## Abstract

This article presents numerical investigations on accuracy and convergence properties of several numerical approaches for simulating steady state flows in heterogeneous aquifers.

Finite difference, finite element, discontinuous Galerkin, spectral, and random walk methods are tested on two-dimensional benchmark flow problems.

Realizations of log-normal hydraulic conductivity fields are generated by Kraichnan algorithms in closed form as finite sums of random periodic modes, which allow direct code verification by comparisons with manufactured reference solutions.

The quality of the methods is assessed for increasing number of random modes and for increasing variance of the log-hydraulic conductivity fields with Gaussian and exponential correlation.

Experimental orders of convergence are calculated from successive refinements of the grid.

The numerical methods are further validated by comparisons between statistical inferences obtained from Monte Carlo ensembles of numerical solutions and theoretical first-order perturbation results.

It is found that while for Gaussian correlation of the log-conductivity field all the methods perform well, in the exponential case their accuracy deteriorates and, for large variance and number of modes, the benchmark problems are practically not solvable with reasonably large computing resources, for all the methods considered in this study.

## Authors

Cristian D. **Alecsa**

Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Imre **Boros**

Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Department of Mathematics, Babes-Bolyai University, Mihail Kogalniceanu, 1, 400084 Cluj-Napoca, Romania

Florian **Frank**

Mathematics Department, Friedrich-Alexander University of Erlangen-Nuremberg, Cauerstraße. 11, 91058 Erlangen, Germany

Peter **Knabner**,

Mathematics Department, Friedrich-Alexander University of Erlangen-Nuremberg, Cauerstraße. 11, 91058 Erlangen, Germany

Mihai **Nechita**

Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom

Alexander **Prechtel**

Mathematics Department, Friedrich-Alexander University of Erlangen-Nuremberg, Cauerstraße. 11, 91058 Erlangen, Germany

Andreas **Rupp**

Mathematics Department, Friedrich-Alexander University of Erlangen-Nuremberg, Cauerstraße. 11, 91058 Erlangen, Germany

Interdisciplinary Center for Scientific Computing, Ruprecht-Karls-University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

Nicolae **Suciu**

Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

## Keywords

Darcy flow; Accuracy; Convergence; Computational feasibility; Finite difference; Finite element; Discontinuous Galerkin; Spectral methods; Global random walk

### Paper coordinates:

C.D. Alecsa, I. Boros, F. Frank, P. Knabner, M. Nechita, A. Prechtel, A. Rupp, N. Suciu, *Numerical benchmark study for flow in highly heterogeneous aquifers*, Adv. Water Res., 138 (2020), 103558

doi: 10.1016/j.advwatres.2020.103558

Not available yet.

## About this paper

##### Print ISSN

0169-3913

##### Online ISSN

1573-1634

R. Ababou, D. McLaughlin, L.W. Gelhar, A.F. Tompson

Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media

Transp. Porous Media, 4 (6) (1989), pp. 549-565, 10.1007/BF00223627

Alecsa, C. D., Boros, I., Frank, F., Knabner, P., Nechita, M., Prechtel, A., Rupp, A., Suciu, N., 2020a. Benchmark for numerical solutions of fow in heterogeneous groundwater formations. arXiv:1911.10774.

Alecsa, C.D., Boros, I., Frank, F., Knabner, P., Nechita, M., Prechtel, A., Rupp, A., Suciu, N., 2020b. Git repository. https://github.com/PMFlow/FlowBenchmark. doi:10.5281/zenodo.3662401.

M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes, G.N. Wells

The FEniCS project version 1.5

Arch. Numer. Softw., 3 (100) (2015), pp. 9-23, 10.11588/ans.2015.100.20553

J.L. Aurentz, L.N. Trefethen

Chopping a Chebyshev series

ACM Trans. Math. Softw. (TOMS), 43 (4) (2017), p. 33, 10.1145/2998442

A.A. Bakr, L.W. Gelhar, A.L. Gutjahr, J.R. MacMillan

Stochastic analysis of spatial variability in subsurface flows: 1. comparison of one-and three-dimensional flows

Water Resour. Res., 14 (2) (1978), pp. 263-271, 10.1029/WR014i002p00263

A. Bellin, Y. Rubin

HYDRO_GEN: a spatially distributed random field generator for correlated properties

Stoch. Hydrol. Hydraul., 10 (4) (1996), pp. 253-278, 10.1007/BF01581869

A. Bellin, P. Salandin, A. Rinaldo

Simulation of dispersion in heterogeneous porous formations: Statistics, first-order theories, convergence of computations

Water Resour. Res., 28 (9) (1992), pp. 2211-2227, 10.1029/92WR00578

G.C. Bohling, G. Liu, P. Dietrich, J.J. Butler

Reassessing the MADE direct-push hydraulic conductivity data using a revised calibration procedure

Water Resour. Res., 52 (11) (2016), pp. 8970-8985, 10.1002/2016WR019008

M. Bollhöfer, J.I. Aliaga, A.F. Martín, E.S. Quintana-Ortí

ILUPACK. in padua, d.a. (ed)

Encyclopedia of Parallel Computing,, Springer, New York (2011), pp. 917-926, 10.1007/978-0-387-09766-4_513

F. Brunner, F.A. Radu, M. Bause, P. Knabner

Optimal order convergence of a modified BDM1 mixed finite element scheme for reactive transport in porous media

Adv. Water Resour., 35 (2012), pp. 163-171, 10.1016/j.advwatres.2011.10.001

O. Cainelli, A. Bellin, M. Putti

On the accuracy of classic numerical schemes for modeling flow in saturated heterogeneous formations

Adv. Water Resour., 47 (2012), pp. 43-55, 10.1016/j.advwatres.2012.06.016

V. Calo, Y. Efendiev, J. Galvis

A note on variational multiscale methods for high-contrast heterogeneous porous media flows with rough source terms

Adv. Water Resour., 34 (9) (2011), pp. 1177-1185, 10.1016/j.advwatres.2010.12.011

J. Carrayrou, J. Hoffmann, P. Knabner, S. Kräutle, C. De Dieuleveult, J. Erhel, J. Van Der Lee, V. Lagneau, K.U. Mayer, K.T. Macquarrie

Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems–the momas benchmark case

Comput. Geosci., 14 (3) (2010), pp. 483-502, 10.1007/s10596-010-9178-2

J. Carrayrou, M. Kern, P. Knabner

Reactive transport benchmark of momas

Comput. Geosci., 14 (3) (2010), pp. 385-392, 10.1007/s10596-009-9157-7

C. Cordes, M. Putti

Accuracy of galerkin finite elements for groundwater flow simulations in two and three-dimensional triangulations

Int. J. Numer. Meth. Eng., 52 (4) (2001), pp. 371-387, 10.1002/nme.194

H. Cramér, M.R. Leadbetter

Stationary and Related Stochastic Processes

John Wiley & Sons, New York. (1967)

G. Dagan

Flow and Transport in Porous Formations

Springer, Berlin (1989)

T.A. Davis

Direct methods for sparse linear systems

Siam., 2 (2006), 10.1137/1.9780898718881

T.A. Davis

Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing Sparse QR Factorization

ACM Trans. Math. Softw., 38 (1) (2011), 10.1145/2049662.2049670

F.W. Deng, J.H. Cushman

On higher-order corrections to the flow velocity covariance tensor

Water Resour. Res., 31 (7) (1995), pp. 1659-1672, 10.1029/94WR02974

V. Di Federico, S.P. Neuman

Scaling of random fields by means of truncated power variograms and associated spectra

Water Resour. Res., 33 (1997), pp. 1075-1085, 10.1029/97WR00299

D.A. Di Pietro, A. Ern

Mathematical Aspects of Discontinuous Galerkin Methods

Springer, Heidelberg (2012)

J.R. de Dreuzy, A. Beaudoin, J. Erhel

Asymptotic dispersion in 2d heterogeneous porous media determined by parallel numerical simulations

Water Resour. Res., 43 (2007), p. W10439, 10.1029/2006WR005394

J.R. de Dreuzy, G. Pichot, B. Poirriez, J. Erhel

Synthetic benchmark for modeling flow in 3d fractured media

Comput. Geosci., 50 (2013), pp. 59-71, 10.1016/j.cageo.2012.07.025

J.P. Eberhard, N. Suciu, C. Vamos

On the self-averaging of dispersion for transport in quasiperiodic random media

J. Phys. A, 40 (4) (2007), pp. 597-610, 10.1088/1751-8113/40/4/002

B. Flemisch, I. Berre, W. Boon, A. Fumagalli, N. Schwenck, A. Scotti, I. Stefansson, A. Tatomir

Benchmarks for single-phase flow in fractured porous media

Adv. Water Resour., 111 (2018), pp. 239-258, 10.1016/j.advwatres.2017.10.036

F. Frank, B. Reuter, V. Aizinger, P. Knabner

FESTUNG: A MATLAB / GNU Octave toolbox for the discontinuous Galerkin method, Part I: diffusion operator

Comput. Math. Appl., 70 (1) (2015), pp. 11-46, 10.1016/j.camwa.2015.04.013

L.W. Gelhar

Stochastic subsurface hydrology from theory to applications

Water Resour. Res., 22 (9S) (1986), pp. S135S-145S, 10.1029/WR022i09Sp0135S

L.W. Gelhar, C. Axness

Three-dimensional stochastic analysis of macrodispersion in aquifers

Water Resour. Res., 19 (1) (1983), pp. 161-180, 10.1029/WR019i001p00161

H. Gotovac, R. Andričevicć, B. Gotovac

Multi resolution adaptive modeling of groundwater flow and transport

Adv. Water Resour., 30 (5) (2007), pp. 1105-1126, 10.1016/j.advwatres.2006.10.007

H. Gotovac, V. Cvetković, R. Andričevicć

Adaptive fup multi-resolution approach to flow and advective transport in highly heterogeneous porous media: Methodology, accuracy and convergence

Adv. Water Resour., 32 (6) (2009), pp. 885-905, 10.1016/j.advwatres.2009.02.013

C. Grenier, H. Anbergen, V. Bense, Q. Chanzy, E. Coon, N. Collier, F. Costard, M. Ferry, A. Frampton, J. Frederick, J. Gonçalvès, J. Holmén, A. Jost, S. Kokh, B. Kurylyk, J. McKenzie, J. Molson, E. Mouche, L. Orgogozo, R. Pannetier, A. Rivière, N. Roux, W. Rühaak, J. Scheidegger, J.-O. Selroos, R. Therrien, P. Vidstrand, C. Voss

Groundwater flow and heat transport for systems undergoing freeze-thaw: intercomparison of numerical simulators for 2d test cases

Adv. Water Resour., 114 (2018), pp. 196-218, 10.1016/j.advwatres.2018.02.001

Hoepffner, J., 2007. Implementation of boundary conditions. http://www.lmm.jussieu.fr/~hoepffner/boundarycondition.pdf.

T. Hou, X.H. Wu, Z. Cai

Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients

Math. Comput., 68 (227) (1999), pp. 913-943, 10.1090/S0025-5718-99-01077-7

C.T. Kelley

Iterative methods for linear and nonlinear equations

Siam, Philadelphia., 16 (1995)

P. Knabner, L. Angermann

Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Springer, New York. (2003)

R. Kornhuber, D. Peterseim, H. Yserentant

An analysis of a class of variational multiscale methods based on subspace decomposition

Math. Comput., 87 (314) (2018), pp. 2765-2774, 10.1090/mcom/3302

R.H. Kraichnan

Diffusion by a random velocity field

Phys. Fluids, 13 (1) (1970), pp. 22-31, 10.1063/1.1692799

P.R. Kramer, O. Kurbanmuradov, K. Sabelfeld

Comparative analysis of multiscale gaussian random field simulation algorithms

J. Comp. Phys., 226 (2007), pp. 897-924, 10.1016/j.jcp.2007.05.002

O. Kurbanmuradov, K. Sabelfeld, P.R. Kramer

Randomized spectral and fourier-wavelet methods for multidimensional gaussian random vector fields

J. Comp. Phys., 245 (2013), pp. 218-234, 10.1016/j.jcp.2013.03.021

O.A. Kurbanmuradov, K.K. Sabelfeld

Stochastic flow simulation and particle transport in a 2d layer of random porous medium

Transp. Porous Media, 85 (2010), pp. 347-373, 10.1007/s11242-010-9567-y

S. Larsson, V. Thomée

Partial Differential Equations with Numerical Methods

Springer, Berlin Heidelberg (2009), 10.1007/978-3-540-88706-5

H. Li, D. Zhang

Probabilistic collocation method for flow in porous media: comparisons with other stochastic methods

Water Resour. Res., 43 (2007), p. W09409, 10.1029/2006WR005673

S. Li, D.B. McLaughlin

A nonstationary spectral method for solving stochastic groundwater problems: unconditional analysis

Water Resour. Res., 27 (7) (1991), pp. 1589-1605, 10.1029/91WR00881

W. Li, Z. Lu, D. Zhang

Stochastic analysis of unsaturated flow with probabilistic collocation method

Water Resour. Res., 45 (2009), p. W08425, 10.1029/2008WR007530

Z. Li, Z. Qiao, T. Tang

Numerical Solution of Differential Equations: Introduction to Finite Difference and Finite Element Methods

Cambridge University Press (2017), 10.1017/9781316678725

H.A. Liu, F.J. Molz

Multifractal analyses of hydraulic conductivity distributions

Water Resour. Res., 33 (11) (1997), pp. 2483-2488, 10.1029/97WR02188

G.J. Lord, C.E. Powell, T. Shardlow

An Introduction to Computational Stochastic PDEs

Cambridge University Press (2014)

A. Mantoglou, J.L. Wilson

The turning bands method for simulation of random fields using line generation by a spectral method

Water Resour. Res., 18 (5) (1982), pp. 1379-1394, 10.1029/WR018i005p01379

S.A. Mizell, A.L. Gutjahr, L.W. Gelhar

Stochastic analysis of spatial variability in two-dimensional steady groundwater flow assuming stationary and nonstationary heads

Water Resour. Res., 18 (4) (1982), pp. 1053-1067, 10.1029/WR018i004p01053

F.J. Molz, G.K. Boman

Further evidence of fractal structure in hydraulic conductivity distributions

Geophys. Res. Lett., 22 (18) (1995), pp. 2545-2548, 10.1029/95GL02548

F.J. Molz, H.H. Liu, J. Szulga

Fractional brownian motion and fractional gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions

Water Resour. Res., 33 (10) (1997), pp. 2273-2286, 10.1029/97WR01982

W.L. Oberkampf, F.G. Blottner

Issues in computational fluid dynamics code verification and validation

AIAA J., 36 (5) (1998), pp. 687-695, 10.2514/2.456

M. Putti, C. Cordes

Finite element approximation of the diffusion operator on tetrahedra

SIAM J. Sci. Comput., 19 (4) (1998), pp. 1154-1168, 10.1137/S1064827595290711

F.A. Radu, K. Kumar, J.M. Nordbotten, I.S. Pop

A robust, mass conservative scheme for two-phase flow in porous media including hölder continuous nonlinearities

IMA J. Numer. Anal., 38 (2) (2017), pp. 884-920, 10.1093/imanum/drx032

F.A. Radu, N. Suciu, J. Hoffmann, A. Vogel, O. Kolditz, C.-H. Park, S. Attinger

Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study

Adv. Water Resour., 34 (2011), pp. 47-61, 10.1016/j.advwatres.2010.09.012

H. Rajaram, L.W. Gelhar

Three-dimensional spatial moments analysis of the borden tracer test

Water Resour. Res., 27 (6) (1991), pp. 1239-1251, 10.1029/91WR00326

K.R. Rehfeldt, J.M. Boggs, L.W. Gelhar

Field study of dispersion in a heterogeneous aquifer: 3. geostatistical analysis of hydraulic conductivity

Water Resour. Res., 28 (12) (1992), pp. 3309-3324, 10.1029/92WR01758

R.W. RitziJr, M.R. Soltanian

What have we learned from deterministic geostatistics at highly resolved field sites, as relevant to mass transport processes in sedimentary aquifers?

J. Hydrol., 531 (2015), pp. 31-39, 10.1016/j.jhydrol.2015.07.049

B. Riviere

Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM, Philadelphia (2008), 10.1137/1.9780898717440.fm

P.J. Roache

Verification and Validation in Computational Science and Engineering

Hermosa Publishers, New Mexico (1998)

P.J. Roache

Code verification by the method of manufactured solutions

J. Fluids Eng., 124 (1) (2002), pp. 4-10, 10.1115/1.1436090

C.J. Roy

Grid convergence error analysis for mixed-order numerical schemes

AIAA J., 41 (4) (2003), pp. 595-604, 10.2514/2.2013

C.J. Roy

Review of code and solution verification procedures for computational simulation

J. Comput. Phys., 205 (2005), pp. 131-156, 10.1016/j.jcp.2004.10.036

A. Rupp

Simulating structure formation in soils across scales using discontinuous galerkin methods

Shaker, Düren (2019)

P. Salandin, V. Fiorotto

Solute transport in highly heterogeneous aquifers.

Water Resour. Res., 34 (5) (1998), pp. 949-961, 10.1029/98WR00219

L.J. Segerlind

Applied Finite Element Analysis

J. Wiley and Sons, New York (1987)

J. Shen, Y. Wang, J. Xia

Fast structured direct spectral methods for differential equations with variable coefficients, i. the one-dimensional case

SIAM J. Sci. Comput., 38 (1) (2016), pp. A28-A54, 10.1137/140986815

V. Srzic, V. Cvetkovic, R. Andricevic, H. Gotovac

Impact of aquifer heterogeneity structure and local-scale dispersion on solute concentration uncertainty

Water Resour. Res., 49 (6) (2013), pp. 3712-3728, 10.1002/wrcr.20314

N. Suciu

Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields

Phys. Rev. E, 81 (2010), p. 056301, 10.1103/PhysRevE.81.056301

N. Suciu

Diffusion in random velocity fields with applications to contaminant transport in groundwater

Adv. Water. Resour., 69 (2014), pp. 114-133, 10.1016/j.advwatres.2014.04.002

N. Suciu

Diffusion in random fields

Applications to Transport in Groundwater. Birkhäuser, Cham (2019), 10.1007/978-3-030-15081-5

N. Suciu, S. Attinger, F.A. Radu, C. Vamoş, J. Vanderborght, H. Vereecken, P. Knabner

Solute transport in aquifers with evolving scale heterogeneity

An. Sti. U. Ovid. Co-Mat., 23 (3) (2015), pp. 167-186, 10.1515/auom-2015-0054

N. Suciu, F.A. Radu, A. Prechtel, P. Knabner

A coupled finite element – global random walk approach to advection – dominated transport in porous media with random hydraulic conductivity. j. comput

Appl. Math., 246 (2013), pp. 27-37, 10.1016/j.cam.2012.06.027

N. Suciu, L. Schüler, S. Attinger, P. Knabner

Towards a filtered density function approach for reactive transport in groundwater

Adv. Water Resour., 90 (2016), pp. 83-98, 10.1016/j.advwatres.2016.02.016

N. Suciu, C. Vamoş, J. Vanderborght, H. Hardelauf, H. Vereecken

Numerical investigations on ergodicity of solute transport in heterogeneous aquifers

Water. Resour. Res., 42 (2006), p. W04409, 10.1029/2005WR004546

M.G. Trefry, F.P. Ruan, D. McLaughlin

Numerical simulations of preasimptotic transport in hetoregenous porous media: departures from the gaussian limit

Water Resour. Res., 39 (3) (2003), pp. 1063-1077, 10.1029/2001WR001101

C. Vamoş, N. Suciu, H. Vereecken

Generalized random walk algorithm for the numerical modeling of complex diffusion processes

J. Comput. Phys., 186 (2003), pp. 527-544, 10.1016/S0021-9991(03)00073-1

J.A. Weideman, S.C. Reddy

A MATLAB differentiation matrix suite. ACM trans

Math. Software, 26 (4) (2000), pp. 465-519, 10.1145/365723.365727

A.M. Yaglom

Correlation theory of stationary and related random functions

Vol. 2: Supplementary Notes and References., Springer, New York (1987)

Y. Zhang, M. Person, C.W. Gable

Representative hydraulic conductivity of hydrogeologic units: insights from an experimental stratigraphy

J. Hydrol., 339 (2007), pp. 65-78, 10.1016/j.jhydrol.2007.03.007

(soon)