Posts by Nicolae Suciu

Book summary

A self-consistent theory of stochastic modeling of groundwater systems is presented.
Mathematical theory is illustrated and complemented by numerical methods and simulation codes.

doi: http://doi.org/10.1007/978-3-030-15081-5

book on publisher website

Book cover

Keywords

random variable; stochastic processes; diffusion; random walk; Ito and Fokker-Planck equations; Groundwater; Monte Carlo simulations; continuous modeling.

MSC

60J60      Diffusion processes
60G60      Random fields
65M75      Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
86A05      Hydrology, hydrography, oceanography
76S05      Flows in porous media; filtration; seepage

1. Introduction
1.1 Motivation
1.2 Diffusion Equations
1.2.1 Stationary Diffusion and Flow in Porous Media
1.2.2 Advection–Diffusion Processes
1.2.3 Advection–Diffusion–Reaction Processes
1.3 Numerical Methods
1.3.1 Solutions of Deterministic PDEs
1.3.2 Solutions of Stochastic PEDs
References

2 Preliminaries
2.1 Random Variables, Processes, and Fields
2.1.1 Random Variables
2.1.2 Random Functions and Stochastic Processes
2.1.3 Densities of Finite Dimensional Probability
Distributions
2.2 Markov and Diffusion Processes
2.2.1 Markov Processes
2.2.2 Diffusion Processes and Fokker–Planck Equations
2.2.3 Itô Equation and Stochastic-Lagrangian Framework
References

3 Stochastic Simulations of Diffusion Processes
3.1 Random Sequences
3.1.1 Programming Tools
3.1.2 Convergence
3.2 Numerical Solutions of Itô Equations
3.2.1 Strong and Weak Solutions
3.2.2 Strong and Weak Euler Schemes
3.3 Global Random Walk
3.3.1 Weak Approximations by Global Random Walk
3.3.2 Unbiased GRW
3.3.3 Biased GRW
3.3.4 GRW Solutions for Flow and Reactive Transport
References

4 Diffusion in Random Velocity Fields
4.1 Classical Stochastic Theories Revisited
4.1.1 Taylor’s Theory of Diffusion by Continuous Movements
4.1.2 Advection–Dispersion Models
4.1.3 The Eulerian Statistics of the Travel-Time
4.1.4 The Local Dispersivity Tensor
4.1.5 First Order Approximations for Small Variance of the Log-Hydraulic Conductivity
4.2 Diffusion with Space Variable Drift
4.2.1 Fokker–Planck Equation with Variable Drift
4.2.2 Dispersion and Memory Terms
4.2.3 Memory Effects and Transition Probabilities
4.3 Diffusion in Random Fields Model of Passive Transport
4.3.1 Ensemble-, Effective-, and Center of Mass-Dispersion
4.3.2 Statistical Homogeneity Properties
4.3.3 Anomalous Diffusion, Ergodicity, and Self-averaging
4.4 First Order Approximations
4.4.1 Lagrangian and Eulerian Representations of Diffusion in Random Velocity Fields
4.4.2 Explicit First Order Results for Transport in Aquifers
4.4.3 First Order Results for Power-Law Correlated ln K Fields
References

5 Monte Carlo GRW Simulations of Passive Transport in Groundwater
5.1 Numerical Investigations on Memory Effects and Ergodicity
5.1.1 Ergodicity of the Center of Mass
5.1.2 Dependence on Initial Conditions
5.1.3 Non-ergodic Effective Dispersion at Finite Times
5.1.4 Loss of Memory and Asymptotic Ergodicity
5.2 Numerical Simulations of Transport in Aquifers with Evolving Scale Heterogeneity
5.2.1 Quantifying Anomalous Diffusion by Memory Terms
5.2.2 Ensemble and Memory Coefficients
5.2.3 Breakthrough Curves and Cross-Section Concentrations
5.2.4 Anomalous Diffusion Behavior
References

6 Probability and Filtered Density Function Approaches
6.1 PDF/FDF Evolution Equations
6.1.1 Background on PDF/FDF Methods
6.1.2 PDF/FDF Equations for Reactive Transport
6.1.3 The Fokker–Planck Approach
6.2 Spatial Coarse-Graining and FDF Simulations
6.2.1 PDF/FDF Problem for Passive Transport in Aquifers
6.2.2 Mixing Models
6.2.3 Upscaled Velocity Fields and Diffusion Coefficients
6.2.4 Coarse-Grained Simulations of Transport
6.3 GRW Solutions for PDF/FDF Equations
6.3.1 Convergence of the Mean Concentration
6.3.2 Convergence of FDF Solutions to PDF Solutions
6.4 Issues and Future Developments of PDF/FDF Approach
6.4.1 Looking for Appropriate Mixing Models
6.4.2 Perspectives of the FDF Approach
References

7 Model, Scale, and Measurement
7.1 Sampling Volume and Sampling Time
7.1.1 Sampling Volume Approach
7.1.2 Spatio-Temporal Upscaling
7.2 Coarse-Grained Spatio-Temporal Upscaling
7.2.1 Coarse-Grained Space–Time Averages
7.2.2 Continuous Fields
7.2.3 CGST Average Concentration
References

Appendices
A Numerical Simulation of Diffusion Processes
A.1 Diffusion Processes Constructed with i.i.d. Variables
A.2 Itô–Euler Schemes.
A.3 Global Random Walk
A.3.1 One-Dimensional Unbiased GRW Algorithms
A.3.2 Two-Dimensional Unbiased GRW Algorithm for Advection-Diffusion Processes
A.3.3 Biased GRW Algorithms

B GRW Solutions of Fokker–Planck Equations
B.1 GRW Approximations for Continuous Diffusion Processes
B.2 Strict Equivalence Between GRW and the Weak Euler Scheme for Constant Velocity
B.3 Biased GRW Approximations for Continuous Diffusion Processes

C Numerical Generation of Random Fields
C.1 Homogeneous Gaussian Random Fields
C.1.1 Randomization Method
C.1.2 Analytic Properties of the Samples
C.2 Filtered Kraichnan Fields
C.3 Kraichnan Field Generators
C.3.1 Hydraulic Conductivity Fields
C.3.2 Kraichnan Approximations of Velocity Fields

D Correlation Structure of the Itô Process
D.1 Mean Value and Covariance Components
D.2 Insights from Itô–Taylor Expansions
D.3 Weak Solutions by Successive Approximations

E Derivation of PDF Equations by δ-Function Method
E.1 The PDF Equation
E.2 The Fokker–Planck Equation

F Upscaled Dispersion Coefficients
F.1 Self-averaging Estimations of Diffusion Coefficients
F.2 Coarse-Grained Dispersion Coefficients

References

Index

Contents on the publisher website

Chapter

Stochastic approaches for transport processes in heterogeneous media are motivated by the need to use stochastic parameterizations of the model equations. Essentially, this results in modeling diffusion processes in random fields. For instance, in stochastic subsurface hydrology, random hydraulic conductivity parameters generate random groundwater flow velocity fields and solute transport is modeled by diffusion equations with random drift coefficients. Technically, modeling approaches are based on equivalent Fokker–Planck and Itô representations of the diffusion in random fields, that is, through trajectories of molecules or computational particles and the corresponding continuous fields.

[1] Alzraiee, A.H., Baú, D., Elhaddad, A.: Estimation of heterogeneous aquifer parameters using centralized and decentralized fusion of hydraulic tomography data from multiple pumping tests. Hydrol. Earth Syst. Sci. Discuss. 11(4), 4163–4208 (2014) CrossRef, Google Scholar

[2] Bayer-Raich, M., Jarsjö, J., Liedl, R., Ptak, T., Teutsch, G.: Average contaminant concentration and mass flow in aquifers from time-dependent pumping well data: analytical framework. Water Resour. Res. 40(8), W08303 (2004) CrossRef, Google Scholar

[3] Bogachev, L.V.: Random walks in random environments. In: Françoise, J.-P., Naber, G., Tsou, S.T. (eds.) Encyclopedia of Mathematical Physics, vol. 4, pp. 353–371. Elsevier, Oxford (2006) CrossRef, Google Scholar

[4] Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990) MathSciNet, CrossRef, Google Scholar

[5] Brunner, F., Radu, F.A., Bause, M., Knabner, P.: Optimal order convergence of a modified BDM1 mixed finite element scheme for reactive transport in porous media. Adv. Water Resour. 35, 163–171 (2012)CrossRef, Google Scholar

[6] Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57(4), 785–796 (1973)MathSciNet, CrossRef, Google Scholar

[7] Chorin, A.J.: Vortex sheet approximation of boundary layers. J. Comput. Phys. 27(3), 428–442 (1978) CrossRef, Google Scholar

[8] Craciun, M., Vamos, C., Suciu, N.: Analysis and generation of groundwater concentration time series. Adv. Water Resour. 111, 20–30 (2018) CrossRef, Google Scholar

[9] de Barros, F.P.J., Fiori, A.: First-order based cumulative distribution function for solute concentration in heterogeneous aquifers: theoretical analysis and implications for human health risk assessment. Water Resour. Res. 50(5), 4018–4037 (2014) CrossRef, Google Scholar

[10] Destouni, G., Graham, W.: The influence of observation method on local concentration statistics in the subsurface. Water Resour. Res. 33(4), 663–676 (1997) CrossRef, Google Scholar

[11] Einstein, A.: On the movement of small particles suspended in stationary liquids required by the molecular kinetic theory of heat. Ann. Phys. 17, 549–560 (1905) CrossRef, Google Scholar

[12] Fiori, A.: On the influence of local dispersion in solute transport through formations with evolving scales of heterogeneity. Water Resour. Res. 37(2), 235–242 (2001) CrossRef,Google Scholar

[13] Gardiner, C.: Stochastic Methods. Springer, Berlin (2009) zbMATH, Google Scholar

[14] Herz, M.: Mathematical modeling and analysis of electrolyte solutions. Ph.D. thesis, Erlangen-Nuremberg University (2014). http://www.mso.math.fau.de/fileadmin/am1/projects/PhD_Herz.pdf

[15] Karapiperis, T., Blankleider, B.: Cellular automaton model of reaction-transport processes. Physica D 78, 30–64 (1994) CrossRef, Google Scholar

[16] Kloeden, P.E., Platen, E.: Numerical Solutions of Stochastic Differential Equations. Springer, Berlin (1999)zbMATHGoogle Scholar

[17] Knabner, P., Angermann, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer, New York (2003)  zbMATH, Google Scholar

[18] Kräutle, S., Knabner, P.: A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media. Water Resour. Res. 41(9), W09414 (2005) CrossRef, Google Scholar

[19] Li, J., Xiu, D.: A generalized polynomial chaos based ensemble Kalman filter with high accuracy. J. Comput. Phys. 228, 5454–5469 (2009) MathSciNet, CrossRef, Google Scholar

[20] List, F., Radu, F.A.: A study on iterative methods for solving Richards’ equation. Comput. Geosci. 20(2), 341–353 (2016) MathSciNet, CrossRef, Google Scholar

[21] Liu, Y., Kitanidis, P.K.: A mathematical and computational study of the dispersivity tensor in anisotropic porous media. Adv. Water Resour. 62, 303–316 (2013) CrossRef, Google Scholar

[22] Meyer, D.W., Jenny, P., Tchelepi, H.A.: A joint velocity-concentration PDF method for tracer flow in heterogeneous porous media. Water Resour. Res. 46, W12522 (2010) Google Scholar

[23] Müller, I.: Thermodynamics. Pitman, Boston (1985) zbMATH, Google Scholar

[24] Naff, R.L., Haley, D.F., Sudicky, E.A.: High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media 1. Methodology and flow results. Water Resour. Res. 34(4), 663–677 (1998) CrossRef, Google Scholar

[25] Pasetto, D., Guadagnini, A., Putti, M.: POD-based Monte Carlo approach for the solution of regional scale groundwater flow driven by randomly distributed recharge. Adv. Water Resour. 34(11), 1450–1463 (2011) CrossRef, Google Scholar

[26] Radu, F.A., Suciu, N., Hoffmann, J., Vogel, A., Kolditz, O., Park, C.-H., Attinger, S.: Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study. Adv. Water Resour. 34, 47–61 (2011) CrossRef, Google Scholar

[27] Radu, F.A., Nordbotten, J.M., Pop, I.S., Kumar, K.: A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media. J. Comput. Appl. Math. 289, 134–141 (2015) MathSciNet, CrossRef, Google Scholar

[28] Scheidegger, A.E.: General theory of dispersion in porous media. J. Geophys. Res. 66(10), 3273–3278 (1961) CrossRef, Google Scholar

[]29 Srzic, V., Cvetkovic, V., Andricevic, R., Gotovac, H.: Impact of aquifer heterogeneity structure and local-scale dispersion on solute concentration uncertainty. Water Resour. Res. 49(6), 3712–3728 (2013) CrossRef, Google Scholar

[30] Suciu, N.: Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields. Phys. Rev. E 81, 056301 (2010) CrossRef, Google Scholar

[31] Suciu, N.: Diffusion in random velocity fields with applications to contaminant transport in groundwater. Adv. Water Resour. 69, 114–133 (2014) CrossRef, Google Scholar

[32] Suciu, N., Radu, F.A., Prechtel, A., Brunner, F., Knabner, P.: A coupled finite element–global random walk approach to advection-dominated transport in porous media with random hydraulic conductivity. J. Comput. Appl. Math. 246, 27–37 (2013) MathSciNet, CrossRef, Google Scholar

[33] Suciu, N., Schüler, L., Attinger, S., Knabner, P.: Towards a filtered density function approach for reactive transport in groundwater. Adv. Water Resour. 90, 83–98 (2016) CrossRef, Google Scholar

[34] Vamoş, C., Suciu, N., Vereecken, H.: Generalized random walk algorithm for the numerical modeling of complex diffusion processes. J. Comput. Phys. 186(2), 527–244 (2003) MathSciNet, CrossRef, Google Scholar

[35] Vamoş, C., Crăciun, M., Suciu, N.: Automatic algorithm to decompose discrete paths of fractional Brownian motion into self-similar intrinsic components. Eur. Phys. J. B 88, 250 (2015) CrossRef, Google Scholar

Chapter

In this chapter, basic concepts used in stochastic modeling of transport processes are revisited. Random fields and stochastic processes will be introduced as particular random functions. The hierarchy of finite dimensional distributions will be introduced and particularized for Markov and diffusion processes. Itô and Fokker–Planck descriptions of the diffusion process will be used to introduce the stochastic-Lagrangian framework.

[1] Avellaneda, M., Torquato, S., Kim, I.C.: Diffusion and geometric effects in passive advection by random arrays of vortices. Phys. Fluids A 3(8), 1880–1891 (1991) CrossRef, Google Scholar

[2] Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press, Oxford (1959) zbMATH, Google Scholar

[3] Cornfeld, I., Fomin, S., Sinai, Ya.G.: Ergodic Theory. Springer, New York (1982) Google Scholar

[4] Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1975) zbMATH, Google Scholar

[5] Dagan, G.: Flow and Transport in Porous Formation. Springer, Berlin (1989) CrossRef, Google Scholar

[6]. Doob, J.L.: Stochastic Processes. Wiley, New York (1990) zbMATH, Google Scholar

[7] Evans, D.J., Morriss G.P.: Statistical Mechanics of Nonequilibrium Liquids. Academic, London (1990) zbMATH, Google Scholar

[8] Gardiner, C.W.: Stochastic Methods. Springer, Berlin (2009) zbMATHG, oogle Scholar

[9] Georgescu, A.: Asymptotic Treatment of Differential Equations. Applied Mathematics and Mathematical Computation, vol. 9. Chapman & Hall, London (1995) Google Scholar

[10] Iosifescu, M., Tăutu, P.: Stochastic Processes and Applications in Biology and Medicine. Editura Academiei Bucureşti and Springer, Bucharest (1973) CrossRef, Google Scholar

[11] Kloeden, P.E., Platen, E.: Relations between multiple Ito and Stratonovich integrals. Stoch. Anal. Appl. 9(3), 86–96 (1991) MathSciNet, CrossRef, Google Scholar

[12] Kloeden, P.E., Platen, E.: Numerical Solutions of Stochastic Differential Equations. Springer, Berlin (1999) zbMATH, Google Scholar

[13] Kolmogorov, A., Fomine, S.: Élémentes de la théorie des fonctions et de l’analyse fonctionelle. Mir, Moscou (1975) Google Scholar

[14] Lasota, A., Mackey, M.C.: Probabilistic Properties of Deterministic Systems. Springer, New York (1985) CrossRef, Google Scholar

[15] Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise, Stochastic Aspects of Dynamics. Springer, New York (1994) CrossRef, Google Scholar

[16] Lundgren, T.S., Pointin, Y.B.: Turbulent self-diffusion. Phys. Fluids 19(3), 355–358 (1976) CrossRef, Google Scholar

[17] Mackey, M.C.: The dynamic origin of increasing entropy. Rev. Mod. Phys. 61(4), 981–1016 (1989) CrossRef, Google Scholar

[18] Malliavin, P.: Integration and Probability. Springer, New York (1995) CrossRef, Google Scholar

[19] Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence. MIT Press, Cambridge (1975) Google Scholar

[20] Paley, R.E.A.C., Wiener, N., Zygmund, A.: Notes on random functions. Math. Z. 37(1), 647–668 (1933) MathSciNet, CrossRef, Google Scholar

[21] Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, Singapore (2002) Google Scholar

[22] Suciu, N.: Mathematical background for diffusion processes in natural porous media. Forschungszentrum Jülich/ICG-4. Internal Report No. 501800 (2000) Google Scholar

[23] Suciu, N.: On the connection between the microscopic and macroscopic modeling of the thermodynamic processes (in Romanian). Ed. Univ. Piteşti (2001) Google Scholar

[24] Suciu, N., Georgescu, A.: On the Misra-Prigogine-Courbage theory of irreversibility. Mathematica 44(67), 215–231 (2002) MathSciNet, zbMATH, Google Scholar

[25] Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 2(20), 196–212 (1921) MathSciNet, zbMATH, Google Scholar

[26] van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981) zbMATH, Google Scholar

[27] Wentzell, A.D.: A Course in the Theory of Stochastic Processes. McGraw-Hill, New York (1981) zbMATH, Google Scholar

[28] Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions, Volume I: Basic Results. Springer, New York (1987) CrossRef, Google Scholar

Chapter

Ch. 3 Stochastic Simulation of Diffusion Processes

https://doi.org/10.1007/978-3-030-15081-5_3

Random sequences, their numerical simulation, and convergence properties are shortly introduced as basic tools in solving stochastic differential equations. Strong and weak solutions of Itô equations will be defined and illustrated for the Euler scheme. The global random walk (GRW) algorithm will be introduced as a superposition of arbitrarily large numbers of Euler schemes on regular lattices. Unbiased and biased GRW algorithms will be described and their relation to Fokker–Planck and Itô equations will be discussed.

[1] Benson, D.A., Meerschaert, M.M.: Simulation of chemical reaction via particle tracking: diffusion-limited versus thermodynamic rate-limited regimes. Water Resour. Res. 44(12), W12201 (2008) CrossRef, Google Scholar

[2] Brunner, F., Radu, F.A., Bause, M., Knabner, P.: Optimal order convergence of a modified BDM1 mixed finite element scheme for reactive transport in porous media. Adv. Water Resour. 35, 163–171 (2012) CrossRef, Google Scholar

[3] Cortis, A., Berkowitz, B.: Computing “anomalous” contaminant transport in porous media: the CTRW MATLAB toolbox. Ground Water 43(6), 947–950 (2005) CrossRef, Google Scholar

[4] Cortis, A., Knudby, C.: A continuous time random walk approach to transient flow in heterogeneous porous media. Water Resour. Res. 42(10), W10201 (2006) CrossRef, Google Scholar

[5] Dagan, G.: Theory of solute transport by groundwater. Water Resour. Res. 19, 183–215 (1987) zbMATH, Google Scholar

[6] Doob, J.L.: Stochastic Processes. Wiley, New York (1990) zbMATH, Google Scholar

[7] Eberhard, J.P., Suciu, N., Vamos, C.: On the self-averaging of dispersion for transport in quasi-periodic random media. J. Phys. A: Math. Gen. 40(4), 597–610 (2007) MathSciNet, CrossRef, Google Scholar

[8] Edery, Y., Scher, H., Berkowitz, B.: Particle tracking model of bimolecular reactive transport in porous media. Water Resour. Res. 46(7), W07524 (2010) CrossRef, Google Scholar

[9] El Haddad, R., Lécot, C., Venkiteswaran, G.: Diffusion in a nonhomogeneous medium: quasi-random walk on a lattice. Monte Carlo Methods Appl. 16, 211–230 (2010) MathSciNet, CrossRef, Google Scholar

[10] Gardiner, C.W.: Stochastic Methods. Springer, Berlin (2009) zbMATH, Google Scholar

[11] Izsák, F., Lagzi, I.: Models of Liesegang pattern formation. In: Lagzi, I. (ed.) Precipitation Patterns in Reaction-Diffusion Systems, pp. 207–217. Research Signpost, Kerala (2010) Google Scholar

[12] Karapiperis, T.: Cellular automaton model of precipitation/dissolution coupled with solute transport. J. Stat. Phys. 81(1–2), 165–180 (1995) CrossRef, Google Scholar

[13] Karapiperis, T., Blankleider, B.: Cellular automaton model of reaction-transport processes. Physica D 78, 30–64 (1994) CrossRef, Google Scholar

[14] Kloeden, P.E., Platen, E.: Numerical Solutions of Stochastic Differential Equations. Springer, Berlin (1999) zbMATH, Google Scholar

[15] Kozma, G., Tóth, B.: Central limit theorem for random walks in divergence-free random drift field: H−1H−1 suffices. Ann. Probab. 45(6b), 4307–4347 (2017) MathSciNet, CrossRef, Google Scholar

[16] Lécot, C., Coulibaly, I.: A particle method for some parabolic equations, J. Comput. Appl. Math. 90, 25–44 (1998) MathSciNet, CrossRef, Google Scholar

[17] Nagy, N., Izsák, F.: Stability of reaction fronts in random walk simulations. Appl. Math. Res. eXpress 2012(1), 114–126 (2011) MathSciNet, CrossRef, Google Scholar

[18] Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, Singapore (2002) Google Scholar

[19] Radu, F.A., Suciu, N., Hoffmann, J., Vogel, A., Kolditz, O., Park, C.-H., Attinger, S.: Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study. Adv. Water Resour. 34, 47–61 (2011) CrossRef, Google Scholar

[20] Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. Wadsworth & Brooks, Pacific Grove (2004) Google Scholar

[21] Suciu, N.: Global random walk algorithm for transport in media with discontinuous dispersion coefficients. Geophys. Res. Abstr. 15, EGU2013-12751-1 (2013) Google Scholar

[22] Suciu, N.: Diffusion in random velocity fields with applications to contaminant transport in groundwater. Adv. Water. Resour. 69, 114–133 (2014) CrossRef, Google Scholar

[23] Suciu, N., Vamoş, C.: Evaluation of overshooting errors in particle methods for diffusion by biased global random walk. Rev. Anal. Numer. Theor. Approx. 35, 119–126 (2006) MathSciNet, zbMATH, Google Scholar

[24] Suciu, N., Vamoş, C., Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical modeling of large scale transport of contaminant solutes using the global random walk algorithm. Monte Carlo Methods Appl. 10(2), 153–177 (2004) MathSciNet, CrossRef, Google Scholar

[25] Suciu, N., Vamoş, C., Knabner, P., Ruede, U.: Biased global random walk, a cellular automaton for diffusion. In: Hülsemann, F., Kowarschik, M., Rude, U. (eds.) Simulations technique, 18th Symposium in Erlangen, pp. 562–567. SCS Publishing House e. V., Erlangen (2005) Google Scholar

[26] Suciu, N., Vamoş, C., Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour. Res. 42, W04409 (2006) zbMATH, Google Scholar

[27] Suciu N., Vamoş, C., Eberhard, J.: Evaluation of the first-order approximations for transport in heterogeneous media. Water Resour. Res. 42, W11504 (2006) Google Scholar

[28] Suciu N., Vamos, C., Vereecken, H., Sabelfeld, K., Knabner, P.: Memory effects induced by dependence on initial conditions and ergodicity of transport in heterogeneous media. Water Resour. Res. 44, W08501 (2008) CrossRef, Google Scholar

[29] Suciu, N., Vamoş, C., Turcu, I., Pop, C.V.L., Ciortea, L.I.: Global random walk modeling of transport in complex systems. Comput. Vis. Sci. 12, 77–85 (2009) MathSciNet, CrossRef, Google Scholar

[30] Suciu, N., Radu, F.A., Prechtel, A., Knabner, P.: A coupled finite element-global random walk approach to advection-dominated transport in porous media with random hydraulic conductivity. J. Comput. Appl. Math. 246, 27–37 (2013) MathSciNet, CrossRef, Google Scholar

[31] Vamoş, C., Suciu, N., Vereecken, H.: Generalized random walk algorithm for the numerical modeling of complex diffusion processes. J. Comput. Phys. 186(2), 527–544 (2003) MathSciNet, CrossRef, Google Scholar

[32] Vamoş, C., Şoltuz, Ş., Crăciun, M.: (2007). arXiv:079.2963vl [physics.data-an] Google Scholar

Chapter

Ch. 4 Difusion in Random Velocity Fields

doi: https://doi.org.10.1007/978-3-030-15081-5_4

Classical stochastic theories for transport in subsurface are revisited and transport models are formulated as stochastic processes. The process of diffusion with space variable drift coefficients is proposed as a general frame for stochastic modeling in subsurface hydrology. Stochastic homogeneity properties, first order approximations, and the occurrence of anomalous diffusion, ergodic, and self-averaging properties are presented

[1] Ait-Sahalia, Y.: Telling from discrete data whether the underlying continuous-time model is a diffusion. J. Financ. 57, 2075–2112 (2002) Google Scholar

[2] Arnold, V.I.: Ordinary Differential Equations. Springer, Berlin (1992) Google Scholar

[3]Attinger, S., Dentz, M., Kinzelbach, H., Kinzelbach, W.: Temporal behavior of a solute cloud in a chemically heterogeneous porous medium. J. Fluid Mech. 386, 77–104 (1999) zbMATH, Google Scholar

[4] Avellaneda, M., Majda, M.: Stieltjes integral representation and effective diffusivity bounds for turbulent diffusion. Phys. Rev. Lett. 62(7), 753–755 (1989) Google Scholar

[5] Avellaneda, M., Majda, M.: Superdiffusion in nearly stratified flows. J. Stat. Phys. 69(3/4), 689–729 (1992) MathSciNet, zbMATH, Google Scholar

[6] Avellaneda, M., Elliot, F. Jr., Apelian, C.: Trapping, percolation and anomalous diffusion of particles in a two-dimensional random field. J. Stat. Phys. 72(5/6), 1227–1304 (1993) MathSciNet, zbMATH, Google Scholar

[7] Balescu, R.: Transport Processes in Plasmas. North-Holland, Amsterdam (1988) zbMATH, Google Scholar

[8] Balescu, R., Wang, H-D., Misguich, J.H.: Langevin equation versus kinetic equation: subdiffusive behavior of charged particles in a stochastic magnetic field. Phys. Plasmas 1(12), 3826–3842 (1994) Google Scholar

[9] Bear, J.: On the tensor form of dispersion in porous media. J. Geophys. Res. 66(4), 1185–1197 (1961) MathSciNet, Google Scholar

[10] Bhattacharya, R.N., Gupta, V.K.: A theoretical explanation of solute dispersion in saturated porous media at the Darcy scale. Water Resour. Res. 19, 934–944 (1983) Google Scholar

[11] Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990) MathSciNet, Google Scholar

[12] Bouchaud, J.-P., Georges, A., Koplik, J., Provata, A., Redner, S.: Superdiffusion in random velocity fields. Phys. Rev. Lett. 64, 2503–2506 (1990) Google Scholar

[13] Chilès, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. Wiley, New York (1999) zbMATH, Google Scholar

[14] Clincy, M., Kinzelbach, H.: Stratified disordered media: exact solutions for transport parameters and their self-averaging properties. J. Phys. A. Math. Gen. 34, 7142–7152 (2001) zbMATH, Google Scholar

[15] Colucci, P.J., Jaberi, F.A., Givi, P.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10(2), 499–515 (1998) MathSciNet, zbMATH, Google Scholar

[16] Dagan, G.: Solute transport in heterogeneous porous formations. J. Fluid Mech. 145, 151–177 (1984)zbMATHGoogle Scholar

[17] Dagan, G.: Theory of solute transport by groundwater. Annu. Rev. Fluid Mech. 19, 183–215 (1987) zbMATH, Google Scholar

[18] Dagan, G.: Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers. Water Resour. Res. 24, 1491–1500 (1988) Google Scholar

[19] Dagan, G.: Flow and Transport in Porous Formations. Springer, Berlin (1989) Google Scholar

[20] Dagan, G.: Transport in heterogeneous porous formations: spatial moments, ergodicity, and effective dispersion. Water Resour. Res. 26(6), 1281–1290 (1990) Google Scholar

[21] Deng, W., Barkai, E.: Ergodic properties of fractional Brownian-Langevin motion. Phys. Rev. E 79, 011112 (2009) MathSciNet, Google Scholar

[22] Deng, F.W., Cushman, J.H.: On higher-order corrections to the flow velocity covariance tensor. Water Resour. Res. 31(7), 1659–1672 (1995) Google Scholar

[23] Dentz, M., de Barros, F.P.J.: Dispersion variance for transport in heterogeneous porous media. Water Resour. Res. 49, 3443–3461 (2013) Google Scholar

[24] Dentz, M., Kinzelbach, H., Attinger, S., Kinzelbach, W.: Temporal behavior of a solute cloud in a heterogeneous porous medium 1. Point-like injection. Water Resour. Res. 36, 3591–3604 (2000) zbMATH, Google Scholar

[25] Dentz, M., Kinzelbach, H., Attinger, S., Kinzelbach, W.: Temporal behavior of a solute cloud in a heterogeneous porous medium 2. Spatially extended injection. Water Resour. Res. 36, 3605–3614 (2000) zbMATH, Google Scholar

[26] Di Federico, V., Neuman, S.P.: Scaling of random fields by means of truncated power variograms and associated spectra. Water Resour. Res. 33, 1075–1085 (1997) Google Scholar

[27] Doob, J.L.: Stochastic Processes. Wiley, New York (1990) zbMATH, Google Scholar

[28] Dybiec, B., Gudowska-Nowak, E.: Discriminating between normal and anomalous random walks. Phys. Rev. E 80, 061122 (2009) Google Scholar

[29] Eberhard, J.: Approximations for transport parameters and self-averaging properties for point-like injections in heterogeneous media. J. Phys. A. Math. Gen. 37, 2549–2571 (2004) MathSciNet, zbMATH, Google Scholar

[30] Eberhard, J., Suciu, N., Vamos, C.: On the self-averaging of dispersion for transport in quasi-periodic random media. J. Phys. A: Math. Theor. 40, 597–610 (2007) MathSciNet, zbMATH, Google Scholar

[31] Fannjiang, A., Komorowski, T.: Diffusive and nondiffusive limits of transport in nonmixing flows. SIAM J. Appl. Math. 62, 909–923 (2002) MathSciNet, zbMATH, Google Scholar

[32] Fiori, A.: Finite Peclet extensions of Dagan’s solutions to transport in anisotropic heterogeneous formations. Water Resour. Res. 32, 193–198 (1996) Google Scholar

[33] Fiori, A.: On the influence of local dispersion in solute transport through formations with evolving scales of heterogeneity. Water Resour. Res. 37(2), 235–242 (2001) Google Scholar

[34] Fiori, A., Dagan, G.: Concentration fluctuations in aquifer transport: a rigorous first-order solution and applications. J. Contam. Hydrol. 45, 139–163 (2000) Google Scholar

[35] Fried, J.J.: Groundwater Pollution. Elsevier, New York (1975) Google Scholar

[36] Gardiner, C.W.: Stochastic Methods. Springer, Berlin (2009) zbMATH, Google Scholar

[37] Gelhar, L.W.: Stochastic subsurface hydrology from theory to applications. Water Resour. Res. 22(9S), 135S–145S (1986) Google Scholar

[38] Gelhar, L.W., Axness, C.: Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19(1), 161–180 (1983) Google Scholar

[39] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Elsevier, Amsterdam (2007) zbMATH, Google Scholar

[40] Honkonen, G.: Stochastic processes with stable distributions in random environments. Phys. Rev. E 53(1), 327–331 (1996 )MathSciNet, Google Scholar

[41] Isichenko, M.B.: Percolation, Statistical Topography, and Transport in Random Media. Rev. Mod. Phys. 64, 961 (1992) MathSciNet, Google Scholar

[42] Jaekel, U., Vereecken, H.: Renormalization group analysis of macrodispersion in a directed random flow. Water Resour. Res. 33, 2287–2299 (1997) Google Scholar

[43] Jeon, J.-H., Metzler, R.: Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Phys. Rev. E 81, 021103 (2010) MathSciNet, Google Scholar

[44] Jury, W.A., Sposito, G.: Field calibration and validation of solute transport models for the unsaturated zone. Soil Sci. Soc. Am. J. 49, 1331–1241 (1985) Google Scholar

[45] Kesten, H., Papanicolaou, G.C.: A limit theorem for turbulent diffusion. Commun. Math. Phys. 65, 97–128 (1979) MathSciNet, zbMATH, Google Scholar

[46] Kitanidis, P.K.: Prediction by the method of moments of transport in a heterogeneous formation. J. Hydrol. 102, 453–473 (1988) Google Scholar

[47] Kloeden, P.E., Platen, E.: Numerical Solutions of Stochastic Differential Equations. Springer, Berlin (1999) zbMATH, Google Scholar

[48] Kolmogorov, A.N.: Grundbegriffe der Warscheinlichkeitsrechnung. Springer, Berlin (1933) Google Scholar

[49] Le Doussal, P., Machta, J.: Annealed versus quenched diffusion coefficient in random media. Phys. Rev. B 40(12), 9427–9430 (1989) Google Scholar

[50] Lumley, J.L.: The mathematical nature of the problem of relating Lagrangian and Eulerian statistical functions in turbulence. In: Mécanique de la Turbulence. Coll. Intern. du CNRS à Marseille (Ed. CNRS, Paris, 1962), pp. 17–26 Google Scholar

[51] Majda, A.J., Kramer, P.R.: Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena. Phys. Rep. 14, 237–574 (1999) MathSciNet, Google Scholar

[52] Majumdar, S.N.: Persistence of a particle in the Matheron–de Marsily velocity field. Phys. Rev. E 68, 050101(R) (2003) Google Scholar

[53] Matheron, G., de Marsily, G.: Is transport in porous media always diffusive? Water Resour. Res. 16, 901–917 (1980) Google Scholar

[54] Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence. MIT Press, Cambridge (1975) Google Scholar

[55] O’Malley, D., Cushman, J.H.: A renormalization group classification of nonstationary and/or infinite second moment diffusive processes. J. Stat. Phys. 146(5), 989–1000 (2012) MathSciNet, zbMATH, Google Scholar

[56] O’Malley, D., Cushman, J.H.: Two scale renormalization group classification of diffusive processes. Phys. Rev. E 86(1), 011126 (2012) Google Scholar

[57] Papoulis, A., Pillai, S. U.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, Singapore (2009) Google Scholar

[58] Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11(2), 119–192 (1885) Google Scholar

[59] Port, S.C., Stone, C.J.: Random measures and their application to motion in an incompressible fluid. J. Appl. Prob. 13, 498–506 (1976) MathSciNet, zbMATH, Google Scholar

[60] Reuss, J.-D., Misguish, J.H.: Low frequency percolation scaling for particle diffusion in electrostatic turbulence. Phys. Rev. E 54(2), 1857–1869 (1996) Google Scholar

[61] Ross, K., Attinger, S.: Temporal behaviour of a solute cloud in a fractal heterogeneous porous medium at different scales. Geophys. Res. Abstr. 12, EGU2010-10921-2 (2010) Google Scholar

[62] Russo, D.: On the velocity covariance and transport modeling in heterogeneous anisotropic porous formations. Water Resour. Res. 31(1), 129–137 (1995) Google Scholar

[63] Russo, D.: A note on ergodic transport of a passive solute in partially saturated porous formations. Water Resour. Res. 32(12), 3623–3628 (1996) Google Scholar

[64] Saffman, P.G.: Application of the Wiener-Hermite expansion to the diffusion of a passive scalar in a homogeneous turbulent flow. Phys. Fluids 12(9), 1786–1798 (1969), MathSciNet, zbMATH, Google Scholar

[65] Scheidegger, A.E.: Statistical hydrodynamics in porous media. J. Appl. Phys. 25(8), 994–1001 (1954) MathSciNet, zbMATH, Google Scholar

[66] Scheidegger, A.E.: General theory of dispersion in porous media. J. Geophys. Res. 66(10), 3273–3278 (1961) Google Scholar

[67] Schwarze, H., Jaekel, U., Vereecken, H.: Estimation of macrodispersivity by different approximation methods for flow and transport in randomly heterogeneous media. Transp. Porous Media 43, 265–287 (2001) Google Scholar

[68] Shapiro, A.M., Cvetkovic, V.D.: Stochastic analysis of solute travel time in heterogeneous Porous media. Water Resour. Res. 24(10), 1711–1718 (1988) Google Scholar

[69] Suciu, N.: Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields. Phys. Rev. E 81, 056301 (2010) Google Scholar

[70] Suciu, N.: Diffusion in random velocity fields with applications to contaminant transport in groundwater. Adv. Water Resour. 69, 114–133 (2014) Google Scholar

[71] Suciu, N., Vamoş, C.: Comment on “Nonstationary flow and nonergodic transport in random porous media” by G. Darvini and P. Salandin. Water Resour. Res. 43, W12601 (2007) Google Scholar

[72] Suciu, N., Vamoş, C.: Ergodic estimations of upscaled coefficients for diffusion in random velocity fields. In: L’Ecuyér, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 617–626. Springer, Berlin (2009) Google Scholar

[73] Suciu, N., Vamoş, C., Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour. Res. 42, W04409 (2006) zbMATH, Google Scholar

[74] Suciu, N., Vamoş, C., Eberhard, J.: Evaluation of the first-order approximations for transport in heterogeneous media. Water Resour. Res. 42, W11504 (2006) Google Scholar

[75] Suciu, N., Vamos, C., Vereecken, H., Sabelfeld, K., Knabner, P.: Memory effects induced by dependence on initial conditions and ergodicity of transport in heterogeneous media. Water Resour. Res. 44, W08501 (2008) zbMATH, Google Scholar

[76] Suciu, N., Vamos, C., Vereecken, H., Sabelfeld, K., Knabner, P.: Ito equation model for dispersion of solutes in heterogeneous media. Rev. Anal. Num. Theor. Approx. 37, 221–238 (2008) MathSciNet, zbMATH, Google Scholar

[77] Suciu, N., Vamos, C., Radu, F.A., Vereecken, H., Knabner, P.: Persistent memory of diffusing particles. Phys. Rev. E 80, 061134 (2009) Google Scholar

[78] Suciu, N., Attinger, S., Radu, F.A., Vamoş, C., Vanderborght, J., Vereecken, H., Knabner, P.: Solute transport in aquifers with evolving scale heterogeneity. Print No. 346, Mathematics Department—Friedrich-Alexander University Erlangen-Nuremberg (2011) Google Scholar

[79] Suciu, N., Attinger, S., Radu, F.A., Vamoş, C., Vanderborght, J., Vereecken, H. Knabner, P.: Solute transport in aquifers with evolving scale heterogeneity. Analele Universitatii “Ovidius” Constanta-Seria Matematica 23(3), 167–186 (2015) MathSciNet, zbMATH, Google Scholar

[80] Suciu, N., Schüler, L., Attinger, S., Knabner, P.: Towards a filtered density function approach for reactive transport in groundwater. Adv. Water Resour. 90, 83–98 (2016) Google Scholar

[81] Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 2(20), 196–212 (1921) MathSciNet, zbMATH, Google Scholar

[82] Trefry, M.G., Ruan, F.P., McLaughlin, D.: Numerical simulations of preasymptotic transport in heterogeneous porous media: departures from the Gaussian limit. Water Resour. Res. 39(3), 1063 (2003) Google Scholar

[83] Vanderborght, J.: Concentration variance and spatial covariance in second order stationary heterogeneous conductivity fields. Water Resour. Res. 37(7), 1893–1912 (2001) Google Scholar

[84] cYaglom, A.M.: Correlation Theory of Stationary and Related Random Functions, Volume I: Basic Results. Springer, New York (1987) zbMATH, Google Scholar

[85] Zirbel, C.L.: Lagrangian observations of homogeneous random environments. Adv. Appl. Prob. 33, 810–835 (2001) MathSciNet, zbMATH, Google Scholar

Chapter

Ch. 5 Monte Carlo GRW Simulations of Passive Transport in Groundwater

https://doi.org/10.1007/978-3-030-15081-5_5

Monte Carlo GRW simulations of passive transport in groundwater are used to investigate ergodic properties, dependence on initial conditions, and the occurrence of anomalous diffusion. It is shown that memory effects produced by dependence on initial conditions are responsible for the lack of ergodicity of the transport, in the sense of approach to the theoretical upscaled process. Evolving scale heterogeneity of groundwater systems, consisting of a superposition of spatial scales, enhances the memory effects and may explain the occurrence of anomalous diffusion behavior.

[1] Bellin, A., Pannone, M., Fiori, A., Rinaldo, A.: On transport in porous formations characterized by heterogeneity of evolving scales. Water Resour. Res. 32, 3485–3496 (1996) CrossRef, Google Scholar

[2] Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990) MathSciNet, CrossRef, Google Scholar

[3] Cintoli, S., Neuman, S.P., Di Federico, V.: Generating and scaling fractional Brownian motion on finite domains. Geophys. Res. Lett. 32, L08404 (2005) CrossRef, Google Scholar

[4] Dagan, G.: Flow and Transport in Porous Formations. Springer, Berlin (1989) CrossRef, Google Scholar

[5] Dagan, G.: Transport in heterogeneous porous formations: spatial moments, ergodicity, and effective dispersion. Water Resour. Res. 26(6), 1281–1290 (1990) CrossRef, Google Scholar

[6] Dagan, G.: The significance of heterogeneity of evolving scales and of anomalous diffusion to transport in porous formations. Water Resour. Res. 30, 3327–3336 (1994) CrossRef, Google Scholar

[7] Di Federico, V., Neuman, S.P.: Scaling of random fields by means of truncated power variograms and associated spectra. Water Resour. Res. 33, 1075–1085 (1997) CrossRef, Google Scholar

[8] Eberhard, J., Suciu, N., Vamos, C.: On the self-averaging of dispersion for transport in quasi-periodic random media. J. Phys. A: Math. Theor. 40, 597–610 (2007) MathSciNet, CrossRef, Google Scholar

[9] Fiori, A.: On the influence of local dispersion in solute transport through formations with evolving scales of heterogeneity. Water Resour. Res. 37(2), 235–242 (2001) CrossRef, Google Scholar

[10] Gelhar, L.W.: Stochastic subsurface hydrology from theory to applications. Water Resour. Res. 22(9S), 135S–145S (1986) CrossRef, Google Scholar

[11] Gelhar, L.W., Axness, C.: Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19(1), 161–180 (1983) CrossRef, Google Scholar

[12] Jeon, J.-H., Metzler, R.: Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Phys. Rev. E 81, 021103 (2010) MathSciNet, CrossRef, Google Scholar

[13] Kraichnan, R.H.: Diffusion by a random velocity field. Phys. Fluids 13(1), 22–31 (1970) CrossRef, Google Scholar

[14] Liu, H.H., Molz, F.J.: Block scale dispersivity for heterogeneous porous media characterized by stochastic fractals. Geophys. Res. Lett. 24(17), 2239–2242 (1997) CrossRef, Google Scholar

[15] McLaughlin, D., Ruan, F.: Macrodispersivity and large-scale hydrogeologic variability. Transp. Porous Media 42, 133–154 (2001) CrossRef, Google Scholar

[16] Sposito, G., Jury, W.A., Gupta, V.K.: Fundamental problems in the stochastic convection-dispersion model of solute transport in aquifers and field soils. Water Resour. Res. 22(1), 77–88 (1986 )CrossRef, Google Scholar

[17] Suciu, N.: Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields. Phys. Rev. E 81, 056301 (2010) CrossRef, Google Scholar

[18] Suciu, N., Knabner, P.: Comment on ‘Spatial moments analysis of kinetically sorbing solutes in aquifer with bimodal permeability distribution’ by M. Massabo, A. Bellin, and A. J. Valocchi. Water Resour. Res. 45, W05601 (2009) Google Scholar

[19] Suciu, N., Vamoş, C.: Comment on “Nonstationary flow and nonergodic transport in random porous media” by G. Darvini and P. Salandin. Water Resour. Res. 43, W12601 (2007) Google Scholar

[20] Suciu, N., Vamoş, C.: Ergodic estimations of upscaled coefficients for diffusion in random velocity fields. In: L’Ecuyér, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 617–626. Springer, Berlin (2009) CrossRef, Google Scholar

[21] Suciu, N., Vamoş, C., Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour. Res. 42, W04409 (2006) zbMATH, Google Scholar

[22] Suciu, N., Vamoş, C., Eberhard, J.: Evaluation of the first-order approximations for transport in heterogeneous media. Water Resour. Res. 42, W11504 (2006) Google Scholar

[23] Suciu, N., Vamos, C., Vereecken, H., Sabelfeld, K., Knabner, P.: Ito equation model for dispersion of solutes in heterogeneous media. Rev. Anal. Numer. Theor. Approx. 37, 221–238 (2008) MathSciNet, zbMATH, Google Scholar

[24] Suciu, N., Vamoş, C., Vereecken, H., Sabelfeld, K., Knabner, P.: Memory effects induced by dependence on initial conditions and ergodicity of transport in heterogeneous media. Water Resour. Res. 44, W08501 (2008) CrossRef, Google Scholar

[25] Suciu, N., Vamos, C., Radu, F.A., Vereecken, H., Knabner, P.: Persistent memory of diffusing particles. Phys. Rev. E 80, 061134 (2009) CrossRef, Google Scholar

[26] Suciu, N., Attinger, S., Radu, F.A., Vamoş, C., Vanderborght, J., Vereecken, H., Knabner, P.: Solute transport in aquifers with evolving scale heterogeneity. Preprint No. 346, Mathematics Department—Friedrich-Alexander University Erlangen-Nuremberg (2011) Google Scholar

[27] Suciu, N., Attinger, S., Radu, F.A., Vamoş, C., Vanderborght, J., Vereecken, H. Knabner, P.: Solute transport in aquifers with evolving scale heterogeneity. An. Sti. U. Ovid. Co-Mat. 23(3), 167–186 (2015) MathSciNet, zbMATH, Google Scholar

[28] Vamoş, C., Suciu, N., Vereecken, H., Vanderborght, J., Nitzsche, O.: Path decomposition of discrete effective diffusion coefficient. Internal Report ICG-IV 00501, Research Center Jülich (2001) Google Scholar

[29] Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions, Volume I: Basic Results. Springer, New York (1987) CrossRef, Google Scholar

Chapter

Ch. 6 Probability and Filtered Density Function Approaches

https://doi.org/10.1007/978-3-030-15081-5_6

Beyond mean and variance, traditionally used in stochastic approaches, the full one-point one-time concentration probability density function (PDF) is needed to estimate exceedance probabilities in assessments of groundwater contamination. By solving PDF evolution equations one avoids the cumbersome MC simulations used to obtain statistical inferences. The PDF approach is mainly useful in case of reactive transport: because reaction terms are in a closed form, there is no need to upscale them, as in case of modeling the mean behavior of species concentrations. In a filtered density function (FDF) approach, the PDF is estimated by spatial filtering. PDF/FDF equations will be formulated as Fokker–Planck equations with solutions in the Cartesian product of physical and concentration spaces. Numerical solutions will be obtained by GRW algorithms.

[1] Alzraiee, A.H., Baú, D., Elhaddad, A.: Estimation of heterogeneous aquifer parameters using centralized and decentralized fusion of hydraulic tomography data from multiple pumping tests. Hydrol. Earth Syst. Sci. Discuss. 11(4), 4163–4208 (2014) Google Scholar

[2] Attinger, S.: Generalized coarse graining procedures for flow in porous media. Comput. Geosci. 7(4), 253–273 (2003) MathSciNet, zbMATH, Google Scholar

[3] Beckie, R., Aldama, A.A., Wood, E.F.: Modeling the large-scale dynamics of saturated groundwater flow using spatial filtering theory: 1. Theoretical development. Water Resour. Res. 32(5), 1269–1280 (1996) Google Scholar

[4] Beckie, R., Aldama, A.A., Wood, E.F.: Modeling the large-scale dynamics of saturated groundwater flow using spatial filtering theory: 2. Numerical Evaluation. Water Resour. Res. 32(5), 1281–1288 (1996) Google Scholar

[5] Bellin, A., Tonina, D.: Probability density function of non-reactive solute concentration in heterogeneous porous formations. J. Contam. Hydrol. 94, 109–125 (2007) Google Scholar

[6] Bilger, R.W.: The structure of diffusion flames. Combust. Sci. Technol. 13, 155–170 (1976) Google Scholar

[7] Cirpka, O.A., de Barros, F.P.J., Chiogna, G., Nowak, W.: Probability density function of steady state concentration in two-dimensional heterogeneous porous media. Water Resour. Res. 47, W11523 (2011) Google Scholar

[8] Colucci, P.J., Jaberi, F.A., Givi, P.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10(2), 499–515 (1998) MathSciNet, zbMATH, Google Scholar

[9] Crăciun, M., Vamoş, C., Suciu, N.: Analysis and generation of groundwater concentration time series. Adv. Water Resour. 111, 20–30 (2018) Google Scholar

[10] Dagan, G.: Upscaling of dispersion coefficients in transport through heterogeneous porous formations. In: Peters, A., et al. (eds.) Computational Methods in Water Resources X, pp. 431–439. Kluwer, Norwell (1994) Google Scholar

[11] de Barros, F.P.J., Rubin, Y.: Modelling of block-scale macrodispersion as a random function. J. Fluid Mech. 676, 514–545 (2011) MathSciNet, zbMATH, Google Scholar

[12] Dentz, M., Tartakovsky, D.M.: Probability density functions for passive scalars dispersed in random velocity fields. Geophys. Res. Lett. 37, L24406 (2010) Google Scholar

[13] Dodoulas, I.A., Navarro-Martinez, S.: Large eddy simulation of premixed turbulent flames using probability density approach. Flow Turbul. Combust. 90, 645–678 (2013) Google Scholar

[14] Efendiev, Y., Durlofsky, L.J.: A generalized convection-diffusion model for subgrid transport in porous media. Multiscale Model. Simul. 1(3), 504–526 (2003) MathSciNet, zbMATH, Google Scholar

[15] Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods. Theory and Applications. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4. Springer, New York (2009) Google Scholar

[16] Efendiev, Y.R., Durlofsky, L.J., Lee, S.H.: Modeling of subgrid effects in coarse scale simulations of transport in heterogeneous porous media. Water Resour. Res. 36, 2031–2041 (2000) Google Scholar

[17] Fox, R.O.: Computational Models for Turbulent Reacting Flows. Cambridge University Press, New York (2003) Google Scholar

[18] Haworth, D.C.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259 (2010) Google Scholar

[19] Haworth, D.C., Pope, S.B.: Transported probability density function methods for Reynolds-averaged and large-eddy simulations. In: Echekki, T., Mastorakos, E. (eds.) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol. 95, pp. 119–142. Springer, Dordrecht (2011) zbMATH, Google Scholar

[20] Heinz, S.: Unified turbulence models for LES and RANS, FDF and PDF simulations. Theor. Comput. Fluid Dyn. 21, 99–118 (2007) zbMATH, Google Scholar

[21] Herz, M.: Mathematical modeling and analysis of electrolyte solutions. PhD thesis, Nuremberg-Erlangen University (2014). http://www.mso.math.fau.de/fileadmin/am1/projects/PhD_Herz.pdf

[22] Heße, F., Radu, F.A., Thullner, M., Attinger, S.: Upscaling of the advection–diffusion–reaction equation with Monod reaction. Adv. Water Resour. 32, 1336–1351 (2009) Google Scholar

[23] Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for large-eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999) zbMATH, Google Scholar

[24] Jones, W.P., Marquis, A.J., Prasad, V.N.: LES of a turbulent premixed swirl burner using the Eulerian stochastic field method. Combust. Flame 159, 3079–3095 (2012) Google Scholar

[25] Klimenko, A.Y.: On simulating scalar transport by mixing between Lagrangian particles. Phys. Fluids 19, 031702 (2007) zbMATH, Google Scholar

[26] Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25, 595–687 (1999) Google Scholar

[27] Kloeden, P.E., Platen, E.: Numerical Solutions of Stochastic Differential Equations. Springer, Berlin (1999) zbMATH, Google Scholar

[28] Kraichnan, R.H.: Diffusion by a random velocity field. Phys. Fluids 13(1), 22–31 (1970) zbMATH, Google Scholar

[29] McDermott, R., Pope, S.B.: A particle formulation for treating differential diffusion in filtered density models. J. Comput. Phys. 226, 947–993 (2007) MathSciNet, zbMATH, Google Scholar

[30] Meyer, D.W., Jenny, P., Tchelepi, H.A.: A joint velocity-concentration PDF method for tracer flow in heterogeneous porous media. Water Resour. Res. 46, W12522 (2010) Google Scholar

[31] Minier, J.-P., Peirano, E.: The PDF approach to turbulent and polydispersed two-phase flows. Phys. Rep. 352,1–214 (2001) MathSciNet, zbMATH, Google Scholar

[32] Minier, J.-P., Chibbaro, S., Pope, S.B.: Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Phys. Fluids 26, 113303 (2014) Google Scholar

[33] Möbus, H., Gerlinger, P., Brüggemann, D.: Comparison of Eulerian and Lagrangian Monte Carlo PDF methods for turbulent diffusion flames. Combust. Flame 124, 519–534 (2001) Google Scholar

[34] Morales-Casique, E., Neuman, S.P., Gaudagnini, A.: Nonlocal and localized analyses of nonreactive solute transport in bounded randomly heterogeneous porous media: theoretical framework. Adv. Water Resour. 29, 1238–1255 (2006) Google Scholar

[35] Morales-Casique, E., Neuman, S.P., Gaudagnini, A.: Nonlocal and localized analyses of nonreactive solute transport in bounded randomly heterogeneous porous media: computational analysis. Adv. Water Resour. 29, 1399–1418 (2006) Google Scholar

[36] Mustata, R., Valiño, L., Jiménez, C., Jones, W.P., Bondi, S.: A probability density function Eulerian Monte Carlo field method for large eddy simulations: application to a turbulent piloted methane/air diffusion flame (Sandia D). Combust. Flame 145, 88–104 (2006) Google Scholar

[37] Pasetto, D., Guadagnini, A., Putti, M.: POD-based Monte Carlo approach for the solution of regional scale groundwater flow driven by randomly distributed recharge. Adv. Water Resour. 34(11), 1450–1463 (2011) Google Scholar

[38] Pope, S.B.: The probability approach to the modelling of turbulent reacting flows. Combust. Flame 27, 299–312 (1976) Google Scholar

[39] Pope, S.B.: A Monte Carlo method for the PDF equations of turbulent reactive flow. Combust. Sci. Technol. 25, 159–174 (1981) Google Scholar

[40] Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11(2), 119–192 (1985) Google Scholar

[41] Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000) zbMATH, Google Scholar

[42] Rubin, Y., Sun, A., Maxwell, R., Bellin, A.: The concept of block effective macrodispersivity and a unified approach for grid-scale and plume-scale-dependent transport. J. Fluid Mech. 395, 161–180 (1999) zbMATH, Google Scholar

[43] Sabel’nikov, V., Soulard, O.: Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker–Planck equations for probability density functions of turbulent reactive scalars. Phys. Rev. E 72(1), 016301 (2005) Google Scholar

[44] Sanchez-Vila. X., Guadagnini, A., Fernàndez-Garcia, D.: Conditional probability density functions of concentrations for mixing-controlled reactive transport in heterogeneous aquifers. Math. Geosci. 41, 323–351 (2009) zbMATH, Google Scholar

[45] Schüler, L., Suciu, N., Knabner, P., Attinger, S.: A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers. Adv. Water Resour. 96, 55–67 (2016) Google Scholar

[46] Schwede, R.L, Cirpka, O.A., Nowak, W., Neuweiler, I.: Impact of sampling volume on the probability density function of steady state concentration. Water Resour. Res. 44(12), W12433 (2008) Google Scholar

[47] Suciu, N.: Diffusion in random velocity fields with applications to contaminant transport in groundwater. Adv. Water Resour. 69, 114–133 (2014) Google Scholar

[48] Suciu, N., Vamoş, C.: Ergodic estimations of upscaled coefficients for diffusion in random velocity fields. In: L’Ecuyér, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 617–626. Springer, Berlin (2009) Google Scholar

[49] Suciu, N., Vamoş, C., Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour. Res. 42, W04409 (2006), zbMATH, Google Scholar

[50] Suciu, N., Radu, F.A., Attinger, S., Schüler, L., Knabner, P.: A Fokker–Planck approach for probability distributions of species concentrations transported in heterogeneous media. J. Comput. Appl. Math. 289, 241–252 (2015), MathSciNet, zbMATH, Google Scholar

[51] Suciu, N., Schüler, L., Attinger, S., Vamoş, C., Knabner, P.: Consistency issues in PDF methods. An. St. Univ. Ovidius Constanţa 23(3), 187–208 (2015) MathSciNet, zbMATH, Google Scholar

[52] Suciu, N., Schüler, L., Attinger, S., Knabner, P.: Towards a filtered density function approach for reactive transport in groundwater. Adv. Water Resour 90, :83–98 (2016) Google Scholar

[53] Valiño, L.: A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust. 60(2), 157–172 (1998) zbMATH, Google Scholar

[54] Vamoş, C., Crăciun, M.: Separation of components from a scale mixture of Gaussian white noises. Phys. Rev. E 81, 051125 (2010) Google Scholar

[55] Vamoş, C., Crăciun, M.: Automatic Trend Estimation. Springer, Dordrecht (2012) Google Scholar

[56] Vamoş, C., Suciu, N., Vereecken, H.: Generalized random walk algorithm for the numerical modeling of complex diffusion processes. J. Comput. Phys. 186(2), 527–44 (2003) MathSciNet, zbMATH, Google Scholar

[57] Vamoş, C., Crăciun, M., Suciu, N.: Automatic algorithm to decompose discrete paths of fractional Brownian motion into self-similar intrinsic components. Eur. Phys. J. B 88, 250 (2015) Google Scholar

[58] Venturi, D., Tartakovsky, D.M., Tartakovsky, A.M., Karniadakis, G.E.: Exact PDF equations and closure approximations for advective–reactive transport. J. Comput. Phys. 243, 323–43 (2013) MathSciNet, zbMATH, Google Scholar

[59] Waclawczyk, M., Pozorski, J., Minier, J.P.: New molecular transport model for FDF/LES of turbulence with passive scalar. Flow Turbul. Combust. 81, 235–260 (2008) zbMATH, Google Scholar

[60] Wang, H., Popov, P.P., Pope, S.B.: Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations. J. Comput. Phys. 229, 1852–1878 (2010) MathSciNet, zbMATH, Google Scholar

Chapter

Ch. 7 Model, Scale, and Measuremenet

https://doi.org/10.1007/978-3-030-15081-5_7

In this chapter, relations between model, scale, and measurement will be discussed. A particular attention will be paid to the perspective of using spatio-temporal upscaling to bring model output closer to the measured observable of the physical system, with emphasis on hydrological observations.

[1] Andričević, R.: Effects of local dispersion and sampling volume on the evolution of concentration fluctuations in aquifers. Water Resour. Res. 34(5), 1115–1129 (1998) CrossRef, Google Scholar

[2] Battiato, I.: Multiscale dynamics of reactive fronts in heterogeneous media with fluctuating forcings. In: SIAM Conference on Mathematical and Computational Issues in the Geosciences September 11–14, 2017, Erlangen. http://www.siam-gs17.de/program/invited-talks-prize-presentations

[3] Bayer-Raich, M., Jarsjö, J., Liedl, R., Ptak, T., Teutsch, G.: Average contaminant concentration and mass flow in aquifers from time-dependent pumping well data: analytical framework. Water Resour. Res. 40(8), W08303 (2004) CrossRef, Google Scholar

[4] Caroni, E., Fiorotto, V.: Analysis of concentration as sampled in. Transp. Porous Media 59(1), 19–45 (2005) CrossRef, Google Scholar

[5] Crăciun, M., Vamoş, C., Suciu, N.: Analysis and generation of groundwater concentration time series. Adv. Water Resour. 111, 20–30 (2018) CrossRef, Google Scholar

[6] Cushman, J.H.: Multiphase transport equations: I-general equation for macroscopic statistical, local space-time homogeneity. Transp. Theory Stat. Phys. 12(1), 35–71 (1983) MathSciNet, CrossRef, Google Scholar

[7] de Barros, F.P.J., Fiori, A.: First-order based cumulative distribution function for solute concentration in heterogeneous aquifers: theoretical analysis and implications for human health risk assessment. Water Resour. Res. 50(5), 4018–4037 (2014) CrossRef, Google Scholar

[8] Destouni, G., Graham, W.: The influence of observation method on local concentration statistics in the subsurface. Water Resour. Res. 33(4), 663–676 (1997) CrossRef, Google Scholar

[9] Gray, W.G., Miller, C.T.: A generalization of averaging theorems for porous medium analysis. Adv. Water Res. 62, 227–327 (2013) CrossRef, Google Scholar

[10] Gray, W.G., Dye, A.L., McClure, J.E., Pyrak-Nolte, L.J., Miller, C.T.: On the dynamics and kinematics of two-fluid-phase flow in porous media. Water Resour. Res. 51(7), 5365–5381 (2015) CrossRef, Google Scholar

[11] He, Y., Sykes, J.F.: On the spatial-temporal averaging method for modeling transport in porous media. Transp. Porous Media 22(1), 1–51 (1996) CrossRef, Google Scholar

[12] Mailloux, B.J., Fuller, M.E., Rose, G.F., Onstott, T.C., DeFlaun, M.F., Alvarez, E., Hemingway, C., Hallet, R.B., Phelps, T.J., Griffin, T.: A modular injection system, multilevel sampler, and manifold for tracer tests. Ground Water 41(6), 816–827 (2003) CrossRef, Google Scholar

[13] McClure, J.E., Dye, A.L., Miller, C.T., Gray, W.G.: On the consistency of scale among experiments, theory, and simulation. Hydrol. Earth Syst. Sci. 21(2), 1063 (2017)CrossRefGoogle Scholar

[14] Nolen, J., Papanicolaou, G., Pironneau, O.: A framework for adaptive multiscale methods for elliptic problems. Multiscale Model. Simul. 7, 171–196 (2008) MathSciNet, CrossRef, Google Scholar

[15] Nordbotten, J.M., Celia, M.A., Dahle, H.K., Hassanizadeh, S.M.: Interpretation of macroscale variables in Darcy’s law. Water Resour. Res. 43(8), W08430 (2007) CrossRef, Google Scholar

[16] Ptak, T., Schwarz, R., Holder, T., Teutsch, G.: Ein neues Verfahren zur Quantifizierung der Grundwasserimmission: I. Theoretische Grundlagen. Grundwasser 4(5), 176–183 (2000) CrossRef, Google Scholar

[17] Schüler, L., Suciu, N., Knabner, P., Attinger, S.: A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers. Adv. Water Resour. 96, 55–67 (2016) CrossRef, Google Scholar

[18] Schwede, R.L., Cirpka, O.A., Nowak, W., Neuweiler, I.: Impact of sampling volume on the probability density function of steady state concentration. Water Resour. Res. 44(12), W12433 (2008) CrossRef, Google Scholar

[19] Skøien, J.O., Blöschl, G., Western, A.W.: Characteristic space scales and timescales in hydrology. Water Resour. Res. 39(10), 1304 (2003) CrossRef, Google Scholar

[20] Srzic, V., Cvetkovic, V., Andricevic, R., Gotovac, H.: Impact of aquifer heterogeneity structure and local-scale dispersion on solute concentration uncertainty. Water Resour. Res. 49(6), 3712–3728 CrossRef, Google Scholar

[21] Suciu, N.: Mathematical background for diffusion processes in natural porous media. Forschungszentrum Jülich/ICG-4, Internal Report No. 501800 (2000) Google Scholar

[22] Suciu, N.: On the connection between the microscopic and macroscopic modeling of the thermodynamic processes (in Romanian). Ed. Univ. Piteşti, Piteşti (2001) Google Scholar

[23] Suciu, N.: Diffusion in random velocity fields with applications to contaminant transport in groundwater. Adv. Water. Resour. 69, 114–133 (2014) CrossRef, Google Scholar

[24] Suciu, N., Vamoş, C., Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour. Res. 42, W04409 (2006) zbMATH, Google Scholar

[25] Suciu, N., Radu, F.A., Attinger, S., Schüler, L., Knabner, P.: A Fokker–Planck approach for probability distributions of species concentrations transported in heterogeneous media. J. Comput. Appl. Math. 289, 241–252 (2015) MathSciNet, CrossRef, Google Scholar

[26] Suciu, N., Schüler, L., Attinger, S., Knabner, P.: Towards a filtered density function approach for reactive transport in groundwater. Adv. Water Resour. 90, 83–98 (2016) CrossRef, Google Scholar

[27] Teutsch, G., Ptak, T., Schwarz, R., Holder, T.: Ein neues Verfahren zur Quantifizierung der Grundwasserimmission: I. Theoretische Grundlagen. Grundwasser 4(5), 170–175 (2000) CrossRef, Google Scholar

[28] Tonina, D., Bellin, A.: Effects of pore-scale dispersion, degree of heterogeneity, sampling size, and source volume on the concentration moments of conservative solutes in heterogeneous formations. Adv. Water Resour. 31(2), 339–354 (2008) CrossRef, Google Scholar

[29] Vamoş, C.: Continuous fields associated to corpuscular systems (in Romanian). Risoprint, Cluj-Napoca (2007). English version https://ictp.acad.ro/vamos/cv-thesis/

[30] Vamoş, C., Georgescu, A., Suciu, N., Turcu, I.: Balance equations for physical systems with corpuscular structure. Phys. A: Stat. Mech. Appl. 227(1), 81–92 (1996) CrossRef, Google Scholar

[31] Vamoş, C., Suciu, N., Peculea, M.: Numerical modelling of the one-dimensional diffusion by random walkers. Rev. Anal. Numér. Théor. Approx. 26(1), 237–247 (1997) MathSciNet, zbMATH, Google Scholar

[32] Vamoş, C., Suciu, N., Georgescu, A.: Hydrodynamic equations for one-dimensional systems of inelastic particles. Phys. Rev. E 55(5), 6277–6280 (1997) MathSciNet, CrossRef, Google Scholar

[33] Vamoş, C., Suciu, N., Blaj, W.: Derivation of one-dimensional hydrodynamic model for stock price evolution. Phys. A: Stat. Mech. Appl. 287(3), 461–467 (2000) MathSciNet, CrossRef, Google Scholar

[34] Vamoş, C., Suciu, N., Vereecken, H.: Generalized random walk algorithm for the numerical modeling of complex diffusion processes. J. Comput. Phys. 186(2), 527–244 (2003) MathSciNet, CrossRef, Google Scholar

PDF

Book coordinates

N. Suciu, Diffusion in random fields. Applications to transport in groundwater, Birkhauser (Springer), 2019, xiv + 262 pp, ISBN 978-3-030-15080-8.
doi: 10.1007/978-3-030-15081-5

Book Title

Diffusion in random fields. Applications to transport in groundwater

Publisher

Birkhäuser Basel

Print ISBN

978-3-030-15081-5

Online ISBN

978-3-030-15081-5

Google scholar

Related Posts

On Lagrangian passive transport in porous media

AbstractAuthorsC. Vamoș -Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy N. Suciu -Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy H. Vereecken A.…