1975), 296-301,
[16] Z. Ditzian and V. Totik, Moduli of Smoothness, vol. 9 of Springer Series in Computational Mathematics, Springer-Verlag, New York, 1987,
[17] J. Favard, Sur les multiplicateurs d’interpolation, J. Math. Pures Appl. (9), 23 (1944), 219-247.
[18] H. Feng, S. Hou, L.-Y. Wei and D.-X. Zhou, CNN models for readability of Chinese texts, Mathematical Foundations of Computing, 5 (2022), 351-362,
[19] A. D. Gadžiev, Theorems of the type of P. P. Korovkin’s theorems, Mat. Zametki, 20 (1976), 781-786.
[20] V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Cham, 2014,


Related Posts