Geophysical implications of a decentered inner core

Abstract

In a first approximation, the Earth’s interior has an isotropic structure with a spherical symmetry. Over the last decades the geophysical observations have revealed, at different spatial scales, the existence of several perturbations from this basic structure. In this paper we discuss the hemispheric perturbations induced to this basic structure if the inner core is displaced from the center of mass of the Earth.

Using numerical simulations of the observed hemispheric asymmetry of the seismic waves traveling through the upper inner core, with faster arrival times and higher attenuation in the Eastern Hemisphere, we estimate that the present position of the inner core is shifted by tens of kilometers from the Earth’s center eastward in the equatorial plane. If the only forces acting on the inner core were the gravitational forces, then its equilibrium position would be at the Earth’s center and the estimated displacement would not be possible.

We conjecture that, due to interactions with the flow and the magnetic field inside the outer core, the inner core is in a permanent chaotic motion.

To support this hypothesis we analyze more than ten different geophysical phenomena consistent with an inner core motion dominated by time scales from hundreds to thousands of years.

Authors

C. Vamoș
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

N. Suciu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Keywords

Cite this paper as:

C. Vamoş, N. Suciu, Geophysical implications of a decentered inner corearXiv:1402.6494, 2014.

References

PDF

About this paper

Journal

Preprint (arxiv)

Publisher Name
DOI
Print ISSN
Online ISSN

MR

?

ZBL

?

[1] T. Alboussiere, R. Deguen, M. Melzani, Melting-induced stratification above the Earth’s inner core due to convective translation, Nature 466, 744-747 (2010).
[2] T. Alboussiere, R. Deguen, Asymmetric dynamics of the inner core and impact on the outer core, J. Geodyn. 61, 172-182 (2012).
[3] J. Aubert, H. Amit, G. Hulot, P. Olson, Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity, Nature 454, 758-761 (2008).
[4] J. Aubert, Flow throughout the Earths core inverted from geomagnetic observations and numerical dynamo models, Geophys. J. Int. 192, 537-556 (2013).
[5] J. Aubert, D. Dumberry, Steady and fluctuating inner core rotation in numerical geodynamo models, Geophys. J. Int. 184, 162-170 (2011).
[6] J. Aubert, C.C. Finlay, A. Fournier, Bottom-up control of geomagnetic secular variation by the Earths inner core, Nature 502, 219-223 (2013).
[7] G. Barta, Physical background of the geoidal figure, Nature 243, 156 (1973).
[8] G. Barta, Satellite geodesy and the internal structure of the earth, in Space research XIV, Eds. M.J. Rycroft and R.D. Reasenberg, Akademie-Verlag, Berlin (1974).
[9] G. Barta, Recent results of the study of physical background of the geoidal figure, Adv. Space Res. 1, 195 (1981).
[10] L. Boschi, A.M. Dziewonski, Whole earth tomography from delay times of P, PcP, and PKP phases: Lateral heterogeneities in the outer core or radial anisotropy in the mantle?, J. Geophys. Res. 105, 13675-13696 (2000).
[11] C. Bowin, Mass anomaly structure of the earth, Review of Geophysics 38, 355-387 (2000). [12] B.A. Buffett, Onset and orientation of convection in the inner core, Geophys. J. Int. 179, 711-719 (2009).
[13] B. A. Buffett, J. Bloxham, Deformation of Earth’s inner core by electromagnetic forces, Geophys. Res. Lett. 27, 4001-4004 (2000).
[14] B. A. Buffett, G. A. Glatzmaier, Gravitational braking of inner core rotation in geodynamo simulations, Geophys. Res. Lett. 27, 3125-3128 (2000).
[15] A. Cao, B. Romanowicz, Hemispherical transition of seismic attenuation at the top of the Earth’s inner core, Earth Planet. Sci. Lett. 228, 243-253 (2004).
[16] U.R. Christensen, J. Wiht, Numerical Dynamo Simulations, in Treatise on Geophysics, Vol. 8, Core Dynamics, edited by G. Schubert, P. Olson, 245-282, Elsevier, Amsterdam (2007).
[17] V. F. Cormier, Texture of the uppermost inner core from forward- and back-scattered seismic waves, Earth Planet. Sci. Lett. 258, 442-453 (2007).
[18] V. F. Cormier, J. Attanayake, K. He, Inner core freezing and melting: Constraints from seismic body waves, Phys. Earth Planet. Int. 188, 163-172 (2011).
[19] W. Dai, X. Song, Detection of motion and heterogeneity in Earth’s liquid outer core, Geophys. Res. Lett. 35, L16311 (2008).
[20] Z. Dai, W. Wanga, L. Wen, Irregular topography at the Earths inner core boundary, PNAS 109, 7654-7658 (2012).
[21] R. Deguen, Structure and dynamics of Earths inner core, Earth Planet Sci. Lett. 333-334, 211-225 (2012).
[22] R. Deguen, P. Cardin, Thermochemical convection in Earths inner core, Geophys. J. Int. 187, 1101-1118 (2011).
[23] V. Dehant, P.M. Mathews, Earth rotation variations, in Treatise on Geophysics, Vol. 3, Geodesy, edited by G. Schubert, T.A. Herring, 239-294, Elsevier, Amsterdam (2007).
[24] A. Deuss, J.C.E. Irving, J. H. Woodhouse, Regional variation of inner core anisotropy from seismic normal mode observations, Science 328, 1018-1020 (2010).
[25] M. Dumberry, Gravity variations induced by core flows, Geophys. J. Int. 180, 635–650 (2010).
[26] M. Dumberry, Gravitationally driven inner core differential rotation, Earth Planet. Sci. Lett. 297, 387-394 (2010).
[27] D. Dumberry, J. Mound, Inner core-mantle gravitational locking and the super-rotation of the inner core, Geophys. J. Int. 181, 806-817 (2010).
[28] E.R. Engdahl, R. van der Hilst, R. Buland, Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seismol. Soc. Am. 88, 722-743 (1998).
[29] Y. Gallet, G. Hulot, A. Chulliat, A. Genevey, Geomagnetic field hemispheric asymmetry and archeomagnetic jerks, Earth Planet. Sci. Lett. 284, 179-186 (2009).
[30] R. Garcia, A. Souriau, Inner core anisotropy and heterogeneity level, Geophys. Res. Lett. 27, 3121-3124 (2000).
[31] G.A. Glatzmaier, P. H. Roberts, Rotation and magnetism of Earth’s inner core, Science 274, 1887-1891 (1996).
[32] R.S. Gross, Earth rotation variations – long period, in Treatise on Geophysics, Vol. 3, Geodesy, edited by G. Schubert, T.A. Herring, 239-294, Elsevier, Amsterdam (2007).
[33] D. Gubbins, Rotation of the inner core, J. Geophys. Res. 86, 11695-11699 (1981).
[34] D. Gubbins, B. Sreenivasan, J. Mound, S. Rost, Melting of the Earths inner core, Nature 473, 361-363 (2011).
[35] C.R. Gwinn, T.A. Herring, I.I. Shapiro, Geodesy by radio interferometry: Studies of the forced nutations of the Earth, 2. Interpretation, J. Geophys. Res. 91, 4755-4765 (1986).
[36] B.H. Hager, R.W. Clayton, M.A. Richards, R.P. Comer, A.M. Dziewonski, Lower mantle heterogeneity, dynamic topography and the geoid, Nature 313, 541 (1985).
[37] R. Holme, Large-scale flow in the core, in Treatise on Geophysics, Vol. 8, Core Dynamics, edited by G. Schubert, P. Olson, 107-130, Elsevier, Amsterdam (2007).
[38] G. Hulot, c. Eymin, B. Langlais, M. Mandea, N. Olsen, Small scale structure of the geodynamo inferred from Oersted and Magsat satellite data, Nature 416, 620-623, (2002).
[39] International Seismological Centre, On-line Bulletin, http://www.isc.ac.uk, Internatl. Seis. Cent., Thatcham, United Kingdom (2013).
[40] R. Iritani, N. Takeuchi, H. Kawakatsu, Seismic attenuation structure of the top half of the inner core beneath the northeastern Pacific, Geophys. Res. Lett. 37, L19303 (2010).
[41] J.C.E. Irving, A. Deuss, A Hemispherical structure in inner core velocity anisotropy, J. Geophys. Res. 116, B04307 (2011).
[42] M. Ishii, A. M. Dziewonski, The innermost inner core of the earth: Evidence for a change in anisotropic behavior at the radius of about 300 km, PNAS 99, 14026-14030 (2002).
[43] M. Ishii, A.M. Dziewonski, Constraints on the outer-core tangent cylinder using normal-mode splitting measurements, Geophys. J. Int. 162, 787-792 (2005).
[44] A. Jackson, Intense equatorial flux splots on the surface of the earths core, Nature 424, 760763 (2003).
[45] A. Jackson, C.C. Finlay, Geomagnetic secular variation and its application to the core, in Treatise on Geophysics, Vol. 5, Geomagnetism, edited by G. Schubert, M. Kono, 147-193, Elsevier, Amsterdam (2007).
[46] G. Jiang, D. Dapeng Zhao, Observation of high-frequency PKiKP in Japan: Insight into fine structure of inner core boundary, J. Asian Earth Sci. 59, 167-184 (2012).
[47] H. Kawakatsu, Sharp and seismically transparent inner core boundary region revealed by an entire network observation of near-vertical PKiKP, Earth Planets Space 58, 855-863 (2006).
[48] B.L.N. Kennett, Seismological Tables: ak135, The Australian National University Canberra ACT 0200 Australia (2005).
[49] B. Kennett, E. Engdahl, and R. Buland, Constraints on seismic velocities in the Earth from travel times, Geophys. J. Int. 122, 108-124 (1995).
[50] K.D. Koper, M.L. Pyle, J.M. Franks, Constraints on aspherical core structure from PKiKP-PcP differential travel times, J. Geophys. Res. 108, 2168 (2003).
[51] I. Lehman, P’, Publications du Bureau Central S´eismologique International A 14, 87-115 (1936).
[52] D. Leykam, H. Tkalci´c, and A.M. Reading, Core structure re-examined using new teleseismic data recorded in Antarctica: evidence for, at most, weak cylindrical seismic anisotropy in the inner core, Geophys. J. Int. 180, 1329-1343 (2010).
[53] X. Li, V.F. Cormier, Frequency-dependent seismic attenuation in the inner core 1. A viscoelastic interpretation, J. Geophys. Res. 107, 2361 (2002).
[54] P. W. Livermore, R. Hollerbach, A. Jackson, Electromagnetically driven westward drift and inner-core superrotation in Earths core, PNAS 110.40, 15914-15918 (2013).
[55] K.H.Lythgoe, A. Deuss, J.F. Rudgea, J.A. Neufeld, Earths inner core: Innermost inner core or hemispherical variations?, Earth Planet. Sci. Lett. 385, 181-189 (2014).
[56] M. Mandea, I. Panet, V. Lesur, O. de Viron, M. Diament, J-L. Le Mouel, Recent changes of the Earth’s core derived from satellite observations of magnetic and gravity fields, PNAS 109.47, 19129-19133 (2012).
[57] A. M. Makinen, A. Deuss, Global seismic body-wave observations of temporal variations in the Earths inner core, and implications for its differential rotation, Geophys. J. Int. 187, 355-370 (2011).
[58] M. Monnereau, M. Calvet, L. Margerin, A. Souriau, Lopsided growth of Earth’s inner core, Science 328, 1014-1017 (2010).
[59] H. Mizzon, M. Monnereau, Implication of the lopsided growth for the viscosity of Earths inner core, Earth Planet. Sci. Lett. 361, 391-401 (2013).
[60] F. Niu, Q. Chen, Seismic evidence for distinct anisotropy in the innermost inner core, Nature Geoscience 1, 692- 696 (2008).
[61] F. Niu, L. Wen, Hemispherical variations in seismic velocity at the top of the Earth’s inner core, Nature 410, 1081-1084 (2001).
[62] T. Ohtaki, S. Kaneshima, K. Kanjo, Seismic structure near the inner core boundary in the south polar region, J. Geophys. Res. 117, B03312 (2012).
[63] E.A. Okal, S. Stein, Observations of ultra-long period normal modes from the 2004 SumatraAndaman earthquake, Phys. Earth Planet. In. 175, 5362 (2009).
[64] N. Olsen, G. Hulot, T.J. Sabaka, The Present Field, in Treatise on Geophysics, Vol. 5, Geomagnetism, edited by G. Schubert, M. Kono, 147-193, Elsevier, Amsterdam (2007).
[65] P. Olson, R. Deguen, Eccentricity of the geomagnetic dipole caused by lopsided inner core growth, Nature Geoscience 5, 565-569 (2012).
[66] S.I. Oreshin, L.P. Vinnik, Heterogeneity and anisotropy of seismic attenuation in the inner core, Geophys. Res. Lett. 31, L02613 (2004).
[67] A. Ouzounis, K. Creager, Isotropy overlying anisotropy at the top of the inner core, Geophys. Res. Lett. 28, 4331- 4334 (2001).
[68] C.L. Pekeris, Thermal convection in the interior of the Earth, Mon. Not. R. Astron. Soc., suppl. 3, 343-367 (1935).
[69] Z. Peng, K.D. Koper, J.E. Vidale, F. Leyton, P. Shearer, Inner-core fine-scale structure from scattered waves recorded by LASA, J. Geophys. Res. 113, B09312 (2008).
[70] A. Piersanti, L. Boschi, A.M. Dziewonski, Estimating lateral structure in the earth’s outer core, Geophys. Res. Lett., 28, 1659-1662 (2001).
[71] G. Poupinet, B.L.N. Kennett, On the observation of high frequency PKiKP and its coda in Australia, Phys. Earth Planet. Int. 146, 497511 (2004).
[72] B. Romanowicz, L. Breger, Anomalous splitting of free oscillations: A reevaluation of possible interpretations, J. Geophys. Res. 105, 21559-21578 (2000).
[73] B. Romanowicz, H. Tkalci´c, L. BregerOn the origin of complexity in PKP travel time data, in Core Dynamics, Structure and Rotation, Dehant V et al. (eds.), pp. 3144, American Geophysical Union, Washington (2003).
[74] S. Rosat, Time varying gravity in relation with the Earths intern dynamics: Contribution of superconducting gravimeters, Doctoral Thesis, Strasbourg University, 2004
[75] G. Roult, J. Roch, E. Clevede, Observation of split modes from the 26th December 2004 Sumatra-Andaman megaevent, Physics of the Earth and Planetary Interiors 179, 4559 (2010). [76] P. Shearer, G. Masters, The density and shear velocity contrast at the inner core boundary, Geophys. J. Int. 102, 491-498 (1990).
[77] L.B. Slichter, The fundamental free mode of the Earths inner core, PNAS 47, 186190 (1961). [78] G. Soldati, L. Boschi, A. Piersanti, Outer core density heterogeneity and the discrepancy between PKP and PcP travel time observations, Geophysical research letters 30, 1190 (2003). [79] X. Song, P. G. Richards, Seismological evidence for differential rotation of the Earthsinner core, Nature 382, 221-224 (1996).
[80] A. Souriau, A. Teste, S. Chevrot, Is there any structure inside the liquid outer core?, Geophys. Res. Lett. 30, 1567 (2003).
[81] A. Souriau, Deep Earth structure – the Earths cores, in Treatise on Geophysics, Vol. 1, Seismology and structure of the Earth, edited by G. Schubert, B. Romanowicz, A. Dziewonski, 655-693, Elsevier, Amsterdam (2007).
[82] D.J. Stevenson, Limits on lateral density and velocity variations in the earth’s outer core, Geophys. J. Roy. Astr. S. 88, 311-319 (1987).
[83] W. Su, A. M. Dziewonski, R. Jeanloz, Planet within a planet: Rotation of the Inner Core of Earth, Science 274, 1883-1887 (1996).
[84] I. Sumita, P. Olson, A laboratory model for convection in Earths core driven by a thermally heterogeneous mantle, Science, 286, 1547-1549 (1999).
[85] I. Sumita, P. Olson, Rotating thermal convection experiments in a hemispherical shell with heterogeneous boundary heat flux: implications for the Earth’s core, J. Geophys. Res. 107, 2169 (2002).
[86] I. Sumita, M.I. Bergman, Inner-Core Dynamics, in Treatise on Geophysics, Vol. 8, Core Dynamics, edited by G. Schubert, P. Olson, 299-318, Elsevier, Amsterdam (2007).
[87] S. Tanaka and H. Hamaguchi, Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)-PKP(DF) times, J. Geophys. Res. 102, 2925-2938 (1997).
[88] H. Tkalcic, M. Young, T. Bodin, S. Ngo, M. Sambridge, The shuffling rotation of the Earths inner core revealed by earthquake doublets, Nature Geoscience 6, 497-502 (2013).
[89] C. Vamos, N. Suciu, Seismic hemispheric asymmetry induced by Earth’s inner core decentering, arXiv:1111.1121v1 [physics.geo-ph] (2011).
[90] E. Vesanen, R. Teisseyre, Symmetry and asymmetry in geodynamics, Geophysica 15, 147-170 (1978).
[91] J. Wahr, D. de Vries, The possibility of lateral structure inside the core and its implications for nutation and earth tide observations, Geophys. J. Int. 99, 511-519 (1989).
[92] L. Waszek, J. Irving, A. Deuss, Reconciling the hemispherical structure of Earth’s inner core with its superrotation, Nature Geoscience 4, 264-267 (2011).
[93] L. Waszek, A. Deuss, Distinct layering in the hemispherical seismic velocity structure of Earths upper inner core, J. Geophys. Res. 116, B12313 (2011).
[94] L. Wen, F. Niu, Seismic velocity and attenuation structures in the top of the Earth’s inner core, J. Geophys. Res. 107(B11), 2273 (2002).
[95] W. Yu, L. Wen, F. Niu, Seismic velocity structure in the Earth’s outer core, J. Geophys. Res. 110, B02302 (2005).
[96] W. Yu, L. Wen, Seismic velocity and attenuation structures in the top 400 km of the Earth’s inner core along equatorial paths, J. Geophys. Res. 111, B07308 (2006).
[97] D. Zidarov, Theory of the evolution of the Earth and the Earth’s crust based on the mobile Earth core concept, Geol. Balcanica 7, 3-26 (1977).

soon

2014

Related Posts